89.3.4. Estimation and Testing in Linear Models with Singular Covariance Matrices – Solution, proposed by Peter C.B. Phillips. Our model is:

$$y_t = Z_t \beta + u_t; \qquad (t = 1, \dots, T)$$
 (1)

with

 $R'u_t = 0$ a.s.

where

 $\Sigma R = 0.$

For convenience, let the columns of R be orthonormal (if not, simply use $R(R'R)^{-1/2}$ instead). Construct the orthogonal matrix

$$C = \begin{bmatrix} S & R \\ n - r & r \end{bmatrix}$$

and use this transform (1) as follows:

$$C'y_t = C'Z_t\beta + C'u_t. (2)$$

Here

$$C'u_t \equiv N\left(0, \begin{pmatrix} \Sigma_s & 0\\ 0 & 0 \end{pmatrix}\right)$$

with $\Sigma_s = S'\Sigma S$. Now

$$C'\Sigma C + \begin{pmatrix} 0 \\ I \end{pmatrix} (0 \quad I) = \begin{pmatrix} \Sigma_s & 0 \\ 0 & I \end{pmatrix}$$

and so

$$\Sigma + RR' = C \begin{pmatrix} \Sigma_s & 0 \\ 0 & I \end{pmatrix} C'$$

and

$$(\Sigma + RR')^{-1} = C \begin{pmatrix} \Sigma_s & 0 \\ 0 & I \end{pmatrix} C' = \Sigma^{-}.$$

Take the first n - r rows of (2) and write (in an obvious notation)

$$y_{st} = Z_{st}\beta + u_{st}.$$

Here $u_{st} \equiv N(0, \Sigma_s)$ and

$$p \, df(u_{st}) = (2\pi)^{(n-r)/2} |\Sigma_s|^{-1/2} \exp\left\{-\frac{1}{2} u_{st}' \Sigma_s^{-1} u_{st}\right\}.$$

The likelihood is

$$p \, df(Y_s) = (2\pi)^{(n-r)T/2} |\Sigma_s|^{-T/2} \exp\left\{-\frac{1}{2} \, \Sigma_1^T (y_{st} - Z_{st}\beta)' \Sigma_s^{-1} (y_{st} - Z_{st}\beta)\right\}.$$
Now serving:

Now consider

$$u'_{st}\Sigma_{s}^{-1}u_{st} = (u'_{st} \quad 0) \begin{pmatrix} \Sigma_{s}^{-1} & 0 \\ 0 & I \end{pmatrix} \begin{pmatrix} u_{st} \\ 0 \end{pmatrix}$$

$$= (u'_{st} \quad 0)C'C \begin{pmatrix} \Sigma_{s}^{-1} & 0 \\ 0 & I \end{pmatrix} C'C \begin{pmatrix} u_{st} \\ 0 \end{pmatrix}$$

$$= (u'_{st} \quad 0)C'(\Sigma + RR')^{-1}C \begin{pmatrix} u_{st} \\ 0 \end{pmatrix}$$

$$= u'_{t}(\Sigma + RR')^{-1}u_{t}$$

since $u_t'C = (u_{st}', 0)$. Note also that

$$\left|\Sigma_{s}^{-1}\right| = \left|\begin{matrix} \Sigma_{s}^{-1} & 0\\ 0 & I \end{matrix}\right| = \left|(\Sigma + RR')^{-1}\right|$$

and thus the likelihood (3) may be written in the form

$$p \, df(Y_s) = (2\pi)^{(n-r)T/2} |\Sigma + RR'|^{-T/2} \times \exp\left\{-\frac{1}{2} \, \Sigma_t^T (y_t - Z_t \beta)' (\Sigma + RR')^{-1} (y_t - Z_t \beta)\right\}. \tag{4}$$

To find the estimating equations for the MLE's $(\hat{\beta}, \hat{\Sigma})$ we write the log likelihood as

$$\mathcal{L} = \operatorname{const} - \left(\frac{T}{2}\right) \ln |\Sigma + RR'|$$
$$- \left(\frac{1}{2}\right) \Sigma_{1}^{T} (y_{t} - Z_{t}\beta)' (\Sigma + RR')^{-1} (y_{t} - Z_{t}\beta)$$

and note that we must maximize subject to $\Sigma R = 0$.

