AUTOMATED ESTIMATION OF VECTOR ERROR CORRECTION MODELS

ZHIPENG LIAO
UC Los Angeles

PETER C. B. PHILLIPS
Yale University, University of Auckland, University of Southampton, and Singapore Management University

Model selection and associated issues of post-model selection inference present well known challenges in empirical econometric research. These modeling issues are manifest in all applied work but they are particularly acute in multivariate time series settings such as cointegrated systems where multiple interconnected decisions can materially affect the form of the model and its interpretation. In cointegrated system modeling, empirical estimation typically proceeds in a stepwise manner that involves the determination of cointegrating rank and autoregressive lag order in a reduced rank vector autoregression followed by estimation and inference. This paper proposes an automated approach to cointegrated system modeling that uses adaptive shrinkage techniques to estimate vector error correction models with unknown cointegrating rank structure and unknown transient lag dynamic order. These methods enable simultaneous order estimation of the cointegrating rank and autoregressive order in conjunction with oracle-like efficient estimation of the cointegrating matrix and transient dynamics. As such they offer considerable advantages to the practitioner as an automated approach to the estimation of cointegrated systems. The paper develops the new methods, derives their limit theory, discusses implementation, reports simulations, and presents an empirical illustration with macroeconomic aggregates.

1. INTRODUCTION

Cointegrated system modeling is now one of the main workhorses in empirical time series research. Much of this empirical research makes use of vector error correction (VEC) formulations. While there is often some prior information concerning the number of cointegrating vectors, most practical work involves (at least confirmatory) pre-testing to determine the cointegrating rank of the system as
well as the lag order in the autoregressive component that embodies the transient
dynamics. These order selection decisions can be made by sequential likelihood
ratio tests (e.g. Johansen, 1988, for rank determination) or the application of suit-
able information criteria (Phillips, 1996). Both approaches are popular in empiri-
cal research.

Information criteria offer certain advantages such as joint determination of
the cointegrating rank and autoregressive order, consistent estimation of both or-
der parameters (Chao and Phillips, 1999; Athanasopoulos, Guillen, Issler, and
Vahid, 2011), robustness to heterogeneity in the errors, and the convenience and
generality of semi-parametric estimation in cases where the focus is simply the
cointegrating rank (Cheng and Phillips, 2009, 2012). Sequential testing proce-
duress have recent enhancements including bootstrap modifications to improve test
performance and under certain conditions provide consistent order estimation by
adaptation if test size is driven to zero as the sample size expands to infinity.
However, these adaptive methods have not been systematically investigated in
the VEC framework and there is little research on rate control and testing order,
and no asymptotics for such adaptive procedures to offer guidance for empirical
implementation. More importantly in the VEC setting, sequential tests involve
different test statistics for lags and cointegrating rank, and model selection is in-
evitably unstable in the sense that different models may be selected when different
sequential orders are used. Moreover, general to specific and specific to general
testing algorithms encounter obstacles to consistent model selection even when
test size is driven to zero (see Section 9 for an example). Finally, while they are
appealing to practitioners, all of these methods are nonetheless subject to pre-test
bias and post model selection inferential problems (Leeb and Pötscher, 2005).

The present paper explores a different approach. The goal is to liberate the
empirical researcher from some of the difficulties of sequential testing and order
estimation procedures in inference about cointegrated systems and in policy work
that relies on associated impulse responses. The ideas originate in recent work
on sparse system estimation using shrinkage techniques such as Lasso and bridge
regression. These procedures utilize penalized least squares criteria in regression
that can succeed, at least asymptotically, in selecting the correct regressors in a
linear regression framework while consistently estimating the nonzero regression
coefficients. Caner and Knight (2013) first showed how this type of estimator
may be used in a univariate autoregressive model with a potential unit root. While
apparently effective asymptotically these procedures do not avoid post model se-
lection inference issues in finite samples because the estimators implicitly carry
effects from the implementation of shrinkage which can result in bias, multi-
modal distributions and difficulty discriminating local alternatives that can lead
to unbounded risk (Leeb and Pötscher, 2008). On the other hand, the methods do
radically simplify empirical research with large dimensional systems where order
parameters must be chosen and sparsity is expected. When data-based tuning pa-
parameter selection is employed, the methods also enable automated implementa-
tion making them convenient for empirical practice.
One of the contributions of this paper is to develop new adaptive versions of shrinkage methods that apply in vector error correction modeling which by their nature involve reduced rank coefficient matrices and order parameters for lag polynomials and trend specifications. The implementation of these methods in this econometric setting is by no means immediate. In particular, multivariate models with some unit roots and cointegration involve dimension reductions and nonlinear restrictions which present new difficulties of both formulation and asymptotics in the Lasso framework that go beyond existing work in the statistics literature such as Yuan, Ekici, Lu, and Monteiro (2007). The present paper contributes to the Lasso and econometric literatures by providing a new penalty function that handles these complications, developing a rigorous limit theory of order selection and estimation for this multivariate nonlinear nonstationary setting, and devising a straightforward method of implementation that is well suited to empirical econometric research. When reduced to the univariate case, our results cover the methodology and implicit unit root test procedure suggested in Caner and Knight (2013) and extend their univariate results to cases where there is misspecification in the transient dynamics.

The paper designs a mechanism of estimation and selection that works through the eigenvalues of the levels coefficient matrix and the coefficient matrices of the transient dynamic components. This formulation is necessary because of the nonlinearities involved in potential reduced rank structures and the interdependence of decision making concerning the form of the transient dynamics and the cointegrating rank structure. The resulting methods apply in quite general vector systems with unknown cointegrating rank structure and unknown lag dynamics. They permit simultaneous order estimation of the cointegrating rank and autoregressive order in conjunction with oracle-like efficient estimation of the cointegrating matrix and transient dynamics. As such they offer considerable advantages to the practitioner. In effect, it becomes unnecessary to implement pre-testing procedures because the empirical results reveal all of the order parameters as a consequence of the fitting procedure.

A novel contribution of the paper in this nonlinear setting where eigenvalues play a key role is the use of a penalty which is a simple convex function of the coefficient matrix. The new penalty makes penalized estimation stable and accurate, facilitates the limit theory, and simplifies implementation because existing code for grouped L-1 penalized estimation can be used for computation. All the theoretical results are rigorously derived in a general nonstationary set-up that allows for unit roots, cointegration, and transient dynamics, which combines with the new penalty formulation to complement recent asymptotic theory for Lasso estimation in stationary vector autoregressive (VAR) models (Song and Bickel, 2009; Kock and Callot, 2012) and multivariate regression (Yuan et al., 2007; Peng et al., 2010).

The paper is organized as follows. Section 2 lays out the model and assumptions and shows how to implement adaptive shrinkage methods in VEC systems. Section 3 considers a simplified first order version of the vector error correction
model (VECM) without lagged differences which reveals the approach to cointegrating rank selection and develops key elements in the limit theory. Here we show that the cointegrating rank \(r_o \) is identified by the number of zero eigenvalues of \(\Pi_o \) and the latter is consistently recovered by suitably designed shrinkage estimation. Section 4 extends this system and its asymptotics to the general case of cointegrated systems with weakly dependent errors. Here it is demonstrated that the cointegration rank \(r_o \) can be consistently selected despite the fact that \(\Pi_o \) itself may not be consistently estimable. Section 5 deals with the practically important case of a general VEC system driven by independent identically distributed (iid) shocks, where shrinkage estimation simultaneously performs consistent lag selection, cointegrating rank selection, and optimal estimation of the system coefficients. Section 6 considers adaptive selection of the tuning parameter and Section 7 reports some simulation findings. Section 8 applies our method to an empirical example. Section 9 concludes and outlines some useful extensions of the methods and limit theory to other models. Proofs are given in the Appendix. A Supplement to the paper (Liao and Phillips, 2013) provides supporting lemmas and technical results.

Notation is standard. For vector-valued, zero mean, covariance stationary stochastic processes \(\{a_t\}_{t \geq 1} \) and \(\{b_t\}_{t \geq 1} \), \(\Sigma_{ab}(h) = E[a_tb_{t+h}'] \) and \(\Gamma_{ab} = \sum_{h=0}^{\infty} \Sigma_{ab}(h) \) denote the lag \(h \) autocovariance matrix and one-sided long-run covariance matrix. Moreover, we use \(\Sigma_{ab} \) for \(\Sigma_{ab}(0) \) and \(\Sigma_{n,ab} = n^{-1} \sum_{t=1}^{n} a_t b_t' \) as the corresponding sample average. The notation \(\| \cdot \| \) denotes the Euclidean norm and \(|A| \) is the determinant of a square matrix \(A \). \(A' \) refers to the transpose of any matrix \(A \) and \(\|A\|_B \equiv \|A'BA\| \) for any conformable matrices \(A \) and \(B \). \(I_k \) and \(0_l \) are used to denote \(k \times k \) identity matrix and \(l \times l \) zero matrices respectively. The symbolism \(A \equiv B \) means that \(A \) is defined as \(B \); the expression \(an = o_p(b_n) \) signifies that \(\Pr(|an/b_n| \geq \epsilon) \rightarrow 0 \) for all \(\epsilon > 0 \) as \(n \) go to infinity; and \(an = O_p(b_n) \) when \(\Pr(|an/b_n| \geq M) \rightarrow 0 \) as \(n \) and \(M \) go to infinity. As usual, ”\(\rightarrow_p \)” and ”\(\rightarrow_d \)” imply convergence in probability and convergence in distribution, respectively. Following standard convention we frequently write integrals of stochastic processes \((V, W) \) over \([0, 1] \) such as \(\int_{0}^{1} V(r)dW(r)' \), \(\int_{0}^{1} V(r) V(r)' dr \) in the simple form \(\int VdW', \int VV' \).

2. VECTOR ERROR CORRECTION AND ADAPTIVE SHRINKAGE

Throughout this paper we consider the following parametric VEC representation of a cointegrated system

\[
\Delta Y_t = \Pi_o Y_{t-1} + \sum_{j=1}^{p} B_{o,j} \Delta Y_{t-j} + u_t, \quad (2.1)
\]

where \(\Delta Y_t = Y_t - Y_{t-1}, \, Y_t \) is an \(m \)-dimensional vector-valued time series, \(\Pi_o = \alpha_o \beta_o' \) has rank \(0 \leq r_o \leq m, \, B_{o,j} \) \((j = 1, \ldots, p) \) are \(m \times m \) (transient) coefficient matrices, \(u_t \) is an \(m \)-vector error term with mean zero and nonsingular covariance.
matrix Σ_{uu}, m and p are fixed positive integers. The rank r_o of Π_o is an order parameter measuring the cointegrating rank or the number of (long run) cointegrating relations in the system. The index set of nonzero matrices $B_{o,j}$ ($j = 1, \ldots, p$) is a second order parameter, characterizing the transient dynamics in the system.

As $\Pi_o = a_o\beta_o'$ has rank r_o, we can choose a_o and β_o to be $m \times r_o$ matrices with full rank. When $r_o = 0$, we simply take $\Pi_o = 0$. Let $a_o_{o,\perp}$ and $\beta_{o,\perp}$ be the matrix orthogonal complements of a_o and β_o, i.e. $a_o_{o,\perp}$ and $\beta_{o,\perp}$ are full rank $m \times (m - r_o)$ matrices satisfying $a_o'{}_{o,\perp} a_o = 0_{(m - r_o) \times m}$ and $\beta_o'{}_{o,\perp} \beta_o = 0_{(m - r_o) \times m}$ respectively. Without loss of generality, assume that $a_o'{}_{o,\perp} a_o_{o,\perp} = I_{m - r_o}$ and $\beta_o'{}_{o,\perp} \beta_o_{o,\perp} = I_{m - r_o}$.

Suppose $\Pi_o \neq 0$ and define $Q = [\beta_o, a_o_{o,\perp}]'$. In view of the well known relation (e.g., Johansen, 1995)

$$a_o (\beta_o' a_o)^{-1} \beta_o' + \beta_{o,\perp} (a_o'{}_{o,\perp} \beta_{o,\perp})^{-1} a_o'{}_{o,\perp} = I_m,$$ \hspace{1cm} (2.2)

it follows that $Q^{-1} = \begin{bmatrix} a_o (\beta_o' a_o)^{-1} & \beta_{o,\perp} (a_o'{}_{o,\perp} \beta_{o,\perp})^{-1} \end{bmatrix}$.

$$Q \Pi_o = \begin{bmatrix} \beta_o' a_o \beta_o' \\ 0 \end{bmatrix} \text{ and } Q \Pi_o Q^{-1} = \begin{bmatrix} \beta_o' a_o & 0 \\ 0 & 0 \end{bmatrix}.$$ \hspace{1cm} (2.3)

Under Assumption RR in Section 3, $\beta_o' a_o$ is an invertible matrix and hence the matrix $\beta_o' a_o \beta_o'$ has full rank. Cointegrating rank is the number r_o of nonzero eigenvalues of Π_o or the nonzero row vector count of $Q \Pi_o$. When $\Pi_o = 0$, then the result holds trivially with $r_o = 0$ and $\beta_{o,\perp} = I_m$. The matrices $a_o_{o,\perp}$ and $\beta_{o,\perp}$ are composed of normalized left and right eigenvectors, respectively, corresponding to the zero eigenvalues in Π_o.

Conventional methods of estimation of (2.1) include reduced rank regression or maximum likelihood based on the assumption of Gaussian u_t and a Gaussian likelihood. This approach relies on known r_o and known transient dynamics structure, so implementation requires preliminary order parameter estimation. The system can also be estimated by unrestricted fully modified vector autoregression (Phillips, 1995), which leads to consistent estimation of the unit roots in (2.1), the cointegrating vectors, and the transient dynamics. This method does not require knowledge of r_o but does require knowledge of the transient dynamics structure. In addition, a semiparametric approach can be adopted in which r_o is estimated semiparametrically by order selection as in Cheng and Phillips (2010, 2012) followed by fully modified least squares regression to estimate the cointegrating matrix. That approach achieves asymptotically efficient estimation of the long run relations (under Gaussianity) but does not estimate the transient relations.

