94.2.6. Convergence of a Nonlinear Time Series Model—Solution, proposed by Peter C.B. Phillips. Write $X_t = (\frac{1}{2})(1 + \eta_t)X_{t-1}$, where $\eta_t \equiv \text{iid}(0,1)$, and let Z_t be defined by

$$Z_t = (\frac{1}{2})^{1/2}(1 + \eta_t)Z_{t-1}, \qquad t = 1, 2, \ldots,$$

with $Z_0 = X_0$. Then,

$$X_{t} = \prod_{j=1}^{t} \left\{ \left(\frac{1}{2} \right) (1 + \eta_{j}) \right\} X_{0} = \left(\frac{1}{2} \right)^{t/2} \prod_{j=1}^{t} \left\{ \left(\frac{1}{2} \right)^{1/2} (1 + \eta_{j}) \right\} X_{0} = \left(\frac{1}{2} \right)^{t/2} Z_{t}.$$

Because X_0 is independent of the η_j and has zero mean, we have $E(Z_t) = 0$. Next, note that

$$E(Z_t^2 \mid \Upsilon_{t-1}) = E\{(\frac{1}{2})^{1/2}(1+\eta_t)\}^2 Z_{t-1}^2 = Z_{t-1}^2,$$

so that Z_t^2 is a martingale. Furthermore,

$$E(Z_t^2) = E\{E(Z_t^2\,\big|\,\mathfrak{F}_0)\} = E(Z_0^2) = \sigma^2,$$

and hence $\sup_t E(Z_t^2) = \sigma^2 < \infty$. Thus, Z_t^2 is a martingale with uniformly bounded first moment. By the martingale convergence theorem, Z_t^2 converges almost surely as $t \to \infty$. It follows that Z_t converges almost surely; i.e., the infinite product

$$Z_{\infty} = \prod_{j=1}^{\infty} \left\{ \left(\frac{1}{2} \right)^{1/2} (1 + \eta_j) \right\} Z_0$$

is convergent almost surely. Hence,

$$X_t = (\frac{1}{2})^{t/2} Z_t \to_{a.s.} 0,$$

as required.