Set up the Lagrangean

$$\mathcal{L}^* = -T/2\ln|\Sigma + RR'| - T/2\operatorname{tr}[(\Sigma + RR')^{-1}M] + \operatorname{tr}(\Lambda \Sigma R)$$

with

$$M = T^{-1} \Sigma_1^T (y_t - Z_t \beta) (y_t - Z_t \beta)',$$

Take differentials, giving

$$-T/2\operatorname{tr}((\Sigma + RR')^{-1}d\Sigma) + T/2\operatorname{tr}[(\Sigma + RR')^{-1}d\Sigma(\Sigma + RR')^{-1}M] + \operatorname{tr}(d\Sigma R\Lambda) = 0$$
(5)

and, of course, $\Sigma R = 0$. Then (5) gives us

$$(\hat{\Sigma} + RR')^{-1} - (\hat{\Sigma} + RR')^{-1}M(\hat{\Sigma} + RR')^{-1} - \frac{2}{T}R\Lambda = 0$$
 (6)

so that

$$\frac{2}{T}\Lambda = (R'R)^{-1}R'(\hat{\Sigma} + RR')^{-1} - (R'R)^{-1}R'(\hat{\Sigma} + RR')^{-1}M(\hat{\Sigma} + RR')^{-1}.$$

But
$$R'(\hat{\Sigma} + RR') = (R'R)R'$$
 so that $R'(\hat{\Sigma} + RR')^{-1} = (R'R)^{-1}R'$. Thus

$$\frac{2}{T}\Lambda = (R'R)^{-2}R' - (R'R)^{-2}R'M(\hat{\Sigma} + RR')^{-1}$$

and (6) gives us

$$\hat{\Sigma} + RR' = M + (\hat{\Sigma} + RR')R(R'R)^{-2}R'(\hat{\Sigma} + RR') - (\hat{\Sigma} + RR')R(R'R)^{-2}R'M = M + RR' - R(R'R)^{-1}R'M.$$

But R'M = 0 so that we have

$$\hat{\Sigma} = M = T^{-1} \Sigma_1^T (y_t - Z_t \hat{\beta}) (y_t - Z_t \hat{\beta})'. \tag{7}$$

Concentrating the likelihood function, we now have

$$\mathcal{L}^{**} = \text{const} - (T/2) \ln |\hat{\Sigma} + RR'| - T/2 \text{tr}[(\hat{\Sigma} + RR')^{-1}\hat{\Sigma}]$$

= \text{const} - (T/2) \ln |\hat{\Sigma} + RR'| \tag{8}

since

$$tr[(\hat{\Sigma} + RR')^{-1}\hat{\Sigma}] = tr[(\hat{\Sigma} + RR')^{-1}((\hat{\Sigma} + RR') - RR')]$$

$$= tr[I - (\hat{\Sigma} + RR')^{-1}RR']$$

$$= tr[I - R(R'R)^{-1}R'].$$

Differentiating (8), we have

$$-T/2 \operatorname{tr}[(M + RR')^{-1} dM] = 0$$

SO

$$\operatorname{tr}[(M+RR')^{-1}(T^{-1}\Sigma_1^TZ_td\beta(y_t-Z_t\beta)')]=0$$

and thus

$$\sum_{i=1}^{T} d\beta' Z_{i}' (M + RR')^{-1} (y_{i} - Z_{i}\beta) = 0$$

giving

$$\hat{\beta} = \left[\sum_{1}^{T} Z_{t}' (M + RR')^{-1} Z_{t} \right]^{-1} \left[\sum_{1}^{T} Z_{t}' (M + RR')^{-1} y_{t} \right].$$

Hence, the MLE $(\hat{\beta}, \hat{\Sigma})$ is

$$\hat{\beta} = (\Sigma_1^T Z_t' \hat{\Sigma}^- Z_t)^{-1} (\Sigma_1^T Z_t' \hat{\Sigma}^- y_t)$$

$$\hat{\Sigma} = T^{-1} \Sigma_1^T (y_t - Z_t \hat{\beta}) (y_t - Z_t \hat{\beta})'.$$

Remark 1. An alternative approach is to work directly from (3), giving

$$\hat{\Sigma}_s = T^{-1} \Sigma_1^T (y_{st} - Z_{st} \beta) (y_{st} - Z_{st} \beta)'$$

and

$$\hat{\beta} = (\Sigma_1^T Z_{st}' \hat{\Sigma}_s^{-1} Z_{st})^{-1} (\Sigma_1^T Z_{st}' \hat{\Sigma}_s^{-1} y_{st}).$$