The present paper explores direct estimation of the parameters of (2.1) by Lasso-type regression. The resulting estimator is a shrinkage estimator that takes account of potential degeneracies in the system involving both long run reduced
rank structures and transient dynamics. Specifically, the least squares (LS) shrinkage estimator of \((\Pi_o, B_o)\), where \(B_o = (B_{o,1}, \ldots, B_{o,p})\) is defined as

\[
(\hat{\Pi}_n, \hat{B}_n) = \arg\min_{\Pi, B_1, \ldots, B_p \in \mathbb{R}^{n \times m}} \left\{ \sum_{t=1}^{n} \left\| \Delta Y_t - \Pi Y_{t-1} - \sum_{j \leq p} B_j \Delta Y_{t-j} \right\|^2 + n \sum_{j=1}^{p} \lambda_{b,j,n} \| B_j \| + n \sum_{k=1}^{m} \lambda_{r,k,n} \| \Phi_{n,k}(\Pi) \| \right\},
\]

(2.4)

where \(\lambda_{b,j,n}\) and \(\lambda_{r,k,n}\) \((j = 1, \ldots, p\) and \(k = 1, \ldots, m\)) are tuning parameters that directly control the penalization, \(\Phi_{n,k}(\Pi)\) is the \(k\)-th row vector of \(Q_n \Pi\), and \(Q_n\) denotes the normalized left eigenvector matrix of eigenvalues of \(\hat{\Pi}_{1st}\). The matrix \(\hat{\Pi}_{1st}\) is some first step (e.g., OLS) estimate of \(\Pi_o\). The penalty function on the coefficients \(B_j\) \((j = 1, \ldots, p)\) of the lagged differences is called a group Lasso penalty (see, Yuan and Lin, 2006). On the other hand, the penalty function on \(\Pi\) is different from the group Lasso, because it works on the rows of the adaptively transformed matrix \(Q_n \Pi\), not the rows (or any deterministic functions such as eigenvalues) of \(\Pi\) directly. \(^2\)

Given the tuning parameters, this procedure delivers a one step estimator of the model (2.1) with an implied estimate of the cointegrating rank (based on the number of nonzero rows of \(Q_n \hat{\Pi}_n\)) and an implied estimate of the transient dynamic structure (that is, \(B_{o,j}\) in \(B_o\) with \(\| B_{o,j} \| = 0\) for \(j = 1, \ldots, p\)) based on the fitted value \(\hat{B}_n\). It is therefore well suited to empirical implementation where information is limited concerning model specification. By definition, the penalized LS estimate is invariant to permutation of the lag differences, which implies that the rank and lag differences selected in the penalized LS estimation are stable regardless the potential structure of the true model. This feature is a particular advantage of Lasso-type model selection methods over traditional sequential testing procedures which typically work from general to specific formulations.

A novel contribution of this paper is that it provides an adaptive penalty function \(f(\Pi) = \sum_{k=1}^{m} \lambda_{r,k,n} \| \Phi_{n,k}(\Pi) \|\), which enables penalized LS estimation in (2.4) to perform rank selection. \(^3\) Importantly, this penalty function differs from those proposed in the statistics literature for dimension reduction in multivariate regression with iid data. For example, Peng et al. (2010) assume that the coefficient matrix has many zero components and suggest dimension reduction by penalizing the estimates of the components in the coefficient matrix with L-1 and L-2 penalty functions. Yuan et al. (2007) propose to penalize the singular values of the estimate of the coefficient matrix with an L-1 penalty to achieve dimension reduction. While this approach is intuitive and the idea of working through the eigenvalues of \(\Pi\) was used independently in our own earlier work, Yuan et al. (2007) provide theory only under an orthonormal regressor design, which is unrealistic in VEC structures with nonstationary data. \(^4\)

Let \(\Phi'(\Pi_o) = \left[\Phi'_1(\Pi_o), \ldots, \Phi'_m(\Pi_o) \right]\) denote the row vectors of \(Q \Pi_o\). When \(\{u_t\}_{t \geq 1}\) is iid or a martingale difference sequence, the LS estimators \((\hat{\Pi}_{1st}, \hat{B}_{1st})\)
of (Π_o, B_o) are well known to be consistent. The eigenvalues and corresponding eigenspace of Π_o can also be consistently estimated. Thus it seems intuitively clear that some form of adaptive penalization can be devised to consistently distinguish the zero and nonzero components in B_o and $\Phi(\Pi_o)$.\footnote{We show that the shrinkage LS estimator defined in (2.4) enjoys these oracle-like properties, in the sense that the zero components in B_o and $\Phi(\Pi_o)$ are estimated as zeros with probability approaching 1 (w.p.a.1). Thus, Π_o and the nonzero elements in B_o are estimated as if the form of the true model were known and inferences can be conducted as if we knew the true cointegration rank r_o.}

If the transient behavior of (2.1) is misspecified and (for some given lag order p) the error process $\{u_t\}_{t \geq 1}$ is weakly dependent and $r_o > 0$, then consistent estimators of the full matrix (Π_o, B_o) are typically unavailable without further assumptions. However, the $m - r_o$ zero eigenvalues of Π_o can still be consistently estimated with an order n convergence rate, while the remaining eigenvalues of Π_o are estimated with asymptotic bias at a \sqrt{n} convergence rate. The different convergence rates of the eigenvalues are important, because when the nonzero eigenvalues of Π_o are occasionally (asymptotically) estimated as zeros, the different convergence rates are useful in consistently distinguishing the zero eigenvalues from the biasedly estimated nonzero eigenvalues of Π_o. Specifically, we show that if the estimator of some nonzero eigenvalue of Π_o has probability limit zero under misspecification of the lag order, then this estimator will converge in probability to zero at the rate \sqrt{n}, while estimates of the zero eigenvalues of Π_o all have convergence rate n. Hence the tuning parameters $\{\lambda_{r,k,n}\}_{k=1}^m$ can be constructed in the way such that the adaptive penalties associated with estimates of zero eigenvalues of Π_o will diverge to infinity at a rate faster than those of estimates of the nonzero eigenvalues of Π_o, even though the latter also converge to zero in probability. As we have prior knowledge about these different divergence rates in a potentially cointegrated system, we can impose explicit conditions on the convergence rate of the tuning parameters $\{\lambda_{r,k,n}\}_{k=1}^m$ to ensure that only r_o rows of $Q_n \hat{\Pi}_n$ are adaptively shrunk to zero w.p.a.1.

For the empirical implementation of our approach, we provide data-driven procedures for selecting the tuning parameter of the penalty function in finite samples. For practical purposes our method is executed in the following steps, which are explained and demonstrated in detail as the paper progresses.

(1) After preliminary LS estimation of the system, perform a first step GLS shrinkage estimation with adaptive Lasso (c.f. Zou, 2006) type of tuning parameters

$$\lambda_{r,k,n} = \frac{2 \log(n)}{n} ||\phi_k (\hat{\Pi}_{1st})||^{-2} \text{ and } \lambda_{b,j,n} = \frac{2 m^2 \log(n)}{n} ||\hat{B}_{j,1st}||^{-2}$$

for $k = 1, \ldots, m$ and $j = 1, \ldots, p$, where $||\phi_k (\Pi)||$ denotes the k-th largest modulus of the eigenvalues $(\phi_k (\Pi))_{k=1}^m$ of the matrix Π\footnote{and $\hat{B}_{j,1st}$ is some first step (OLS) estimates of B_o,j ($j = 1, \ldots, p$).}.
Construct adaptive tuning parameters using the first step GLS shrinkage estimates and the formulas in (6.10) and (6.11). Using the adaptive tuning parameters, obtain the GLS shrinkage estimator \((\hat{\Pi}_{g,n}, \hat{B}_{g,n})\) of \((\Pi_o, B_o)\) - see (5.12). The cointegration rank selected by the shrinkage method is implied by the rank of the shrinkage estimator \(\hat{\Pi}_{g,n}\) and the lagged differences selected by the shrinkage method are implied by the nonzero matrices in \(\hat{B}_{g,n}\).

The GLS shrinkage estimator contains shrinkage bias introduced by the penalty on the nonzero eigenvalues of \(\hat{\Pi}_{g,n}\) and nonzero matrices in \(\hat{B}_{g,n}\). To remove this bias, run a reduced rank regression based on the cointegration rank and the model selected in the GLS shrinkage estimation in step (2).

3. FIRST ORDER VECM ESTIMATION

This section considers the following simplified first order version of (2.1),

\[
\Delta Y_t = \Pi_o Y_{t-1} + u_t = \alpha_o \beta_o' Y_{t-1} + u_t. \tag{3.1}
\]

The model contains no deterministic trend and no lagged differences. Our focus in this simplified system is to outline the approach to cointegrating rank selection and develop key elements in the limit theory, showing consistency in rank selection and reduced rank coefficient matrix estimation. The theory is extended in subsequent sections to models of the form (2.1).

We start with the following condition on the innovation \(u_t\).

Assumption 3.1 (WN). \(\{u_t\}_{t \geq 1}\) is an \(m\)-dimensional iid process with zero mean and nonsingular covariance matrix \(\Omega_u\).

Assumption 3.1 ensures that the full parameter matrix \(\Pi_o\) is consistently estimable in this simplified system. Under Assumption 3.1, partial sums of \(u_t\) satisfy the functional law

\[
n^{-\frac{1}{2}} \sum_{t=1}^{[n\cdot]} u_t \rightarrow_d B_u(\cdot), \tag{3.2}
\]

where \(B_u(\cdot)\) is a vector of Brownian motion with variance matrix \(\Omega_u\). With no material changes in what follows, the iid condition in WN could be weakened to a martingale difference sequence condition provided the functional law (3.2) still holds together with some related weak convergence results needed for the limit theory. Cheng and Phillips (2012) developed such a limit theory while exploring the properties of model selection methods based on information criteria but did not consider penalized regression approaches.

Assumption 3.2 (RR). (i) The determinantal equation \(|I - (I + \Pi_o)\lambda| = 0\) has roots on or outside the unit circle; (ii) the matrix \(\Pi_o\) has rank \(r_o\), with \(0 \leq r_o \leq m\); (iii) if \(r_o > 0\), then the matrix \(R = I_{r_o} + \beta_o' \alpha_o\) has eigenvalues within the unit circle.
Assumption 3.2 leads to the following partial sum Granger representation,

$$
Y_t = C \sum_{s=1}^{t} u_s + a_o (\beta_0^\prime a_o)^{-1} R(L) \beta_0^\prime u_t + CY_0,
$$

(3.3)

where $C = \beta_{o, \perp} (a_{o, \perp} \beta_{o, \perp})^{-1} a_{o, \perp} \perp$. Using the matrix Q, (3.1) transforms as

$$
\Delta Z_t = \Xi_o Z_{t-1} + w_t,
$$

(3.4)

where

$$
Z_t = \begin{pmatrix} \beta_0^\prime Y_t \\ a_{o, \perp}^\prime Y_t \end{pmatrix} = \begin{pmatrix} Z_{1,t} \\ Z_{2,t} \end{pmatrix}, \quad w_t = \begin{pmatrix} \beta_0^\prime u_t \\ a_{o, \perp}^\prime u_t \end{pmatrix} = \begin{pmatrix} w_{1,t} \\ w_{2,t} \end{pmatrix}
$$

and $\Xi_o = Q \Pi_o Q^{-1}$. Under Assumption 3.2 and (3.2), we have the functional law

$$
n^{-1} \sum_{t=1}^{[n]} w_{t} \rightarrow d B_w(\cdot) = Q B_u(\cdot) = \begin{bmatrix} \beta_0^\prime B_u(\cdot) \\ a_{o, \perp}^\prime B_u(\cdot) \end{bmatrix} = \begin{bmatrix} B_{w_1}(\cdot) \\ B_{w_2}(\cdot) \end{bmatrix}.
$$

Let $S_\phi = \{k : \Phi_k(\Pi_o) \neq 0\}$ be the index set of nonzero rows of $Q \Pi_o$ and similarly $S_\phi^c = \{k : \Phi_k(\Pi_o) = 0\}$ denote the index set of zero rows of $Q \Pi_o$. By virtue of Assumption RR and the properties of Q, we know that $S_\phi = \{1, \ldots, r_o\}$ and $S_\phi^c = \{r_o + 1, \ldots, m\}$. It follows that consistent selection of the rank of Π_o is equivalent to the consistent recovery of the zero rows in $\Phi(\Pi_o) = Q \Pi_o$.

The shrinkage LS estimator $\widehat{\Pi}_n$ of Π_o is defined as

$$
\widehat{\Pi}_n = \arg \min_{\Pi \in \mathbb{R}^{m \times n}} \sum_{t=1}^{n} \| \Delta Y_t - \Pi Y_{t-1} \|^2 + n \sum_{k=1}^{m} \lambda_{r,k,n} \| \Phi_{n,k}(\Pi) \|.
$$

(3.5)

We first show the consistency of the LS shrinkage estimate $\widehat{\Pi}_n$.

THEOREM 3.1 (Consistency). Let $\delta_{r,n} = \max_{k \in S_\phi} \lambda_{r,k,n}$, then under Assumptions WN, RR, and $\delta_{r,n} = o_p(1)$, the LS shrinkage estimator $\widehat{\Pi}_n$ is consistent, i.e. $\widehat{\Pi}_n - \Pi_o = o_p(1)$.

When consistent shrinkage estimators are considered, Theorem 1 of Caner and Knight (2013) who used shrinkage techniques to perform a unit root test. As the eigenvalues $\phi_k(\Pi)$ of the matrix Π are continuous functions of Π, we deduce from the consistency of $\widehat{\Pi}_n$ and continuous mapping that $\phi_k(\widehat{\Pi}_n) \rightarrow_p \phi_k(\Pi_o)$ for all $k = 1, \ldots, m$. Theorem 3.1 implies that the nonzero eigenvalues of Π_o are estimated as nonzeros, which means that the rank of Π_o will not be under-selected. However, consistency of the estimates of the nonzero eigenvalues is not necessary for consistent cointegration rank selection. In that case what is essential is that the probability limits of the estimates of those (nonzero) eigenvalues are not zeros or at least that their convergence rates are
slower than those of estimates of the zero eigenvalues. This point will be pursued in the following section where it is demonstrated that consistent estimation of the cointegrating rank continues to hold for weakly dependent innovations \(\{u_t\}_{t \geq 1} \) even though full consistency of \(\hat{\Pi}_n \) does not generally apply in that case.

THEOREM 3.2 (Rate of Convergence). Define \(D_n = diag(n^{-\frac{1}{2}} I_{r_o}, n^{-1} I_{m- r_o}) \), then under the conditions of Theorem 3.1, the LS shrinkage estimator \(\hat{\Pi}_n \) satisfies the following:

(a) if \(r_o = 0 \), then \(\hat{\Pi}_n - \Pi_o = O_P(n^{-1} + n^{-1} \delta_{r,n}) \);
(b) if \(0 < r_o \leq m \), then \((\hat{\Pi}_n - \Pi_o) Q^{-1} D_n^{-1} = O_P(1 + n^{\frac{1}{2}} \delta_{r,n}) \).

The term \(\delta_{r,n} \) represents the shrinkage bias that the penalty function introduces to the LS shrinkage estimator. If the convergence rate of \(\hat{\lambda}_{r,k,n} (k \in S_\phi) \) is fast enough such that \(n^{\frac{1}{2}} \delta_{r,n} = O_P(1) \), then Theorem 3.2 implies that \(\hat{\Pi}_n - \Pi_o = O_P(n^{-1}) \) when \(r_o = 0 \) and \((\hat{\Pi}_n - \Pi_o) Q^{-1} D_n^{-1} = O_P(1) \) otherwise. Hence, under Assumption WN, RR and \(n^{\frac{1}{2}} \delta_{r,n} = O_P(1) \), the LS shrinkage estimator \(\hat{\Pi}_n \) has the same convergence rate of the LS estimator \(\hat{\Pi}_{1st} \) (see, Lemma A.2 in the appendix). However, we next show that if the tuning parameter \(\hat{\lambda}_{r,k,n} (k \in S_{\phi}^c) \) does not converge to zero too fast, then the correct rank restriction \(r = r_o \) is automatically imposed on the LS shrinkage estimator \(\hat{\Pi}_n \) w.p.a.1.

