90.4.7. The Geometry of the Equivalence of OLS and GLS in the Linear Model, proposed by Peter C.B. Phillips. Let

$$y = X\beta + u \tag{1}$$

be the general linear model with fixed regressor matrix X ($n \times k$) and error vector u whose mean is zero and whose covariance matrix is Ω (possibly singular). Let $\Re(\cdot)$ denote the range space of the argument matrix. Throughout, we assume that $\operatorname{rank}(\Omega) = r \le n$ and $\Re(X) \subset \Re(\Omega)$. We let Ω^+ denote the Moore Penrose inverse of Ω , set $\mathfrak{M} = \Re(X)$ and use $\mathfrak{M}^{\perp}_{\Omega}$ to signify that part of the orthogonal complement of \mathfrak{M} in $\Re(\Omega)$.

Define

$$\mathfrak{M}_{\Omega}^{c} = \{ \eta \in \mathfrak{R}(\Omega) | \eta' \Omega^{+} \epsilon = 0, \forall \epsilon \in \mathfrak{M} \}$$

and call this the subspace of $\Re(\Omega)$ that is Ω -conjugate to \mathfrak{M} , following the related terminology in Malinvaud ([2], p. 168).

Prove the following two results, using (i) to establish (ii).

- (i) Lemma
 - (a) $\mathfrak{M}_{\Omega}^{c} = \Omega(\mathfrak{M}_{\Omega}^{\perp})$,
 - (b) $[\Omega(\mathfrak{M}_{\Omega}^{\perp})]_{\Omega}^{\perp} = \Omega^{+}\mathfrak{M}$.
- (ii) Theorem (Kruskal [1])

$$OLS = GLS \text{ on } (1)$$

iff

$$\Omega^+\mathfrak{M}=\mathfrak{M}$$

490 PROBLEMS AND SOLUTIONS

iff

 $\Omega \mathfrak{M} = \mathfrak{M}$.

Comment on these results.

REFERENCES

- 1. Kruskal, W. When are Gauss Markov and least squares estimators identical: A coordinate free approach. *Annals of Mathematical Statistics*, 39 (1968): 70-75.
- 2. Malinvaud, E. Statistical methods of econometrics. Amsterdam: North Holland, 1980.