Then

$$\hat{\Sigma} = C \begin{bmatrix} \hat{\Sigma}_s & 0 \\ 0 & I \end{bmatrix} C' - RR' = S \hat{\Sigma}_s S' = T^{-1} \Sigma_1^T (y_t - Z_t \hat{\beta}) (y_t - Z_t \hat{\beta})'$$

since

$$y_t = C\begin{pmatrix} y_{st} \\ 0 \end{pmatrix} = Sy_{st}, \qquad Z_t = C\begin{pmatrix} Z_{st} \\ 0 \end{pmatrix} = SZ_{st}$$

and, correspondingly,

$$\hat{\beta} = (\Sigma_1^T Z_t' S \hat{\Sigma}_s^{-1} S' Z_t)^{-1} (\Sigma_1^T Z_t' S \hat{\Sigma}_s^{-1} S' y_t)$$
$$= (\Sigma_1^T Z_t' \hat{\Sigma}^{-} Z_t)^{-1} (\Sigma_1^T Z_t' \hat{\Sigma}^{-} y_t)$$

since

$$(\hat{\Sigma}+RR')^{-1}=C\begin{pmatrix}\hat{\Sigma}_s^{-1} & 0\\ 0 & I\end{pmatrix}C'=S\hat{\Sigma}_s^{-1}S'=\hat{\Sigma}^-.$$

Obviously, this is the shorter method. But both are of interest.

(b) The OLS estimates are:

$$\beta^* = (\Sigma_1^T Z_t' Z_t)^{-1} (\Sigma_1^T Z_t' y_t)$$

$$\Sigma^* = T^{-1} \Sigma_1^T (y_t - Z_t \beta^*) (y_t - Z_t \beta^*)'.$$

Assume:

- (i) The elements of Z_t are bounded uniformly in t;
- (ii) $T^{-1}\Sigma_1^T Z_t' Z_t \to K > 0$, $T^{-1}\Sigma_1^T Z_t' \Sigma Z_t \to V > 0$.

Then

$$\sqrt{T}(\beta^* - \beta) = (T^{-1}\Sigma_1^T Z_t' Z_t)^{-1} (T^{-1}\Sigma_1^T Z_t' y_t)$$

$$\Rightarrow N(0, K^{-1}VK^{-1}).$$

Now

$$\begin{split} \Sigma^* &= T^{-1} \Sigma_1^T u_t u_t' + T^{-1} \Sigma_1^T Z_t (\beta - \beta^*) u_t' \\ &+ T^{-1} \Sigma_1^T u_t (\beta - \beta^*)' Z_t' + T^{-1} \Sigma_1^T Z_t (\beta - \beta^*) (\beta - \beta^*)' Z_t' \\ &\xrightarrow{\rho} \Sigma. \end{split}$$

Since $\beta - \beta^* = o_p(1)$, we have

$$\begin{split} \sqrt{T}(\Sigma^* - \Sigma) &\sim \sqrt{T}(T^{-1}\Sigma_1^T u_t u_t' - \Sigma) \\ &= T^{-1/2}\Sigma_1^T (u_t u_t' - \Sigma) \\ &\Rightarrow N(0, 2P_D(\Sigma \otimes \Sigma)) \end{split}$$

by the multivariate extension of the Lindeberg Lévy theorem.

(c) Note that the hypothesis

$$H_0: \beta' \Sigma \beta = 0$$

is equivalent to

 $H_0': \beta = Ra$ for some a

since R spans $N(\Omega)$. We can also write H_0' in the form

$$H_0'': P_R\beta = \beta$$
 or $H_0''': Q_R\beta = 0$

where
$$Q_R = I - P_R = I - R(R'R)^{-1}R'$$
.

To test H_0''' we use

$$W = \beta^{*\prime} Q_R [Q_R (\Sigma_1^T Z_t^{\prime} Z_t)^{-1} (\Sigma_1^T Z_t^{\prime} \Sigma^* Z_t) (\Sigma_1^T Z_t^{\prime} Z_t)^{-1} Q_R]^{-} Q_R \beta^*.$$

Set

$$V_{\beta}^{\star} = (\Sigma_1^T Z_t^{\prime} Z_t)^{-1} (\Sigma_1^T Z_t^{\prime} \Sigma^{\star} Z_t) (\Sigma_1^T Z_t^{\prime} Z_t)^{-1}$$

and then

$$(Q_R V_\beta^* Q_R)^- = (Q_R V_\beta^* Q_R + RR')^{-1}$$

and

$$W \Rightarrow \chi_{n-r}^2$$

where $Q_R V_\beta Q_R = Q_R K^{-1} V K^{-1} Q_R$ and rank $(Q_R V_\beta Q_R) = n - r$. (We assume Q_R reduces the rank of V_β by r and no more. This will be so if V_β has full rank k = n.)

Alternatively, take the matrix S whose columns span $R(R)^{\perp}$, so that, as before, $C = [S \ R]$ is orthogonal. Then

$$R(R) = R(S)^{\perp} = N(S')$$

and H_0' is equivalent to

$$H_0^{iv}$$
: $S'\beta = 0$.