Let \(S_{n,\phi} \) denote the index set of the nonzero rows of \(Q_n \hat{\Pi}_n \) and its complement \(S_{n,\phi}^c \) be the index set of the zero rows of \(Q_n \hat{\Pi}_n \). We subdivide the matrix \(Q_n \) as \(Q_n' = [Q_{a,n}', Q_{a,\perp,n}'] \), where \(Q_{a,n} \) and \(Q_{a,\perp,n} \) are the first \(r_o \) rows and the last \(m - r_o \) rows of \(Q_n \) respectively. Under Lemma A.2 and Theorem 3.1,

\[
Q_{a,n} \hat{\Pi}_n = Q_{a,n} \hat{\Pi}_{1st} + o_P(1) = \Lambda_{a,n} Q_{a,n} + o_P(1) \tag{3.6}
\]

and similarly

\[
Q_{a,\perp,n} \hat{\Pi}_n = Q_{a,\perp,n} \hat{\Pi}_{1st} + o_P(1) = \Lambda_{a,\perp,n} Q_{a,\perp,n} + o_P(1) = o_P(1), \tag{3.7}
\]

where \(\Lambda_{a,n} = diag(\phi_1(\hat{\Pi}_{1st}), \ldots, \phi_{r_o}(\hat{\Pi}_{1st})) \) and \(\Lambda_{a,\perp,n} = diag(\phi_{r_o+1}(\hat{\Pi}_{1st}), \ldots, \phi_m(\hat{\Pi}_{1st})) \). Result in (3.6) implies that the first \(r_o \) rows of \(Q_n \hat{\Pi}_n \) are nonzero w.p.a.1., while the results in (3.7) means that the last \(m - r_o \) rows of \(Q_n \hat{\Pi}_n \) are arbitrarily close to zero with w.p.a.1. Under (3.6) we deduce that \(S_{\phi} \subseteq S_{n,\phi} \). However, (3.7) is insufficient for showing that \(S_{\phi}^c \subseteq S_{n,\phi}^c \), because in that case, what we need to show is \(Q_{a,\perp,n} \hat{\Pi}_n = 0 \) w.p.a.1.

THEOREM 3.3 (Super Efficiency). Suppose that Assumptions WN and RR are satisfied. If \(n^{\frac{1}{2}} \delta_{r,n} = O_P(1) \) and \(\hat{\lambda}_{r,k,n} \rightarrow_p \infty \) for \(k \in S_{\phi}^c \), then

\[
\Pr \left(Q_{a,\perp,n} \hat{\Pi}_n = 0 \right) \rightarrow 1 \text{ as } n \rightarrow \infty. \tag{3.8}
\]
Theorem 3.3 requires the tuning parameters related to the zero and nonzero components have different asymptotic behaviors. As we do not have any prior information about the zero and nonzero components, it is clear that some sort of adaptive penalization should appear in the tuning parameters \(\{ \lambda_{r,k,n} \}_{k=1}^{m} \). Such an adaptive penalty is constructed in (6.1) of Section 6 and sufficient conditions for \(n^{\frac{1}{2}} \delta_{r,n} = O_p(1) \) and \(\lambda_{r,k,n} \to p \) for \(k \in S_{\phi} \), are provided in Lemma 6.1.

Combining Theorem 3.1 and Theorem 3.3, we deduce that

\[
\Pr(S_{n,\phi} = S_{\phi}) \to 1, \tag{3.9}
\]

which implies consistent cointegration rank selection, giving the following result.

COROLLARY 3.4. Under the conditions of Theorem 3.3, we have

\[
\Pr(r(\widehat{\Pi}_n) = r_o) \to 1 \tag{3.10}
\]

as \(n \to \infty \), where \(r(\widehat{\Pi}_n) \) denotes the rank of \(\widehat{\Pi}_n \).

From Corollary 3.4, we can deduce that the rank constraint \(r(\Pi) = r_o \) is imposed on the LS shrinkage estimator \(\widehat{\Pi}_n \) w.p.a.1. As \(\widehat{\Pi}_n \) satisfies the rank constraint w.p.a.1, we expect it has better properties in comparison to the OLS estimator \(\widehat{\Pi}_{1st} \) which assumes the true rank is unknown. This conjecture is confirmed in the following theorem.

THEOREM 3.5 (Limiting Distribution). Suppose that conditions of Theorem 3.3 and \(n^{\frac{1}{2}} \delta_{r,n} = o_p(1) \) are satisfied. We have

\[
Q(\widehat{\Pi}_n - \Pi_o) Q^{-1} D_n^{-1} \to_d \left(B_{m,1} a_o (a'_o a_o)^{-1} a'_o B_{m,2} \right), \tag{3.11}
\]

where

\[
B_{m,1} \equiv N \left(0, \Omega_u \otimes \sum_{z_1}^{-1} \right) \text{ and } B_{m,2} \equiv \int dB u B'_{w_2} \left(\int B_{w_2} B'_{w_2} \right)^{-1}.
\]

From (3.11) and the continuous mapping theorem (CMT),

\[
Q(\widehat{\Pi}_{1st} - \Pi_o) Q^{-1} D_n^{-1} \to_d \left(\begin{array}{cc}
\beta'_o B_{m,1} & \beta'_o a_o (a'_o a_o)^{-1} a'_o B_{m,2} \\
\alpha'_{o,\perp} & 0
\end{array} \right) \tag{3.12}
\]

\[
Q(\widehat{\Pi}_n - \Pi_o) Q^{-1} D_n^{-1} \to_d \left(\begin{array}{cc}
\beta'_o B_{m,1} & \beta'_o a_o (a'_o a_o)^{-1} a'_o B_{m,2} \\
\alpha'_{o,\perp} & 0
\end{array} \right) \tag{3.13}
\]

Compared with the OLS estimator, we see that in the LS shrinkage estimation, the right lower \((m - r_o) \times (m - r_o)\) submatrix of \(Q \Pi_o Q^{-1} \) is estimated at a faster rate than \(n \). The improved property of the LS shrinkage estimator \(\widehat{\Pi}_n \) arises from
the fact that the correct rank restriction \(r(\hat{\Pi}_n) = r_0 \) is satisfied w.p.a.1, leading to the lower right zero block in the limit distribution (3.11) after normalization.

Compared with the oracle reduced rank regression (RRR) estimator (i.e. the RRR estimator informed by knowledge of the true rank, see e.g. Johansen, 1995; Phillips, 1998; Anderson, 2002), the LS shrinkage estimator suffers from second order bias in the limit distribution (3.11), which is evident in the endogeneity bias of the factor \(\int dB_{u} B^{'}w_2 \) in the limit matrix \(B_m,2 \). Accordingly, to remove the endogeneity bias we introduce the generalized least square (GLS) shrinkage estimator \(\hat{\Pi}_{g,n} \) which satisfies the weighted extremum problem

\[
\hat{\Pi}_{g,n} = \arg \min_{\Pi \in R^{m \times m}} \sum_{t=1}^{n} \| \Delta Y_t - \Pi Y_{t-1} \|_{\hat{\Omega}_{u,n}}^2 + n \sum_{k=1}^{m} \lambda_{r,k,n} \| \Phi_{n,k}(\Pi) \|, \tag{3.14}
\]

where \(\hat{\Omega}_{u,n} \) is some consistent estimator of \(\Omega_u \). GLS methods enable efficient estimation in cointegrating systems with known rank (Phillips, 1991a, 1991b). Here they are used to achieve efficient estimation with unknown rank. In fact, the asymptotic distribution of \(\hat{\Pi}_{g,n} \) is the same as that of the oracle RRR estimator.

COROLLARY 3.6 (Oracle Properties). Suppose Assumptions 3.1 and 3.2 hold. If \(\hat{\Omega}_{u,n} \rightarrow_p \Omega_u \) and the tuning parameter satisfies \(n^{1/2} \delta_{r,n} = o_p(1) \) and \(\lambda_{r,k,n} \rightarrow_p \infty \) for \(k \in S^{c}_{\phi} \), then

\[
\Pr \left(r(\hat{\Pi}_{g,n}) = r_0 \right) \rightarrow 1 \quad \text{as} \quad n \rightarrow \infty \tag{3.15}
\]

and \(\hat{\Pi}_{g,n} \) has limit distribution

\[
(\hat{\Pi}_{g,n} - \Pi_o) Q^{-1} D_{n}^{-1} \rightarrow_d \left(B_{m,1} \alpha_o (\beta_o^{'} \alpha_o)^{-1} \int dB_{u} w_2 B^{'}w_2 (\int B_{u} w_2 B^{'}w_2)^{-1} \right), \tag{3.16}
\]

where \(B_{u} w_2 (\cdot) \equiv B_{u} (\cdot) - \Sigma_{u} w_2 \Sigma^{-1}_{w2} B_{w2} (\cdot) \).

From (3.16), we can invoke the CMT to obtain

\[
Q \left(\hat{\Pi}_{g,n} - \Pi_o \right) Q^{-1} D_{n}^{-1} \rightarrow_d \left(\beta_o^{'} B_{m,1} \alpha_o^{'} \int dB_{u} w_2 B^{'}w_2 (\int B_{u} w_2 B^{'}w_2)^{-1} \right), \tag{3.17}
\]

which implies that the GLS shrinkage estimate \(\hat{\Pi}_{g,n} \) has the same limiting distribution as that of the oracle RRR estimator.

Remark 3.7. In the triangular representation of a cointegration system studied in Phillips (1991a), we have \(\alpha_o = [I_{r_o}, 0_{r_o \times (m-r_o)}]^{'} \), \(\beta_o = [-I_{r_o}, O_o]^{'} \) and \(w_2 = u_2 \). Moreover, we obtain

\[
\Pi_o = \begin{pmatrix}
-I_{r_o} & O_o \\
0 & 0_{m-r_o}
\end{pmatrix}
\quad \text{and} \quad
Q^{-1} = \begin{pmatrix}
-I_{r_o} & O_o \\
0 & I_{m-r_o}
\end{pmatrix}.
\]
By the consistent rank selection, the GLS shrinkage estimator \(\hat{\Pi}_{g,n} \) can be decomposed as \(\hat{\alpha}_{g,n} \hat{\beta}_{g,n}^{'} \), w.p.a.1, where \(\hat{\alpha}_{g,n} \equiv [\hat{A}_{g,n}, \hat{B}_{n}^{'}]^{'} \) is the first \(r_{o} \) columns of \(\hat{\Pi}_{g,n} \) and \(\hat{\beta}_{g,n} = [-I_{r_{o}}, \hat{O}_{g,n}]^{'} \). From Corollary 3.6, we deduce that

\[
\sqrt{n}(\hat{A}_{g,n} - I_{r_{o}}) \to d N(0, \Omega_{u_{1}} \otimes \Sigma_{z_{1}z_{1}}^{-1})
\]

(3.18)

and

\[
n \hat{A}_{g,n} (\hat{O}_{g,n} - O_{o}) \to d \int dB_{u_{1}2} B_{u_{2}}^{'} \left(\int B_{u_{2}2} B_{u_{2}}^{'} \right)^{-1},
\]

(3.19)

where \(B_{u_{1}} \) and \(B_{u_{2}} \) denotes the first \(r_{o} \) and last \(m - r_{o} \) vectors of \(B_{u} \), and \(B_{u_{1}2} = B_{u_{1}} - \Omega_{u_{1}22} \Omega_{u_{22}}^{-1} B_{u_{2}} \). Under (3.18), (3.19), and CMT, we deduce that

\[
n(\hat{O}_{g,n} - O_{o}) \to d \int dB_{u_{1}2} B_{u_{2}}^{'} \left(\int B_{u_{2}2} B_{u_{2}}^{'} \right)^{-1}.
\]

(3.20)

Evidently from (3.20) the GLS estimator \(\hat{O}_{g,n} \) of the cointegration matrix \(O_{o} \) is asymptotically equivalent to the maximum likelihood estimator studied in Phillips (1991a) and has the usual mixed normal limit distribution, facilitating inference.

4. EXTENSION I: ESTIMATION WITH WEAKLY DEPENDENT INNOVATIONS

In this section we study shrinkage reduced rank estimation in a scenario where the equation innovations \(\{u_{t}\}_{t \geq 1} \) are weakly dependent. Specifically, we assume that \(\{u_{t}\}_{t \geq 1} \) is generated by a linear process satisfying the following condition.

Assumption 4.1 (LP). Let \(D(L) = \sum_{j=0}^{\infty} D_{j} L^{j} \), where \(D_{0} = I_{m} \) and \(D(1) \) has full rank. Let \(u_{t} \) have the Wold representation

\[
u_{t} = D(\varepsilon)\varepsilon_{t} = \sum_{j=0}^{\infty} D_{j} \varepsilon_{t-j}, \text{ with } \sum_{j=0}^{\infty} j^{2} ||D_{j}|| < \infty,
\]

(4.1)

where \(\varepsilon_{t} \) is iid \((0, \Sigma_{\varepsilon \varepsilon})\) with \(\Sigma_{\varepsilon \varepsilon} \) positive definite and finite fourth moments.

The i.i.d. assumption on \(\varepsilon_{t} \) can be relaxed to allow for martingale difference innovations and to allow for some mild heterogeneity in the innovations without disturbing the limit theory in a material way (see Phillips and Solo, 1992).

Denote the long-run variance of \(\{u_{t}\}_{t \geq 1} \) as \(\Omega_{u} = \sum_{h=-\infty}^{\infty} \Sigma_{u u}(h) \). From the Wold representation in (4.1), we have \(\Omega_{u} = D(1) \Sigma_{\varepsilon \varepsilon} D(1)^{'} \), which is positive definite because \(D(1) \) has full rank and \(\Sigma_{\varepsilon \varepsilon} \) is positive definite. The fourth moment assumption is needed for the limit distribution of sample autocovariances in the case of misspecified transient dynamics.

As expected, under general weak dependence assumptions on \(u_{t} \), the simple reduced rank regression models (2.1) and (3.1) are susceptible to the effects of potential misspecification in the transient dynamics. These effects bear on the
stationary components in the system. In particular, due to the centering term \(\Sigma_{u_{z1}}(1) \) in (A.62), both the OLS estimator \(\hat{\Pi}_{1st} \) and the shrinkage estimator \(\hat{\Pi}_n \) are asymptotically biased. Specifically, we show that \(\hat{\Pi}_{1st} \) has the following probability limit (see, Lemma A.4 in the appendix),

\[
\hat{\Pi}_{1st} \rightarrow_p \Pi_1 = Q^{-1}H_0 Q + \Pi_o, \tag{4.2}
\]

where \(H_0 = Q \left[\Sigma_{u_{z1}}(1) \Sigma_{z1z1}^{-1} \right] \). Note that

\[
\Pi_1 = Q^{-1}H_0 Q + \Pi_o = \left[\Sigma_{a_{z1}}(1) \Sigma_{z1z1}^{-1} \right] \beta_o^\prime = \tilde{\alpha}_o \beta_o^\prime, \tag{4.3}
\]

which implies that the asymptotic bias of the OLS estimator \(\hat{\Pi}_{1st} \) is introduced via the bias in the pseudo true value limit \(\tilde{\alpha}_o \). Observe also that \(\Pi_1 = \tilde{\alpha}_o \beta_o^\prime \) has rank at most equal to \(r_o \), the number of rows in \(\beta_o^\prime \).

Denote the rank of \(\Pi_1 \) by \(r_1 \). Then, by virtue of the expression \(\Pi_1 = \tilde{\alpha}_o \beta_o^\prime \), we have \(r_1 \leq r_o \) as indicated. Without loss of generality, we decompose \(\Pi_1 \) as \(\Pi_1 = \tilde{\alpha}_1 \beta_1^\prime \) where \(\tilde{\alpha}_1 \) and \(\beta_1 \) are \(m \times r_1 \) matrices with full rank. Denote the orthogonal complements of \(\tilde{\alpha}_1 \) and \(\beta_1 \) as \(\tilde{\alpha}_1 \perp \) and \(\beta_1 \perp \) respectively. Similarly, we decompose \(\beta_1 \perp \) as \(\beta_1 \perp = (\beta_1 \perp, \beta_o \perp) \) where \(\beta_o \perp \) is an \(m \times (r_o - r_1) \) matrix. By the definition of \(\beta_o \perp \), we know that \(\beta_o \perp \) is the right eigenvectors of the zero eigenvalues of \(\Pi_1 \). Thus, \(\tilde{\beta}_1 \) lies in some subspace of the space spanned by \(\beta_o \). Let \(Q_1 \) denote the ordered left eigenvector matrix of \(\Pi_1 \) and define \(\Phi_{1,k}(\Pi) = Q_1(k) \Pi \), where \(Q_1(k) \) denotes the \(k \)-th row of \(Q_1 \). It is clear that the index set \(\hat{S}_\phi = \{ k : \Phi_{1,k}(\Pi_1) \neq 0 \} = \{ 1, \ldots, r_1 \} \) is a subset of \(S_\phi = \{ k : \Phi_{1,k}(\Pi_o) \neq 0 \} = \{ 1, \ldots, r_o \} \). We next derive the “consistency” of \(\hat{\Pi}_n \).

COROLLARY 4.1. Let \(\tilde{\delta}_{r,n} = \max_{k \in \hat{S}_\phi} \lambda_{r,k,n} \), then under Assumptions RR, LP and \(\tilde{\delta}_{r,n} = o_p(1) \), the LS shrinkage estimator \(\hat{\Pi}_n \) is consistent, i.e. \(\hat{\Pi}_n \rightarrow_p \Pi_1 \).

Corollary 4.1 implies that the shrinkage estimator \(\hat{\Pi}_n \) has the same probability limit as that of the OLS estimator \(\hat{\Pi}_{1st} \). As the pseudo limit \(\Pi_1 \) may have more zero eigenvalues, compared with Theorem 3.1, Corollary 4.1 imposes weaker condition on the tuning parameters \(\{ \lambda_{r,k,n} \}_{k=1}^m \). The next corollary provides the convergence rate of the LS shrinkage estimate to the pseudo true parameter matrix \(\Pi_1 \).

COROLLARY 4.2. Under Assumptions RR, LP, and \(\tilde{\delta}_{r,n} = o_p(1) \), the LS shrinkage estimator \(\hat{\Pi}_n \) satisfies

(a) if \(r_o = 0 \), then \(\hat{\Pi}_n - \Pi_1 = O_p(n^{-1} + n^{-1} \tilde{\delta}_{r,n}) \);

(b) if \(0 < r_o \leq m \), then \((\hat{\Pi}_n - \Pi_1) Q^{-1} D_n^{-1} = O_p(1 + n^{1/2} \tilde{\delta}_{r,n}) \).

Recall that \(Q_n \) is the normalized left eigenvector matrix of \(\hat{\Pi}_{1st} \). Decompose \(Q_n^\prime \) as \(\left[Q_{\tilde{a}_n}^\prime, Q_{\tilde{a}_{\perp,n}}^\prime \right] \), where \(Q_{\tilde{a}_n} \) and \(Q_{\tilde{a}_{\perp,n}} \) are the first \(r_1 \) and last \(m - r_1 \) rows of \(Q_n \) respectively. Under Corollary 4.1 and Lemma A.4.(a),
\[Q_{\tilde{a},n} \hat{\Pi}_n = Q_{\tilde{a},n} \hat{\Pi}_{1st} + o_p(1) = \Lambda_{\tilde{a},n} Q_{\tilde{a},n} + o_p(1), \]
\[(4.4) \]

where \(\Lambda_{\tilde{a},n} \) is a diagonal matrix with the ordered first (largest) \(r_1 \) eigenvalues of \(\hat{\Pi}_{1st} \). (4.4) and Lemma A.4.(b) implies that the first \(r_1 \) rows of \(Q_{n} \hat{\Pi}_{n} \) are estimated as nonzero w.p.a.1. On the other hand, by Corollary 4.1 and Lemma A.4.(a),

\[Q_{\tilde{a},n} \hat{\Pi}_n = Q_{\tilde{a}_n} \hat{\Pi}_{1st} + o_p(1) = \Lambda_{\tilde{a},n} Q_{\tilde{a},n} + o_p(1), \]
\[(4.5) \]

where \(\Lambda_{\tilde{a}_n} \) is a diagonal matrix with the ordered last (smallest) \(m - r_1 \) eigenvalues of \(\hat{\Pi}_{1st} \). Under Lemmas A.4.(b) and (c), we know that \(Q_{\tilde{a}_n} \hat{\Pi}_{n} \) converges to zero in probability, while its first \(r_o - r_1 \) rows and the last \(m - r_o \) rows have the convergence rates \(n^{\frac{1}{2}} \) and \(n \) respectively. We next show that the last \(m - r_o \) rows of \(Q_{n} \hat{\Pi}_{n} \) are estimated as zeros w.p.a.1.

COROLLARY 4.3 (Super Efficiency). Under Assumptions LP and RR, if \(\lambda_{r,k,n} \rightarrow p \infty \) for \(k \in S_{\phi}^{c} \) and \(n^{\frac{1}{2}} \tilde{\delta}_{r,n} = O_p(1) \), then we have

\[\text{Pr}(Q_{n}(k) \hat{\Pi}_n = 0) \rightarrow 1 \text{ as } n \rightarrow \infty, \]
\[(4.6) \]

for any \(k \in S_{\phi}^{c} \).

Corollary 4.3 implies that \(\hat{\Pi}_{n} \) has at least \(m - r_o \) eigenvalues estimated as zero w.p.a.1. However, the matrix \(\Pi_{1} \) may have more zero eigenvalues than \(\Pi_o \). To ensure consistent cointegration rank selection, we need to show that the \(r_o - r_1 \) zero eigenvalues of \(\Pi_{1} \) are estimated as nonzeros w.p.a.1. From Lemma A.4, we see that \(\hat{\Pi}_{1st} \) has \(m - r_o \) eigenvalues which converge to zero at the rate \(n \) and \(r_o - r_1 \) eigenvalues which converge to zero at the rate \(\sqrt{n} \). The different convergence rates of the estimates of the zero eigenvalues of \(\Pi_{1} \) enable us to empirically distinguish the estimates of the \(m - r_o \) zero eigenvalues of \(\Pi_{1} \) from the estimates of the \(r_o - r_1 \) zero eigenvalues of \(\Pi_{1} \), as illustrated in the following corollary.

COROLLARY 4.4. Under Assumptions LP and RR, if \(n^{\frac{1}{2}} \lambda_{r,k,n} = o_p(1) \) for \(k \in \{ r_1 + 1, \ldots, r_o \} \) and \(n^{\frac{1}{2}} \tilde{\delta}_{r,n} = O_p(1) \), then we have

\[\text{Pr}(Q_{n}(k) \hat{\Pi}_n \neq 0) \rightarrow 1 \text{ as } n \rightarrow \infty, \]
\[(4.7) \]

for any \(k \in \{ r_1 + 1, \ldots, r_o \} \).

In the proof of Corollary 4.4, we show that \(n^{\frac{1}{2}} Q_{n}(k) \hat{\Pi}_{n} \) converges in distribution to some nondegenerated continuous random vectors, which is a stronger result than (4.7). Corollary 4.2 and Corollary 4.4 implies that \(\hat{\Pi}_{n} \) has at least \(m - r_o \) eigenvalues not estimated as zeros w.p.a.1. Hence Corollary 4.2, Corollary 4.3, and Corollary 4.4 give us the following result immediately.
THEOREM 4.5. Suppose that Assumptions LP and RR are satisfied. If \(n^{1/2} \delta_{r,n} = O_p(1), n^{1/2} \lambda_{r,k,n} = o_p(1) \) for \(k \in \{r_1 + 1, \ldots, r_o\} \) and \(\lambda_{r,k',n} \rightarrow_p \infty \) for \(k' \in S_{\phi}^c \), then we have

\[
\Pr \left(r(\hat{\Pi}_n) = r_o \right) \rightarrow 1 \text{ as } n \rightarrow \infty,
\]

as \(n \rightarrow \infty \), where \(r(\hat{\Pi}_n) \) denotes the rank of \(\hat{\Pi}_n \).

Compared with Theorem 3.3, Theorem 4.5 imposes similar conditions on the tuning parameters \(\{\lambda_{r,k,n}\}_{k=1}^m \). It is clear that when the pseudo limit \(\Pi_1 \) preserves the rank of \(\Pi_o \), i.e. \(r_o = r_1 \), we do not need to show Corollary 4.4 because Theorem 4.5 follows by Corollary 4.2 and Corollary 4.3. In that case, Theorem 4.5 imposes the same conditions on the tuning parameters, i.e. \(n^{1/2} \delta_{r,n} = O_p(1) \) and \(\lambda_{r,k,n} \rightarrow_p \infty \) for \(k \in S_{\phi}^c \), where \(\delta_{r,n} = \delta_{r,n} \). On the other hand, when \(r_1 < r_o \), the conditions in Theorem 4.5 is stronger, because it requires \(n^{1/2} \lambda_{r,k,n} = o_p(1) \) for \(k \in \{r_1 + 1, \ldots, r_o\} \). In Section 6, we construct empirically available tuning parameters which are shown to satisfy the conditions of Theorem 4.5 without knowing whether \(r_1 = r_o \) or \(r_1 < r_o \).

Theorem 4.5 states that the true cointegration rank \(r_o \) can be consistently selected, though the matrix \(\Pi_o \) is not consistently estimable. Moreover, when the probability limit \(\Pi_1 \) of the LS shrinkage estimator has rank less than \(r_o \), Theorem 4.5 ensures that only \(r_o \) rank is selected in the LS shrinkage estimation. This result is new in the shrinkage based model selection literature, as the Lasso-type of techniques are usually advocated because of their ability of shrinking small estimates (in magnitude) to be zeros in estimation. However, in Corollary 4.4, we show the LS shrinkage estimation does not shrink the estimates of the extra \(r_o - r_1 \) zero eigenvalues of \(\Pi_1 \) to be zero.

5. EXTENSION II: ESTIMATION WITH EXPLICIT TRANSIENT DYNAMICS

This section considers estimation of the general model

\[
\Delta Y_t = \Pi_o Y_{t-1} + \sum_{j=1}^{p} B_{o,j} \Delta Y_{t-j} + u_t
\]

with simultaneous cointegrating rank selection and lag order selection. Recall that the unknown parameters \((\Pi_o, B_o) \) are estimated by penalized LS estimation

\[
(\hat{\Pi}_n, \hat{B}_n) = \arg\min_{\Pi, B_1, \ldots, B_p \in \mathbb{R}^{m \times m}} \left\{ \sum_{t=1}^{n} \left\| \Delta Y_t - \Pi Y_{t-1} - \sum_{j=1}^{p} B_j \Delta Y_{t-j} \right\|^2 \right.
\]

\[
\left. + n \sum_{j=1}^{p} \lambda_{b,j,n} \|B_j\| + n \sum_{k=1}^{m} \lambda_{r,k,n} \|\Phi_{n,k}(\Pi)\| \right\}.
\]
For consistent lag order selection the model should be consistently estimable and it is assumed that the given \(p \) in (5.1) is such that the error term \(u_t \) satisfies Assumption 3.1. Define

\[
C(\phi) = \Pi_o + \sum_{j=0}^{p} B_{o,j} (1 - \phi) \phi^j, \quad \text{where} \quad B_{o,0} = -I_m.
\]

The following assumption extends Assumption 3.2 to accommodate the general structure in (5.1).

Assumption 5.1 (GRR).

(i) The determinantal equation \(|C(\phi)| = 0\) has roots on or outside the unit circle;
(ii) the matrix \(\Pi_o \) has rank \(r_o \), with \(0 \leq r_o \leq m \); (iii) the \((m - r_o) \times (m - r_o) \) matrix

\[
\alpha_{o,\perp}' \begin{pmatrix} I_m - \sum_{j=1}^{p} B_{o,j} \end{pmatrix} \beta_{o,\perp} \tag{5.3}
\]

is nonsingular.

Under Assumption 5.1, the time series \(Y_t \) has the following partial sum representation,

\[
Y_t = C_B \sum_{s=1}^{t} u_s + \Xi(L)u_t + C_B Y_0, \tag{5.4}
\]

where \(C_B = \beta_{o,\perp}[\alpha_{o,\perp}'(I_m - \sum_{j=1}^{p} B_{o,j}) \beta_{o,\perp}]^{-1} \alpha_{o,\perp}' \) and \(\Xi(L)u_t = \sum_{s=0}^{\infty} \Xi u_{t-s} \) is a stationary process. From the partial sum representation in (5.4), we deduce that \(\beta_o' Y_t = \beta_o' \Xi(L)u_t \) and \(\Delta Y_{t-j} \) \((j = 0, \ldots, p) \) are stationary.

Define an \(m(m+p+1) \times m(m+p+1) \) rotation matrix \(Q_B \) and its inverse \(Q_B^{-1} \) as

\[
Q_B = \begin{pmatrix} \beta_o' & 0 \\ 0 & I_{mp} \end{pmatrix} \quad \text{and} \quad Q_B^{-1} = \begin{pmatrix} \alpha_o(\beta_o' \alpha_o)^{-1} & 0 \\ 0 & I_{mp} \end{pmatrix} \begin{pmatrix} \beta_{o,\perp}'(\alpha_{o,\perp}'\beta_{o,\perp})^{-1} & 0 \\ 0 & \alpha_{o,\perp}' \beta_{o,\perp} \end{pmatrix}^{-1}.
\]

Denote \(\Delta X_{t-1} = [\Delta Y'_{t-1}, \ldots, \Delta Y'_{t-p}]' \) and then the model in (5.1) can be written as

\[
\Delta Y_t = [\Pi_o B_o] \begin{pmatrix} Y_{t-1} \\ \Delta X_{t-1} \end{pmatrix} + u_t. \tag{5.5}
\]
Let

\[
Z_{t-1} = Q_B \begin{bmatrix} Y_{t-1} \\ \Delta X_{t-1} \end{bmatrix} = \begin{bmatrix} Z_{3,t-1} \\ Z_{2,t-1} \end{bmatrix},
\]

(5.6)

where \(Z_{3,t-1} = \begin{bmatrix} Y_{t-1}', \Delta X_{t-1}' \end{bmatrix}\) is a stationary process and \(Z_{2,t-1} = a_{o,1}' Y_{t-1}\) comprises the \(I(1)\) components. Denote the index set of the zero components in \(B_o\) as \(S_B^o\) such that \(\|B_{o,j}\| = 0\) for all \(j \in S_B^o\) and \(\|B_{o,j}\| \neq 0\) otherwise. We next derive the asymptotic properties of the LS shrinkage estimator \((\hat{\Pi}_n, \hat{B}_n)\) defined in (5.2).