(In effect, H_0''' is then H_0^{iv} with $Q_R = SS'$.) The Wald test is just

$$W = (S'\beta^*)'(S'V_{\beta}^*S)^{-1}S'\beta^*$$
$$= \beta^*'S(S'V_{\beta}^*S)^{-1}S'\beta^*$$
$$\Rightarrow \chi_c^2$$

where s = n - r = k - r here.

Remark 2. This shows, incidentally, that another g inverse of $Q_R V_\beta^* Q_R$ is $(Q_R V_\beta^* Q_R)^- = S(S' V_\beta^* S)^{-1} S'$

as

$$S(S'V_{\beta}^*S)^{-1}S' = SS'S(S'V_{\beta}^*S)^{-1}S'SS' = Q_RS(S'V_{\beta}^*S)^{-1}S'Q_R$$

and

$$Q_{R}V_{\beta}^{*}Q_{R}S(S'V_{\beta}^{*}S)^{-1}S'Q_{R}V_{\beta}^{*}Q_{R} = SS'V_{\beta}^{*}S(SV_{\beta}^{*}S)^{-1}S'V_{\beta}^{*}SS'$$
$$= SS'V_{\beta}^{*}SS' = Q_{R}V_{\beta}^{*}Q_{R}.$$

Remark 3. We could attempt to test H_0 directly by using $\beta^{*'}\Sigma^*\beta^*$ or, equivalently, $\Sigma^*\beta^*$. Write

$$\Sigma^*\beta^* = \Sigma^*(\beta^* - \beta).$$

This holds because, under the null H_0 , β satisfies $\Sigma \beta = 0$ and thus $\beta \in R(R)$, so that $\beta' \Sigma^* = 0$ (or, by construction, $R' \Sigma^* = 0$). Now as $T \to \infty$ we have

$$\sqrt{T}\Sigma^*\beta^* = \Sigma^*\sqrt{T}(\beta^* - \beta) \sim \Sigma\sqrt{T}(\beta^* - \beta) = \Sigma\sqrt{T}\beta^*$$

and then the Wald test is based on

$$\beta^{*'}\Sigma^{*}(\Sigma^{*}V_{\beta}^{*}\Sigma^{*})^{-}\Sigma^{*}\beta \sim \beta^{*'}\Sigma(\Sigma V_{\beta}^{*}\Sigma)^{-}\Sigma\beta^{*}.$$
(9)

Now note that $\Sigma = S\Sigma_s S'$ and

$$S(S'V_{\beta}^{*}S)^{-1}S' = S\Sigma_{s}S'S\Sigma_{s}^{-1}(S'V_{\beta}^{*}S)^{-1}\Sigma_{s}^{-1}S'S\Sigma_{s}S'$$

$$= S\Sigma_{s}S'(S\Sigma_{s}S'V_{\beta}^{*}S\Sigma_{s}S')^{-1}S\Sigma_{s}S'$$

$$= \Sigma(\Sigma V_{\beta}^{*}\Sigma)^{-1}\Sigma$$
(10)

the middle line following because

$$[S\Sigma_{s}S'V_{\beta}^{*}S\Sigma_{s}S'][S\Sigma_{s}^{-1}(S'V_{\beta}^{*}S)^{-1}\Sigma_{s}^{-1}S'][S\Sigma_{s}S'V_{\beta}^{*}S\Sigma_{s}S']$$

$$=S\Sigma_{s}S'V_{\beta}^{*}S\Sigma_{s}S'$$

$$=\Sigma V_{\beta}^{*}\Sigma.$$
(11)

We deduce from (9) and (10) that

$$W = \beta^{*\prime} \Sigma^{*} (\Sigma^{*} V_{\beta}^{*} \Sigma^{*})^{-} \Sigma^{*} \beta^{*}$$
$$= \beta^{*\prime} S (S^{\prime} V_{\beta}^{*} S)^{-1} S^{\prime} \beta^{*}$$

so that this test is again equivalent to the others.

Remark 4. The generalized inverse of (11) can also be written as follows:

$$(\Sigma V_{\beta}^* \Sigma)^- = S \Sigma_s^{-1} (S' V_{\beta}^* S)^{-1} \Sigma_s^{-1} S'$$

$$= S \Sigma_s^{-1} S' S (S' V_{\beta}^* S)^{-1} S' S \Sigma_s^{-1} S'$$

$$= \Sigma^- \Sigma (\Sigma V_{\beta}^* \Sigma)^- \Sigma \Sigma^-.$$

EDITOR'S COMMENT

The following solution has been proposed by H. Peter Boswijk. It does not correspond to the problem as originally stated, since part 2 and part 3 of Boswijk's solution involve the ML estimators, whereas the problem was about least-squares estimators. However, it was felt that the reader might also be interested in this elegant solution in the ML case.