Lemma 5.1. Suppose that Assumptions WN and GRR are satisfied. If \(\delta_{r,n} = o_p(1)\) and \(\delta_{b,n} = o_p(1)\) where \(\delta_{b,n} \equiv \max_{j \in S_B} \lambda_{b,j,n}\), then the LS shrinkage estimator \((\hat{\Pi}_n, \hat{B}_n)\) satisfies

\[
\left[(\hat{\Pi}_n, \hat{B}_n) - (\Pi_o, B_o) \right] Q_B^{-1} D_n^{-1}_B = O_p \left(1 + n^{\frac{1}{2}} \delta_{r,n} + n^{\frac{1}{2}} \delta_{b,n} \right),
\]

(5.7)

where \(D_n.B = \text{diag} \left(n^{-\frac{1}{2}} I_{r_o + mp}, n^{-1} I_{m-r_o} \right)\).

Lemma 5.1 implies that the LS shrinkage estimators \((\hat{\Pi}_n, \hat{B}_n)\) have the same convergence rates as the OLS estimators \((\hat{\Pi}_{1st}, \hat{B}_{1st})\) (see, Lemma A.6.a). We next show that if the tuning parameters \(\lambda_{r,k,n}\) and \(\lambda_{b,j,n}\) converge to zero but not too fast, then the zero rows of \(Q \Pi_o\) and zero matrices in \(B_o\) are estimated as zero w.p.a.1. Let the zero rows of \(Q_n \hat{\Pi}_n\) be indexed by \(S_{n,\phi}^c\) and the zero matrix in \(\hat{B}_n\) be indexed by \(S_{n,B}^c\).

Theorem 5.1. Suppose that Assumptions WN and GRR are satisfied. If the tuning parameters satisfy \(n^{\frac{1}{2}} (\delta_{r,n} + \delta_{b,n}) = O_p(1)\), \(\lambda_{r,k,n} \to p \infty\) and \(n^{\frac{1}{2}} \lambda_{b,j,n} \to p \infty\) for \(k \in S_{\phi}^c\) and \(j \in S_B^c\), then we have

\[
\Pr \left(Q_{o,n} \hat{\Pi}_n = 0 \right) \to 1 \text{ as } n \to \infty;
\]

(5.8)

and for all \(j \in S_B^c\)

\[
\Pr \left(\hat{B}_{n,j} = 0_{m \times m} \right) \to 1 \text{ as } n \to \infty.
\]

(5.9)

Theorem 5.1 indicates that the zero rows of \(Q \Pi_o\) (and hence the zero eigenvalues of \(\Pi_o\)) and the zero matrices in \(B_o\) are estimated as zeros w.p.a.1. Thus Lemma 5.1 and Theorem 5.1 imply consistent cointegration rank selection and consistent lag order selection.

We next derive the asymptotic distribution of \(\hat{\Theta}_S = (\hat{\Pi}_n, \hat{B}_{S_B})\), where \(\hat{B}_{S_B}\) denotes the LS shrinkage estimator of the nonzero matrices in \(B_o\). Let \(I_{S_B} = \text{diag}(I_{1,m}, \ldots, I_{d_{S_B},m})\) where the \(I_{j,m}\) \((j = 1, \ldots, d_{S_B})\) are \(m \times m\) identity matrices and \(d_{S_B}\) is the dimensionality of the index set \(S_B\). Define

\[
Q_S \equiv \begin{pmatrix} \beta_o' & 0 \\ 0 & I_{S_B} \\ a_{o,1}' & 0 \end{pmatrix} \quad \text{and} \quad D_{n,S} \equiv \text{diag} \left(n^{-\frac{1}{2}} I_{r_o}, n^{-\frac{1}{2}} I_{S_B}, n^{-1} I_{m-r_o} \right),
\]

(5.10)
where the identity matrix $I_{SB} = I_{mdSB}$ in Q_S serves to accommodate the nonzero matrices in B_o. Let ΔX_{ST} denote the nonzero lagged differences in (5.1), then the true model can be written as

$$\Delta Y_t = \Pi_o Y_{t-1} + B_o, S \Delta X_{ST,t-1} + u_t = \Theta_o, S Q_S^{-1} Z_{ST,t-1} + u_t,$$

(5.10)

where the transformed and reduced regressor variables are

$$Z_{ST,t-1} = Q_S \begin{bmatrix} Y_{t-1} \\ \Delta X_{ST,t-1} \end{bmatrix} = \begin{bmatrix} Z_{3S,T-1} \\ Z_{2,t-1} \end{bmatrix},$$

with $Z_{3S,T-1} = [Y_{t-1} \Delta X'_{ST,t-1}]$ and $Z_{2,t-1} = \alpha'_{o,1} Y_{t-1}$. From Lemma A.5, we obtain

$$n^{-1} \sum_{t=1}^{n} Z_{3S,T-1} Z'_{3S,T-1} \rightarrow_p E \left[Z_{3S,T-1} Z'_{3S,T-1} \right] = \Sigma_{zz3S3S}.$$

The centred limit theory of $\hat{\Theta}_S$ is given in the following result.

THEOREM 5.2. Under conditions of Theorem 5.1, if $n^{\frac{1}{2}} (\delta_{r,n} + \delta_{b,n}) = o_p(1)$, then

$$(\hat{\Theta}_S - \Theta_{o, S}) Q_S^{-1} D_{n,S}^{-1} \rightarrow_d \left(B_{m,S} \alpha_o (\alpha'_o \alpha_o)^{-1} \alpha'_o B_{m,2} \right),$$

(5.11)

where

$$B_{m,S} \equiv \mathbb{N} \left(0, \Omega_u \otimes \Sigma^{-1}_{zz3S3S} \right) \text{ and } B_{m,2} \equiv \int dB_u B'_w \left(\int B_w B'_w \right)^{-1}.$$

Theorem 5.2 extends the result of Theorem 3.5 to the general VECM with lagged differences. From Theorem 5.2, the LS shrinkage estimator $\hat{\Theta}_S$ is more efficient than the OLS estimator $\hat{\Theta}_n$ in the sense that: (i) the zero components in B_o are estimated as zeros w.p.a.1 and thus their LS shrinkage estimators are super efficient; (ii) under the consistent lagged differences selection, the true nonzero components in B_o are more efficiently estimated in the sense of smaller asymptotic variance; and (iii) the true cointegration rank is estimated and therefore when $r_o < m$ some parts of the matrix Π_o are estimated at a rate faster than root-n.

The LS shrinkage estimator $\hat{\Pi}_n$ suffers from second order asymptotic bias, evident in the component $B_{m,2}$ of the limit (5.11). As in the simpler model this asymptotic bias is eliminated by GLS estimation. Accordingly we define the GLS shrinkage estimator of the general model as

$$(\hat{\Pi}_{g,n}, \hat{B}_{g,n}) = \arg \min_{\Pi, B_1, \ldots, B_p \in \mathbb{R}^{m \times m}} \left\{ \sum_{t=1}^{n} \left\| \Delta Y_t - \Pi Y_{t-1} - \sum_{j=1}^{p} B_j \Delta Y_{t-j} \right\|^2_{\hat{\Omega}_{u,n}^{-1}} + n \sum_{j=1}^{p} \lambda_{b,j,n} \left\| B_j \right\| + n \sum_{k=1}^{m} \lambda_{r,k,n} \left\| \Phi_{n,k}(\Pi) \right\| \right\}.$$

(5.12)
To conclude this section, we show that the GLS shrinkage estimator \((\hat{\Pi}_{g,n}, \hat{B}_{g,n})\) is oracle efficient in the sense that it has the same asymptotic distribution as the RRR estimate assuming the true cointegration rank and lagged differences are known.

COROLLARY 5.3 (Oracle Properties of GLS). Suppose the conditions of Theorem 5.2 are satisfied. If \(\hat{\Omega}_{u,n} \rightarrow_p \Omega_u\), then

\[
\Pr \left(r(\hat{\Pi}_{g,n}) = r_o \right) \rightarrow 1 \quad \text{and} \quad \Pr \left(\hat{B}_{g,j,n} = 0 \right) \rightarrow 1
\]

for \(j \in S_B^c\) as \(n \to \infty\); moreover, \(\hat{\Theta}_S\) has the following limit distribution

\[
(\hat{\Theta}_S - \Theta_{o,S}) \mathcal{Q}^{-1}_S D^{-1}_{n,S} \rightarrow_d \left(B_{m,S} a_o (\beta'_o a_o)^{-1} \int d B_{u,w_2} B'_{w_2} \left(\int B_{w_2} B'_w \right)^{-1} \right)
\]

(5.14)

where \(B_{u,w_2}\) is defined in Theorem 3.6.

Corollary 5.3 is proved using the same arguments as Corollary 3.6 and Theorem 5.2. Its proof is omitted. The asymptotic distributions of the penalized LS/GLS estimates can be used to conduct inference on \(\hat{\Pi}_o\) and \(B_o\). However, use of these asymptotic distributions implies that the true cointegrating rank and lag order are selected with probability one. In consequence, these distributions may provide poor approximations to the finite sample distributions of the penalized LS/GLS estimates when model selection errors occur in finite samples, leading to potential size distortions in inference based on (5.11) or (5.14). The development of robust approaches to confidence interval construction therefore seems an important task for future research.

Remark 5.4. Although the grouped Lasso penalty function \(P(B) = \|B\|\) is used in LS shrinkage estimation (5.2) and GLS shrinkage estimation (5.12), we remark that a full Lasso penalty function can also be used and the resulting GLS shrinkage estimate enjoys the same properties stated in Corollary 5.3. The GLS shrinkage estimation using the (full) Lasso penalty takes the following form

\[
(\hat{\Pi}_{g,n}, \hat{B}_{g,n}) = \arg\min_{\Pi, B_1, \ldots, B_p \in \mathbb{R}^{m \times m}} \left\{ \sum_{t=1}^{n} \| \Delta Y_t - \Pi Y_{t-1} - \sum_{j=1}^{p} B_j \Delta Y_{t-j} \|^2_{\hat{\Omega}^{-1}_{u,n}} + n \sum_{j=1}^{p} \sum_{l=1}^{m} \sum_{s=1}^{m} \lambda_{b,j,l,s,n} |B_{j,l,s}| + n \sum_{k=1}^{m} \sum_{k=1}^{m} \lambda_{r,k,n} \| \Phi_{n,k}(\Pi) \| \right\}, \quad (5.15)
\]

where \(B_{j,l,s}\) denotes the \((l,s)\)-th element of \(B_j\). The advantage of the grouped Lasso penalty \(P(B)\) is that it shrinks elements in \(B\) to zero groupwise, which makes it a natural choice for the lag order selection (as well as lag elimination) in VECMs. The Lasso penalty is more flexible and when used in shrinkage estimation, it can do more than select the zero matrices. It can also select the nonzero elements in the nonzero matrices \(B_{o,j} (j \in S_B)\) w.p.a.1.
Remark 5.5. The flexibility of the Lasso penalty enables GLS shrinkage estimation to achieve more goals in one-step, in addition to model selection and efficient estimation. Suppose that the vector Y_t can be divided in r and $m-r$ dimensional subvectors $Y_{1,t}$ and $Y_{2,t}$, then the VECM can be rewritten as

$$\begin{bmatrix}
\Delta Y_{1,t} \\
\Delta Y_{2,t}
\end{bmatrix} = \begin{bmatrix}
\Pi^{11}_o & \Pi^{12}_o \\
\Pi^{21}_o & \Pi^{22}_o
\end{bmatrix} \begin{bmatrix} Y_{1,t-1} \\
Y_{2,t-1}
\end{bmatrix} + \sum_{j=1}^p \begin{bmatrix} B^{11}_{o,j} & B^{12}_{o,j} \\
B^{21}_{o,j} & B^{22}_{o,j}
\end{bmatrix} \begin{bmatrix} \Delta Y_{1,t-j} \\
\Delta Y_{2,t-j}
\end{bmatrix} + u_t, \quad (5.16)$$

where Π^{12}_o and $B_{o,j}$ ($j = 1, \ldots, p$) are partitioned in line with Y_t. By definition, $Y_{2,t}$ does not Granger-cause $Y_{1,t}$ if and only if

$$\Pi^{12}_o = 0 \text{ and } B_{o,j}^{12} = 0 \text{ for any } j \in S_B.$$

One can attach the (grouped) Lasso penalty of Π^{12} in (5.16) such that the causality test is automatically executed in GLS shrinkage estimation.

Remark 5.6. In this paper, we only consider the Lasso penalty function in the LS or GLS shrinkage estimation. The main advantage of the Lasso penalty is that it is a convex function, which combines the convexity of the LS or GLS criterion, making the computation of the shrinkage estimate faster and more accurate. It is clear that as long as the tuning parameter satisfies certain rate requirements, our main results continue to hold if other penalty functions (e.g., the bridge penalty) are used in the LS or GLS shrinkage estimation.

6. ADAPTIVE SELECTION OF THE TUNING PARAMETERS

This section develops a data-driven procedure of selecting the tuning parameters $\{\lambda_{r,k,n}\}_{k=1}^m$ and $\{\lambda_{b,j,n}\}_{j=1}^p$. As presented in previous sections, the conditions ensuring oracle properties in GLS shrinkage estimation require that the tuning parameters of the estimates of zero and nonzero components have different asymptotic behavior. For example, in Theorem 3.3, we need $\lambda_{r,k,n} = O_p(n^{-\frac{1}{2}})$ for any $k \in S_\phi$ and $\lambda_{r,k,n} \rightarrow p \cdot \propto$ for $k \in S_{\hat{\phi}}^c$, which implies that some sort of known adaptive penalty should appear in $\lambda_{r,k,n}$. One popular choice of such a penalty is the adaptive Lasso penalty (c.f., Zou, 2006), which in our model can be defined as

$$\lambda_{r,k,n} = \frac{\lambda^*_r}{l\hat{\phi}_k(\Pi_{1st})} \omega \text{ and } \lambda_{b,j,n} = \frac{m^\omega \lambda^*_b}{\omega B_{1st,j}} \omega,$$

where λ^*_r and λ^*_b are nonincreasing positive sequences and ω is some positive finite constant.

The adaptive penalty in $\lambda_{r,k,n}$ is $\|\hat{\phi}_k(\Pi_{1st})\|^{-\omega}$ ($k = 1, \ldots, m$), because for any $k \in S_{\hat{\phi}}$, there is $\|\hat{\phi}_k(\Pi_{1st})\|^{-\omega} \rightarrow p \cdot \propto$ and for any $k \in S_\phi$, there is $\|\hat{\phi}_k(\Pi_{1st})\|^{-\omega} \rightarrow O(1)$ under Assumption WN8. Similarly, the adaptive penalty in $\lambda_{b,j,n}$ is $m^\omega |\hat{B}_{1st,j}\|^{-\omega}$, where the extra term m^ω is used to adjust the effect of dimensionality of B_j on the adaptive penalty. Such adjustment
does not effect the asymptotic properties of the LS/GLS shrinkage estimation, but it is used to improve their finite sample performances. To see the effect of the dimensionality on the adaptive penalty, we write

\[\| \hat{B}_{1st,j,lh} \|^{\omega} = \left[\sum_{l=1}^{m} \sum_{h=1}^{m} | \hat{B}_{1st,j,lh} |^2 \right]^{\frac{\omega}{2}}. \]

Although each individual \(| \hat{B}_{1st,j,lh} |^2 \) may be close to zero, \(\| \hat{B}_{1st,j} \|^{2} \) could be large in magnitude in finite samples because it is the sum of \(m^2 \) such terms (i.e. \(| \hat{B}_{1st,j,lh} |^2 \)). As a result, the adaptive penalty \(\| \hat{B}_{1st,j} \|^{-\omega} \) without any adjustment tends to be smaller than the value it should be. One straightforward adjustment for the dimensionality effect is to use the average, instead of the sum, of the square terms \(| \hat{B}_{1st,j,lh} |^2 \), i.e.

\[\left[m^{-2} \sum_{l=1}^{m} \sum_{h=1}^{m} | \hat{B}_{1st,j,lh} |^2 \right]^{\frac{\omega}{2}} = m^{-\omega} \| \hat{B}_{1st,j} \|^{\omega} \]

in the adaptive penalty. Under some general rate conditions on \(\lambda_{r,k,n}^{*} \) and \(\lambda_{b,j,n}^{*} \), the following lemma shows that the tuning parameters specified in (6.1) satisfy the conditions in our theorems of super efficiency and oracle properties.

LEMMA 6.1. (i) If \(n^{1/2} \lambda_{r,k,n}^{*} = o(1) \) and \(n^{o} \lambda_{r,k,n}^{*} \rightarrow \infty \), then under Assumptions WN and RR we have \(n^{1/2} \delta_{r,n} = o_p(1) \) and \(\lambda_{r,k,n} \rightarrow p \infty \) for any \(k \in S_{r}^{c} \). (ii) if \(n^{1/2} \lambda_{r,k,n}^{*} = o(1) \) and \(n^{o} \lambda_{r,k,n}^{*} \rightarrow \infty \), then under Assumptions LP and RR

\[n^{1/2} \delta_{r,n} = o_p(1), n^{1/2} \lambda_{r,k,n} = o_p(1) \text{ and } \lambda_{r,k',n} \rightarrow p \infty \]

for any \(k \in \{r_{1} + 1, \ldots, r_{0}\} \) and \(k' \in S_{r}^{c} \); (iii) if \(n^{1/2} \lambda_{b,j,n}^{*} = o(1) \) and \(n^{o} \lambda_{b,j,n}^{*} \rightarrow \infty \) for any \(j = 1, \ldots, p \), then under Assumptions WN and GRR

\[n^{1/2} \left(\delta_{r,n} + \delta_{b,n} \right) = o_p(1), \lambda_{r,k,n} \rightarrow p \infty \text{ and } \lambda_{b,j,n} \rightarrow p \infty \]

for any \(k \in S_{r}^{c} \) and \(j \in S_{b}^{c} \).

It is notable that, when \(u_{t} \) is iid, \(\lambda_{r,k,n}^{*} \) is required to converge to zero with the rate faster than \(n^{-1/2} \), while when \(u_{t} \) is weakly dependent, \(\lambda_{r,k,n}^{*} \) has to converge to zero with the rate faster than \(n^{-1+\omega} \). The convergence rate of \(\lambda_{r,k,n}^{*} \) in Lemma 6.1.(ii) is faster to ensure that the pseudo \(r_{o} \rightarrow r_{1} \) zero eigenvalues in \(\Pi_{1} \).
are estimated as nonzeros w.p.a.1. When \(r_1 = r_o \), \(\Pi_1 \) contains no pseudo zero eigenvalues and it has the true rank \(r_o \). It is clear that in this case, we only need \(n^{\frac{1}{2}} \lambda_{r,k,n}^* = o(1) \) and \(n^{\omega} \lambda_{r,k,n}^* \rightarrow \infty \) to show that the tuning parameters in (6.1) satisfy \(n^{\frac{1}{2}} \delta_{r,n} = o_P(1) \) and \(\lambda_{r,k,n}^* \rightarrow p_1 \infty \) for any \(k' \in S^c_o \).

From Lemma 6.1, we see that the conditions imposed on \(\{ \lambda_{r,k,n}^* \}_{k=1}^m \) and \(\{ \lambda_{b,j,n}^* \}_{j=1}^p \) to ensure oracle properties in GLS shrinkage estimation only restrict the rates at which the sequences \(\lambda_{r,k,n}^* \) and \(\lambda_{b,j,n}^* \) go to zero. But in finite samples these conditions are not precise enough to provide a clear choice of tuning parameter for practical implementation. On one hand these sequences should converge to zero as fast as possible so that shrinkage bias in the estimation of the nonzero components of the model is as small as possible. In the extreme case where \(\lambda_{r,k,n}^* = 0 \) and \(\lambda_{b,j,n}^* = 0 \), LS shrinkage estimation reduces to LS estimation and there is no shrinkage bias in the resulting estimators. (Of course there may still be finite sample estimation bias). On the other hand, these sequences should converge to zero as slow as possible so that in finite samples zero components in the model are estimated as zeros with higher probability. In the opposite extremity \(\lambda_{r,k,n}^* = \infty \) and \(\lambda_{b,j,n}^* = \infty \), and then all parameters of the model are estimated as zeros with probability one in finite samples. Thus there is bias and variance trade-off in the selection of the sequences in \(\{ \lambda_{r,k,n}^* \}_{k=1}^m \) and \(\{ \lambda_{b,j,n}^* \}_{j=1}^p \).

By definition \(\hat{T}_n = Q_n \tilde{\Pi}_n \) and the \(k \)-th row of \(\hat{T}_n \) is estimated as zero only if the following first order condition holds

\[
\left\| \frac{1}{n} \sum_{t=1}^{n} Q_n(k) \tilde{\Omega}_{u,n}^{-1} \left(\Delta Y_t - \tilde{\Pi}_n Y_{t-1} - \sum_{j=1}^{p} \hat{B}_{n,j} \Delta Y_{t-j} \right) Y_{t-1}' \right\| < \frac{\lambda_{r,k,n}^*}{2 \| \phi_k \|_{(\tilde{\Pi}_{1st})}} \| \omega \|.
\]

Let \(T \equiv Q \Pi_0 \) and \(T(k) \) be the \(k \)-th row of the matrix \(Q \Pi_0 \). If a nonzero \(T(k) \) \((k \leq r_o) \) is estimated as zero, then the left hand side of the above inequality will be asymptotically close to a nonzero real number because the under-selected cointegration rank leads to inconsistent estimation. To ensure the shrinkage bias and errors of under-selecting the cointegration rank are small in finite samples, one would like to have \(\lambda_{r,k,n}^* \) converge to zero as fast as possible.

On the other hand, the zero rows of \(T \) are estimated as zero only if the same inequality in (6.2) is satisfied. As \(n \phi_k(\tilde{\Pi}_{1st}) = O_P(1) \), we can rewrite the inequality in (6.2) as

\[
\left\| \frac{1}{n} \sum_{t=1}^{n} Q_n(k) \tilde{\Omega}_{u,n}^{-1} \left(\Delta Y_t - \tilde{\Pi}_n Y_{t-1} - \sum_{j=1}^{p} \hat{B}_{n,j} \Delta Y_{t-j} \right) Y_{t-1}' \right\| < \frac{n^{\omega} \lambda_{r,k,n}^*}{2 \| n \phi_k(\tilde{\Pi}_{1st}) \| \omega}.
\]
The sample average in the left side of this inequality is asymptotically a vector of linear combinations of nondegenerate random variables, and it is desirable to have $n^{\omega} \lambda_{r,k,n}^*$ diverge to infinity as fast as possible to ensure that the true cointegration rank is selected with high probability in finite samples. We propose to choose $\lambda_{r,k,n}^* = c_{r,k} n^{-2}$ (here $c_{r,k}$ is some positive constant whose selection is discussed later) to balance the requirement that $\lambda_{r,k,n}^*$ converges to zero and $n^{\omega} \lambda_{r,k,n}^*$ diverges to infinity as fast as possible.

Using similar arguments we see that the component $B_{o,j}$ in B_o will be estimated as zero if the following condition holds

$$
\left\| n^{-1/2} \sum_{t=1}^{n} \hat{\Omega}^{-1}_{u,n} \left(\Delta Y_t - \hat{\Pi}_n Y_{t-1} - \sum_{j=1}^{p} \hat{B}_{n,j} \Delta Y_{t-j} \right) \Delta Y_{t-j} \right\| < \frac{n^{1/2} \lambda_{b,j,n}^*}{2||\hat{B}_{1st,j}||^\omega}.
$$

(6.4)

As $B_{o,j} \neq 0$, the left side of the above inequality will be asymptotically close to a nonzero real number because the under-selected lagged differences also lead to inconsistent estimation. To ensure the shrinkage bias and error of under-selection of the lagged differences are small in the finite samples, it is desirable to have $n^{1/2} \lambda_{b,j,n}^*$ converge to zero as fast as possible.

On the other hand, the zero component $B_{o,j}$ in B_o is estimated as zero only if the same inequality in (6.4) is satisfied. As $\hat{B}_{1st,j} = O_p(n^{-1/2})$ the inequality in (6.4) can be written as

$$
\left\| n^{-1/2} \sum_{t=1}^{n} \hat{\Omega}^{-1}_{u,n} \left(\Delta Y_t - \hat{\Pi}_n Y_{t-1} - \sum_{j=1}^{p} \hat{B}_{n,j} \Delta Y_{t-j} \right) \Delta Y_{t-j} \right\| < \frac{n^{1+\omega} \lambda_{b,j,n}^*}{2||n^{1/2} \hat{B}_{1st,j}||^\omega}.
$$

(6.5)

The sample average on the left side of this inequality is asymptotically a vector of linear combinations of nondegenerated random variables, and again it is desirable to have $n^{1+\omega} \lambda_{b,j,n}^*$ diverge to infinity as fast as possible to ensure that zero components in B_o are selected with high probability in finite samples. We propose to choose $\lambda_{b,j,n}^* = c_{b,j} n^{-1/2 - \omega/4}$ (again $c_{b,j}$ is some positive constant whose selection is discussed later) to balance the requirement that $\lambda_{b,j,n}^*$ converges to zero and $n^{1+\omega} \lambda_{b,j,n}^*$ diverges to infinity as fast as possible.

We next discuss how to choose the loading coefficients in $\lambda_{r,k,n}^*$ and $\lambda_{b,j,n}^*$. Note that the sample average on the left hand side of (6.3) can be written as

$$
F_{\pi,n}(k) \equiv \frac{Q_n(k) \hat{\Omega}^{-1}_{u,n}}{n} \sum_{t=1}^{n} \left[u_t - \left(\Theta_n - \Theta_o \right) Q_B^{-1} Z_{t-1} \right] Y'_{t-1}.
$$
Similarly, the sample average on the left hand side of (6.5) can be written as

\[F_{b,n}(j) = \hat{\Omega}_{n}^{-1} \sum_{t=1}^{n} \left[u_t - (\hat{\Theta}_n - \Theta_o) Q^\top_B Z_{t-1} \right] \Delta Y_{t-j}^\prime. \]

The next lemma provides the asymptotic distributions of \(F_{\pi,n}(k) \) and \(F_{b,n}(j) \) for \(k = 1, \ldots, m \) and \(j = 1, \ldots, p \).

Lemma 6.2. Suppose that the conditions of Corollary 5.3 are satisfied, then

\[F_{\pi,n}(k) = Q_n(k)T_{1,\pi_o} \int d B_u B_u^\prime T_{2,\pi_o} + o_P(1) \]
(6.6)

for \(k = 1, \ldots, m \), where

\[T_{1,\pi_o} = \Omega_u^{-1} - \Omega_u^{-1} a_o (\alpha_o^\prime \Omega_u^{-1} a_o)^{-1} \alpha_o^\prime \Omega_u^{-1} \] and \(T_{2,\pi_o} = a_o, (\beta_o^\prime \alpha_o, 1)^{-1} \beta_o^\prime, \) further, for \(j = 1, \ldots, p \),

\[F_{b,n}(j) \to_d \Omega_u^{-1/2} B_{m \times m} (1) \Sigma_{\Delta y_j|z_{3S}}^{1/2}, \]
(6.7)

where \(B_{m,m} = N(0, I_m \otimes I_m) \),

\[\Sigma_{\Delta y_j|z_{3S}} = E \left[\left(\Delta Y_{t-j}^\prime | Z_{3S} \right) \left(\Delta Y_{t-j}^\prime | Z_{3S} \right) \right] \]
and \(\Delta Y_{t-j} = \Sigma_{\Delta y_j|z_{3S}} \Sigma_{z_{3S}, z_{3S}}^{-1} Z_{3S,t-1}. \)

We propose to select \(c_{r,k} \) to normalize the random sum in (6.6), i.e.

\[\hat{c}_{r,k} = 2 \left\| Q_n(k) \hat{T}_{1,\pi_o} \hat{\Omega}_{n}^{1/2} \right\| \times \left\| \hat{\Sigma}_{\Delta y_j}^{-1/2} T_{2,\pi_o} \right\|, \]
(6.9)

where \(\hat{T}_{1,\pi} \) and \(\hat{T}_{2,\pi} \) are some estimates of \(T_{1,\pi_o} \) and \(T_{2,\pi_o} \). Of course, the rank of \(\Pi_o \) needs to be estimated before \(T_{1,\pi_o} \) and \(T_{2,\pi_o} \) can be estimated. We propose to run a first step shrinkage estimation with \(\lambda_{r,k,n}^* = 2 \log(n) n^{-\frac{\omega}{2}} \) and \(\lambda_{b,j,n}^* = 2 \log(n) n^{-\frac{1}{2} - \frac{\omega}{4}} \) to get initial estimates of the rank \(r_o \) and the order of the lagged differences. Then, based on this first-step shrinkage estimation, one can construct \(\hat{T}_{1,\pi}, \hat{T}_{2,\pi} \) and thus the empirical loading coefficient \(\hat{c}_{r,k} \). Similarly, we propose to select \(c_b \) to normalize the random sum in (6.6), i.e.

\[\hat{c}_{b,j} = 2 \left\| \hat{\Omega}_{n}^{-1/2} \right\| \times \left\| \hat{\Sigma}_{\Delta y_j, \Delta y_j}^{-1/2} \right\|, \]
(6.9)

where \(\hat{\Sigma}_{\Delta y_j, \Delta y_j} = \frac{1}{n} \sum_{t=1}^{n} \Delta Y_{t-j} \Delta Y_{t-j}^\prime. \) From the expression in (6.7), it seems that the empirical analog of \(\Sigma_{\Delta y_j|z_{3S}} \) is a more appropriate term to normalize \(F_{b,n}(j) \). However, if \(\Delta Y_{t-j} \) is a redundant lag and the residual of its projection
on $\beta_o' Y_{t-1}$ and nonredundant lagged differences is close to zero, then $\Sigma_{\Delta y_j | \Delta y_j}$ and its estimate will be close to zero. As a result, $\tilde{c}_{b,j}$ tends to be small, which will increase the probability of including ΔY_{t-j} in the selected model with higher probability in finite samples. To avoid such unappealing scenario, we use $\tilde{\Sigma}_{\Delta y_j} \Delta y_j$ instead of the empirical analog of $\Sigma_{\Delta y_j | \Delta y_j}$ in (6.9). It is clear that $\tilde{c}_{b,j}$ can be directly constructed from the preliminary LS estimation.

The choice of ω is a more complicated issue which is not pursued in this paper. For the empirical applications, we propose to choose $\omega = 2$ because such a choice is popular in the Lasso-based variable selection literature, it satisfies all our rate criteria, and simulations show that the choice works remarkably well. Based on all the above results, we propose the following data dependent tuning parameters for LS shrinkage estimation:

$$\lambda_{r,k,n} = \frac{2}{n} \left\| Q_n(k) \hat{T}_{1,\pi} \hat{\Omega}_{u,n}^{-1/2} \right\| \times \left\| \hat{\Omega}_{u,n}^{1/2} \hat{T}_{2,\pi} \right\| \times \| \phi_k (\hat{\Pi}_{1st}) \|^{-2}$$

(6.10)

and

$$\lambda_{b,j,n} = \frac{2m^2}{n} \left\| \hat{\Omega}_{u,n}^{-1/2} \right\| \times \left\| \tilde{\Sigma}_{\Delta y_j}^{1/2} \hat{T}_{2,\pi} \right\| \times \| \hat{B}_{1st,j} \|^{-2}$$

(6.11)

for $k = 1, \ldots, m$ and $j = 1, \ldots, p$. The above discussion is based on the general VECM with iid u_t. In the simple error correction model where the cointegration rank selection is the only concern, the adaptive tuning parameters proposed in (6.10) are still valid. The expression in (6.10) will be invalid when u_t is weakly dependent and $r_1 < r_o$. In that case, we propose to replace the leading term $2n^{-1}$ in (6.10) by $2n^{-3/2}$.

7. SIMULATION STUDY

We conducted simulations to assess the finite sample performance of the shrinkage estimates in terms of cointegrating rank selection and efficient estimation. Three models were investigated. In the first model, the simulated data are generated from

$$\begin{pmatrix} \Delta Y_{1,t} \\ \Delta Y_{2,t} \end{pmatrix} = \Pi_o \begin{pmatrix} Y_{1,t-1} \\ Y_{2,t-1} \end{pmatrix} + \begin{pmatrix} u_{1,t} \\ u_{2,t} \end{pmatrix},$$

(7.1)

where $u_t \equiv iid N(0, \Omega_u)$ with $\Omega_u = \begin{pmatrix} 1 & 0.5 \\ 0.5 & 0.75 \end{pmatrix}$. The initial observation Y_0 is set to be zero for simplicity. Π_o is specified as follows

$$\begin{pmatrix} \pi_{11,o} & \pi_{12,o} \\ \pi_{21,o} & \pi_{22,o} \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & -0.5 \\ -1 & 0.5 \end{pmatrix} \text{ and } \begin{pmatrix} -0.5 & 0.1 \\ 0.2 & -0.4 \end{pmatrix}$$

(7.2)

to allow for the cointegration rank to be 0, 1 and 2 respectively.
In the second model, the simulated data \(\{Y_t\}_{t=1}^n \) are generated from equations (7.1)–(7.2), while the innovation term \(u_t \) is generated by

\[
\begin{pmatrix}
u_{1,t} \\
u_{2,t}
\end{pmatrix} = \begin{pmatrix}1 & 0.5 \\
0.5 & 0.75\end{pmatrix} \begin{pmatrix}u_{1,t-1} \\
u_{2,t-1}\end{pmatrix} + \begin{pmatrix}\varepsilon_{1,t} \\
\varepsilon_{2,t}\end{pmatrix},
\]

where \(\varepsilon_t \equiv iid \ N(0, \Omega_c) \) with \(\Omega_c = diag(1.25, 0.75) \). The initial values \(Y_0 \) and \(\varepsilon_0 \) are set to be zero.

The third model has the following form

\[
\begin{pmatrix}\Delta Y_{1,t} \\
\Delta Y_{2,t}\end{pmatrix} = \begin{pmatrix}\Pi_1 \o \end{pmatrix} \begin{pmatrix}Y_{1,t-1} \\
Y_{2,t-1}\end{pmatrix} + B_{1,\o} \begin{pmatrix}\Delta Y_{1,t-1} \\
\Delta Y_{2,t-1}\end{pmatrix} + B_{3,\o} \begin{pmatrix}\Delta Y_{1,t-3} \\
\Delta Y_{2,t-3}\end{pmatrix} + u_t,
\]

where \(u_t \) is generated under the same condition in (7.1), \(\Pi_1 \o \) is specified similarly in (7.2), \(B_{1,\o} \) and \(B_{3,\o} \) are taken to be \(diag(0.4, 0.4) \) such that Assumption 5.1 is satisfied. The initial values \((Y_t, \varepsilon_t) (t = -3, \ldots, 0)\) are set to be zero. In the above three cases, we include 50 additional observations to the simulated sample with sample size \(n \) to eliminate start-up effects from the initialization.

In the first two models, we assume that the econometrician specifies the following model

\[
\begin{pmatrix}\Delta Y_{1,t} \\
\Delta Y_{2,t}\end{pmatrix} = \Pi_1 \o \begin{pmatrix}Y_{1,t-1} \\
Y_{2,t-1}\end{pmatrix} + u_t,
\]

where \(u_t \) is \(iid \ (0, \Omega_u) \) with some unknown positive definite matrix \(\Omega_u \). The above empirical model is correctly specified under the data generating assumption (7.1), but is misspecified under (7.2). We are interested in investigating the performance of the shrinkage method in selecting the correct rank of \(\Pi_1 \o \) under both data generating assumptions and efficient estimation of \(\Pi_1 \o \) under Assumption (7.1).

In the third model, we assume that the econometrician specifies the following model

\[
\begin{pmatrix}\Delta Y_{1,t} \\
\Delta Y_{2,t}\end{pmatrix} = \Pi_1 \o \begin{pmatrix}Y_{1,t-1} \\
Y_{2,t-1}\end{pmatrix} + \sum_{j=1}^3 B_{j,\o} \begin{pmatrix}\Delta Y_{1,t-j} \\
\Delta Y_{2,t-j}\end{pmatrix} + u_t,
\]

where \(u_t \) is \(iid \ (0, \Omega_u) \) with some unknown positive definite matrix \(\Omega_u \). The above empirical model is over-parameterized according to (7.3). We are interested in investigating the performance of the shrinkage method in selecting the correct rank of \(\Pi_1 \o \) and the order of the lagged differences, and efficient estimation of \(\Pi_1 \o \) and \(B_{\o} \).

Table 1 presents finite sample probabilities of rank selection under different model specifications. Overall, the GLS shrinkage method performs very well in selecting the true rank of \(\Pi_1 \o \). When the sample size is small (i.e. \(n = 100 \)) and the data are \(iid \), the probability of selecting the true rank \(r_o = 0 \) is close to 1 (around 0.96) and the probabilities of selecting the true ranks \(r_o = 1 \) and \(r_o = 2 \) are almost
Table 1. Cointegration rank selection with adaptive Lasso penalty

<table>
<thead>
<tr>
<th>Model 1</th>
<th>$r_o = 0, \lambda_o = (0 \ 0)$</th>
<th>$r_o = 1, \lambda_o = (0 -0.5)$</th>
<th>$r_o = 2, \lambda_o = (-0.6 -0.5)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 100$</td>
<td>$n = 400$</td>
<td>$n = 100$</td>
<td>$n = 400$</td>
</tr>
<tr>
<td>$\hat{r}_n = 0$</td>
<td>0.9588 0.9984</td>
<td>0.0000 0.0002</td>
<td>0.0000 0.0000</td>
</tr>
<tr>
<td>$\hat{r}_n = 1$</td>
<td>0.0412 0.0016</td>
<td>0.9954 0.9996</td>
<td>0.0000 0.0000</td>
</tr>
<tr>
<td>$\hat{r}_n = 2$</td>
<td>0.0000 0.0000</td>
<td>0.0046 0.0002</td>
<td>1.0000 1.0000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model 2</th>
<th>$r_o = 0, \lambda_1 = (0 \ 0)$</th>
<th>$r_o = 1, \lambda_1 = (0 -0.25)$</th>
<th>$r_o = 2, \lambda_1 = (-0.30 -0.15)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 100$</td>
<td>$n = 400$</td>
<td>$n = 100$</td>
<td>$n = 400$</td>
</tr>
<tr>
<td>$\hat{r}_n = 0$</td>
<td>0.9882 0.9992</td>
<td>0.0010 0.0000</td>
<td>0.0006 0.0000</td>
</tr>
<tr>
<td>$\hat{r}_n = 1$</td>
<td>0.0118 0.0008</td>
<td>0.9530 0.9962</td>
<td>0.1210 0.0008</td>
</tr>
<tr>
<td>$\hat{r}_n = 2$</td>
<td>0.0010 0.0000</td>
<td>0.0460 0.0038</td>
<td>0.8784 0.9992</td>
</tr>
</tbody>
</table>

Note: Replications = 5000, $\omega = 2$, adaptive tuning parameter λ_n given in equation (6.15). λ_o represents the eigenvalues of the true matrix Π_o, while λ_1 represents the eigenvalues of the pseudo true matrix Π_1.

When the sample size is increased to 400, the probabilities of selecting the true ranks $r_o = 0$ and $r_o = 1$ are almost equal to 1 and the probability of selecting the true rank $r_o = 2$ equals 1. Similar results show up when the data are weakly dependent (model 2). The only difference is that when the pseudo true eigenvalues are close to zero, the probability of falsely selecting these small eigenvalues is increased, as illustrated in the weakly dependent case with $r_o = 2$. However, as the sample size grows, the probability of selecting the true rank moves closer to 1.

Tables 3, 4 and 5 provide finite sample properties of the GLS shrinkage estimate, the OLS estimate and the oracle estimate (under the first simulation design) in terms of bias, standard deviation and root of mean square error. When the true rank $r_o = 0$, the unknown parameter Π_o is a zero matrix. In this case, the GLS shrinkage estimate clearly dominates the LS estimate due to the high probability of the shrinkage method selecting the true rank. When the true rank $r_o = 1$, we do not observe an efficiency advantage of the GLS shrinkage estimator over the LS estimate, but the finite sample bias of the shrinkage estimate is remarkably smaller (Table 4). From Corollary 3.6, we see that the GLS shrinkage estimator is free of high order bias, which explains its smaller bias in finite samples. Moreover, Lemma A.2 and Corollary 3.6 indicate that the OLS estimator and the GLS shrinkage estimator (and hence the oracle estimator) have almost the same variance. This explains the phenomenon that the GLS shrinkage estimate does not look more efficient than the OLS estimate. To better compare the OLS estimate, the GLS shrinkage estimate, and the oracle estimate, we transform the three estimates using the matrix Q and its inverse (i.e. the estimate $\hat{\Pi}$ is transformed to $Q\hat{\Pi}Q^{-1}$). Note that in this case, $Q\Pi_oQ^{-1} = \text{diag}(-0.5, 0)$.
The finite sample properties of the transformed estimates are presented in the last two panels of Table 4. We see that the elements in the last column of the transformed GLS shrinkage estimator enjoys very small bias and small variance even when the sample size is only 100. The elements in the last column of the OLS estimator, when compared with the elements in its first column, have smaller variance but larger bias. It is clear that as the sample size grows, the GLS shrinkage estimator approaches the oracle estimator in terms of overall performance. When the true rank $r_o = 2$, the LS estimator is better than the shrinkage estimator as the latter suffers from shrinkage bias in finite samples. If shrinkage bias is a concern, one can run a reduced rank regression based on the rank selected by the GLS shrinkage estimation to get the so called post-Lasso estimator (c.f. Belloni and Chernozhukov, 2013). The post-Lasso estimator also enjoys oracle properties and it is free of shrinkage bias in finite samples.

Table 2 shows finite sample probabilities of the new shrinkage method in joint rank and lag order selection for the third model. Evidently, the method performs very well in selecting the true rank and true lagged differences (and thus the true

<table>
<thead>
<tr>
<th>Table 2. Rank selection and lagged order selection with adaptive Lasso penalty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cointegration rank selection</td>
</tr>
<tr>
<td>$r_o = 0, \lambda_o = (0, 0)$</td>
</tr>
<tr>
<td>$n = 100$</td>
</tr>
<tr>
<td>$\hat{r}_n = 0$</td>
</tr>
<tr>
<td>$\hat{r}_n = 1$</td>
</tr>
<tr>
<td>$\hat{r}_n = 2$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lagged difference selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r_o = 0, \lambda_o = (0, 0)$</td>
</tr>
<tr>
<td>$n = 100$</td>
</tr>
<tr>
<td>$\hat{p}_n \in T$</td>
</tr>
<tr>
<td>$\hat{p}_n \in C$</td>
</tr>
<tr>
<td>$\hat{p}_n \in I$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r_o = 0, \lambda_o = (0, 0)$</td>
</tr>
<tr>
<td>$n = 100$</td>
</tr>
<tr>
<td>$\hat{m}_n \in T$</td>
</tr>
<tr>
<td>$\hat{m}_n \in C$</td>
</tr>
<tr>
<td>$\hat{m}_n \in I$</td>
</tr>
</tbody>
</table>

Note: Replications = 5000, $\omega = 2$, adaptive tuning parameter λ_n given in (6.15) and (6.16). λ_o in each column represents the eigenvalues of Π_o. "T" denotes selection of the true lags model, "C" denotes the selection of a consistent lags model (i.e., a model with no incorrect shrinkage), and "I" denotes the selection of an inconsistent lags model (i.e., a model with incorrect shrinkage).
TABLE 3. Finite sample properties of the shrinkage estimates

<table>
<thead>
<tr>
<th></th>
<th>Lasso estimates</th>
<th>OLS</th>
<th>Oracle estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bias</td>
<td>Std</td>
<td>RMSE</td>
</tr>
<tr>
<td>(\Pi_{11})</td>
<td>-0.0005</td>
<td>0.0073</td>
<td>0.0073</td>
</tr>
<tr>
<td>(\Pi_{12})</td>
<td>0.0000</td>
<td>0.0052</td>
<td>0.0052</td>
</tr>
<tr>
<td>(\Pi_{21})</td>
<td>0.0000</td>
<td>0.0035</td>
<td>0.0035</td>
</tr>
<tr>
<td>(\Pi_{22})</td>
<td>0.0004</td>
<td>0.0069</td>
<td>0.0069</td>
</tr>
</tbody>
</table>

Note: Replications = 5000, \(\omega = 2 \), adaptive tuning parameter \(\lambda_n \) given in equation (6.15). \(\lambda_o \) in each column represents the eigenvalues of \(\Pi_o \). The oracle estimate in this case is simply a 4 by 4 zero matrix.

It is interesting to see that the probabilities of selecting the true ranks are not negatively affected either by adding lags to the model or by the lagged order selection being simultaneously performed with rank selection. Tables 6, 7, and 8 present the finite sample properties of GLS shrinkage, OLS, and oracle estimation. When compared with the oracle estimates, some components in the GLS shrinkage estimate even have smaller variances, though their finite sample biases are slightly larger. As a result, their root mean square errors are smaller than those of their counterparts in oracle estimation. Moreover, the GLS shrinkage estimate generally has smaller variance when compared with the OLS estimate, though the finite sample bias of the shrinkage estimate of nonzero component is slightly larger, as expected. The intuition that explains how the GLS shrinkage estimate can outperform the oracle estimate lies in the fact that there are some zero components in \(B_o \) and shrinking their estimates towards zero (but not exactly to zero) helps to reduce their bias and variance. From this perspective, the shrinkage estimates of the zero components in \(B_o \) share features similar to traditional shrinkage estimates, revealing that finite sample shrinkage bias is not always harmful.

Additional simulations were conducted to compare the performance of our least squares (LS) shrinkage techniques with the direct use of information criteria for model determination. The results are summarized here and presented in full in the Supplemental Appendix (Liao and Phillips, 2013). Amongst the usual information criteria, we find that BIC outperforms AIC and HQ and does well in selecting cointegrating rank even when the sample size is as small as \(n = 100 \), corroborating earlier findings in Cheng and Phillips (2009, 2012). In the determination of...
Table 4. Finite sample properties of the shrinkage estimates

<table>
<thead>
<tr>
<th>Model 1 with (r_o = 1, \lambda_o = (0.0 - 0.5)) and (n = 100)</th>
<th>Lasso estimates</th>
<th>OLS</th>
<th>Oracle estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bias</td>
<td>Std</td>
<td>RMSE</td>
</tr>
<tr>
<td>(\Pi_{11})</td>
<td>0.0032</td>
<td>0.0609</td>
<td>0.0610</td>
</tr>
<tr>
<td>(\Pi_{12})</td>
<td>-0.0023</td>
<td>0.0308</td>
<td>0.0308</td>
</tr>
<tr>
<td>(\Pi_{21})</td>
<td>0.0015</td>
<td>0.0617</td>
<td>0.0617</td>
</tr>
<tr>
<td>(\Pi_{22})</td>
<td>-0.0012</td>
<td>0.0308</td>
<td>0.0308</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model 1 with (r_o = 1, \lambda_o = (0.0 - 0.5)) and (n = 400)</th>
<th>Lasso estimates</th>
<th>OLS</th>
<th>Oracle estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bias</td>
<td>Std</td>
<td>RMSE</td>
</tr>
<tr>
<td>(Q_{11})</td>
<td>0.0022</td>
<td>0.0833</td>
<td>0.0833</td>
</tr>
<tr>
<td>(Q_{12})</td>
<td>-0.0003</td>
<td>0.0069</td>
<td>0.0069</td>
</tr>
<tr>
<td>(Q_{21})</td>
<td>0.0008</td>
<td>0.0778</td>
<td>0.0779</td>
</tr>
<tr>
<td>(Q_{22})</td>
<td>-0.0003</td>
<td>0.0052</td>
<td>0.0052</td>
</tr>
</tbody>
</table>

Note: Replications = 5000, \(\alpha = 2 \), adaptive tuning parameter \(\lambda_o \) given in equation (6.15). \(\lambda_o \) in each column represents the eigenvalues of \(\Pi_o \). The oracle estimate in this case is the RRR estimate with rank restriction \(r = 1 \).

LS shrinkage estimation performs well in selecting the true transient dynamic structure, the maximum lag in the transient dynamics, and the cointegrating rank.
TABLE 5. Finite sample properties of the shrinkage estimates

<table>
<thead>
<tr>
<th>Model 1 with $r_o = 2$, $\lambda_o = (0.6 - 0.5)$ and $n = 100$</th>
<th>Lasso estimates</th>
<th>OLS</th>
<th>Oracle estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bias</td>
<td>Std</td>
<td>RMSE</td>
</tr>
<tr>
<td>Π_{11}</td>
<td>-0.0228</td>
<td>0.0897</td>
<td>0.0926</td>
</tr>
<tr>
<td>Π_{12}</td>
<td>0.0384</td>
<td>0.0914</td>
<td>0.0992</td>
</tr>
<tr>
<td>Π_{21}</td>
<td>-0.0247</td>
<td>0.0995</td>
<td>0.1025</td>
</tr>
<tr>
<td>Π_{22}</td>
<td>0.0505</td>
<td>0.1459</td>
<td>0.1544</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model 1 with $r_o = 2$, $\lambda_o = (-0.6, -0.5)$ and $n = 400$</th>
<th>Lasso estimates</th>
<th>OLS</th>
<th>Oracle estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bias</td>
<td>Std</td>
<td>RMSE</td>
</tr>
<tr>
<td>Π_{11}</td>
<td>-0.0058</td>
<td>0.0524</td>
<td>0.0527</td>
</tr>
<tr>
<td>Π_{12}</td>
<td>0.0051</td>
<td>0.0545</td>
<td>0.0547</td>
</tr>
<tr>
<td>Π_{21}</td>
<td>-0.0049</td>
<td>0.0546</td>
<td>0.0548</td>
</tr>
<tr>
<td>Π_{22}</td>
<td>0.0075</td>
<td>0.0750</td>
<td>0.0754</td>
</tr>
</tbody>
</table>

Note: Replications = 5000, $\omega = 2$, adaptive tuning parameter λ_n given in equation (6.15). λ_o in each column represents the eigenvalues of Π_o. The oracle estimate in this case is simply the OLS estimate.

8. AN EMPIRICAL EXAMPLE

This section reports an empirical example to illustrate the application of these techniques to time series modeling of long-run and short-run behavior of aggregate income, consumption, and investment in the US economy. The sample used in the empirical study is quarterly data over the period 1947–2009 from the Federal Reserve Economic Data (FRED).

The sample data are shown in Figure 1. Evidently, the time series display long-term trend growth, which is especially clear in GNP and consumption, and some commonality in the growth mechanism over time. In particular, the series show evidence of some co-movement over the entire period. We therefore anticipate that modeling the series in terms of a VECM might reveal some nontrivial cointegrating relations. That is to say, we would expect cointegration rank r_o to satisfy $0 < r_o < 3$. These data were studied in Athanasopoulos et. al. (2011) who found on the same sample period and data that information criteria model selection produced a zero rank estimate for r_o and a single lag (ΔY_{t-1}) in the VECM.

Let $Y_t = (C_t, G_t, I_t)$, where C_t, G_t and I_t denote the logarithms of real consumption per capita, real GNP per capita and real investment per capita at period t respectively. For the same data as Athanasopoulos et. al. (2011) we applied our shrinkage methods to estimate the following system:

$$\Delta Y_t = \Pi Y_{t-1} + \sum_{k=1}^{3} B_k \Delta Y_{t-k} + u_t. \quad (8.1)$$
Table 6. Finite sample properties of the shrinkage estimates

<table>
<thead>
<tr>
<th></th>
<th>Lasso estimates</th>
<th>OLS</th>
<th>Oracle estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bias</td>
<td>Std</td>
<td>RMSE</td>
</tr>
<tr>
<td>(\Pi_{11})</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>(\Pi_{21})</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>(\Pi_{12})</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>(\Pi_{22})</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>(B_{11})</td>
<td>-0.0301</td>
<td>0.0493</td>
<td>0.0577</td>
</tr>
<tr>
<td>(B_{21})</td>
<td>-0.0006</td>
<td>0.0334</td>
<td>0.0334</td>
</tr>
<tr>
<td>(B_{12})</td>
<td>-0.0006</td>
<td>0.0428</td>
<td>0.0428</td>
</tr>
<tr>
<td>(B_{12})</td>
<td>-0.0304</td>
<td>0.0502</td>
<td>0.0587</td>
</tr>
<tr>
<td>(B_{21})</td>
<td>0.0000</td>
<td>0.0013</td>
<td>0.0013</td>
</tr>
<tr>
<td>(B_{21})</td>
<td>0.0000</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>(B_{22})</td>
<td>-0.0000</td>
<td>0.0004</td>
<td>0.0004</td>
</tr>
<tr>
<td>(B_{22})</td>
<td>0.0000</td>
<td>0.0009</td>
<td>0.0009</td>
</tr>
<tr>
<td>(B_{31})</td>
<td>-0.0315</td>
<td>0.0482</td>
<td>0.0576</td>
</tr>
<tr>
<td>(B_{31})</td>
<td>0.0005</td>
<td>0.0337</td>
<td>0.0337</td>
</tr>
<tr>
<td>(B_{32})</td>
<td>0.0009</td>
<td>0.0413</td>
<td>0.0413</td>
</tr>
<tr>
<td>(B_{32})</td>
<td>-0.0318</td>
<td>0.0486</td>
<td>0.0581</td>
</tr>
</tbody>
</table>

Note: Replications = 5000, \(\omega = 2 \), adaptive tuning parameter \(\lambda_n \) given in equations (6.15) and (6.16). \(\lambda_o \) in each column represents the eigenvalues of \(\Pi_o \). The oracle estimate in this case is simply the OLS estimate assuming that \(\Pi_o \) and \(B_{2o} \) are zero matrices.

Figure 1. US GNP, consumption and investment in logarithms and in 2005 dollars. Data source: Federal Reserve Economic Data (FRED) St. Louis Fed.
TABLE 7. Finite sample properties of the shrinkage estimates

<table>
<thead>
<tr>
<th></th>
<th>Lasso estimates</th>
<th>OLS</th>
<th>Oracle estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bias</td>
<td>Std</td>
<td>RMSE</td>
</tr>
<tr>
<td>Model 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pi1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pi11</td>
<td>−0.0012</td>
<td>0.0653</td>
<td>0.0653</td>
</tr>
<tr>
<td>Pi21</td>
<td>−0.0005</td>
<td>0.0564</td>
<td>0.0564</td>
</tr>
<tr>
<td>Pi12</td>
<td>−0.0006</td>
<td>0.0326</td>
<td>0.0326</td>
</tr>
<tr>
<td>Pi22</td>
<td>−0.0002</td>
<td>0.0282</td>
<td>0.0282</td>
</tr>
<tr>
<td>B1,11</td>
<td>−0.1086</td>
<td>0.0536</td>
<td>0.1211</td>
</tr>
<tr>
<td>B1,21</td>
<td>−0.0766</td>
<td>0.0432</td>
<td>0.0880</td>
</tr>
<tr>
<td>B1,12</td>
<td>−0.0351</td>
<td>0.0660</td>
<td>0.0747</td>
</tr>
<tr>
<td>B1,22</td>
<td>−0.0281</td>
<td>0.0643</td>
<td>0.0702</td>
</tr>
<tr>
<td>B2,11</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>B2,21</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>B2,12</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>B2,22</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>B3,11</td>
<td>−0.1206</td>
<td>0.0336</td>
<td>0.1252</td>
</tr>
<tr>
<td>B3,21</td>
<td>−0.0825</td>
<td>0.0295</td>
<td>0.0876</td>
</tr>
<tr>
<td>B3,12</td>
<td>−0.1010</td>
<td>0.0388</td>
<td>0.1082</td>
</tr>
<tr>
<td>B3,22</td>
<td>−0.0730</td>
<td>0.0460</td>
<td>0.0862</td>
</tr>
</tbody>
</table>

Note: Replications = 5000, ω2 = 2, adaptive tuning parameter λn given in equations (6.15) and (6.16). λo in each column represents the eigenvalues of Π1. The oracle estimate in this case refers to the RRR estimate with r = 1 and the restriction that B2o = 0.

Unrestricted LS estimation of this model produced eigenvalues 0.0025 and −0.0493±0.0119i, which indicates that Π might contain at least one zero eigenvalue as the positive eigenvalue estimates 0.0025 is close to zero. The LS estimates of the lag coefficients Bk are

\[
\hat{B}_{1,1st} = \begin{pmatrix} .14 & -.03 & .16 \\ .72 & -18 & .97 \\ .19 & .02 & .35 \end{pmatrix},
\hat{B}_{2,1st} = \begin{pmatrix} .33 & -.09 & .10 \\ .43 & -.06 & .23 \\ .16 & -.06 & .07 \end{pmatrix},
\hat{B}_{3,1st} = \begin{pmatrix} .31 & -.20 & .24 \\ .19 & -.11 & -.15 \\ .09 & -.03 & .06 \end{pmatrix}.
\]

From these estimates it is by no means clear which lagged differences should be ruled out from (8.1). From their magnitudes, it seems that ΔYt−1, ΔYt−2 and ΔYt−3 might all be included in the empirical model.

We applied LS shrinkage estimation to the model (8.1). Using the LS estimate, we constructed an adaptive penalty for GLS shrinkage estimation. We first tried GLS shrinkage estimation with tuning parameters

\[
\lambda_{r,k,n} = \frac{2\log(n)}{n} ||\phi_k(\hat{\Pi}_{1st})||^{-2}
\]

and

\[
\lambda_{b,j,n} = \frac{18\log(n)}{n} ||\hat{B}_{j,1st}||^{-2}
\]

From these estimates it is by no means clear which lagged differences should be ruled out from (8.1). From their magnitudes, it seems that ΔYt−1, ΔYt−2 and ΔYt−3 might all be included in the empirical model.
TABLE 8. Finite sample properties of the shrinkage estimates

<p>| Model 3 with (r_o = 2), (\lambda_o = (0.6 \ 0.5)) and (n = 400) |
|---------------------------------|---------------------------------|---------------------------------|
| (\Pi_{11}) | (\Pi_{21}) | (\Pi_{12}) | (\Pi_{22}) |</p>
<table>
<thead>
<tr>
<th>Lasso estimates</th>
<th>OLS</th>
<th>Oracle estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bias</td>
<td>Std</td>
<td>RMSE</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0.0489</td>
<td>0.0521</td>
<td>0.0715</td>
</tr>
<tr>
<td>0.0140</td>
<td>0.0488</td>
<td>0.0508</td>
</tr>
<tr>
<td>-0.0214</td>
<td>0.0432</td>
<td>0.0482</td>
</tr>
<tr>
<td>0.0124</td>
<td>0.0531</td>
<td>0.0545</td>
</tr>
<tr>
<td>(B_{1,11})</td>
<td>(B_{1,21})</td>
<td>(B_{1,12})</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Bias</td>
<td>Std</td>
<td>RMSE</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>-0.0852</td>
<td>0.0528</td>
<td>0.1003</td>
</tr>
<tr>
<td>-0.0089</td>
<td>0.0436</td>
<td>0.0445</td>
</tr>
<tr>
<td>0.0093</td>
<td>0.0426</td>
<td>0.0437</td>
</tr>
<tr>
<td>-0.0480</td>
<td>0.0490</td>
<td>0.0686</td>
</tr>
<tr>
<td>(B_{2,11})</td>
<td>(B_{2,21})</td>
<td>(B_{2,12})</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Bias</td>
<td>Std</td>
<td>RMSE</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>(B_{3,11})</td>
<td>(B_{3,21})</td>
<td>(B_{3,12})</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Bias</td>
<td>Std</td>
<td>RMSE</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>-0.0728</td>
<td>0.0484</td>
<td>0.0875</td>
</tr>
<tr>
<td>-0.0011</td>
<td>0.0367</td>
<td>0.0367</td>
</tr>
<tr>
<td>-0.0014</td>
<td>0.0439</td>
<td>0.0439</td>
</tr>
<tr>
<td>-0.0565</td>
<td>0.0524</td>
<td>0.0770</td>
</tr>
</tbody>
</table>

Note: Replications = 5000, \(\omega = 2 \), adaptive tuning parameter \(\lambda_n \) given in equation (6.15) and (6.16). \(\lambda_o \) in each column represents the eigenvalues of \(\Pi_o \). The oracle estimate in this case is simply the OLS estimate with the restriction that \(B_{2,o} = 0 \).

for \(k, j = 1, 2, 3 \). The eigenvalues of the GLS shrinkage estimate of \(\Pi \) are \(0.0000394, -0.0001912, \) and \(0 \), which implies that \(\Pi \) contains one zero eigenvalue. There are two nonzero eigenvalue estimates which are both close to zero. The effect of the adaptive penalty on these two estimates is substantial because of the small magnitudes of the eigenvalues of the original LS estimate of \(\Pi \). As a result, the shrinkage bias in the two nonzero eigenvalue estimates is likely to be large. The GLS shrinkage estimates of \(B_2 \) and \(B_3 \) are zero, while the GLS shrinkage estimate of \(B_1 \) is

\[
\hat{B}_1 = \begin{pmatrix}
.0687 & .1076 & .0513 \\
.4598 & .1212 & .4053 \\
.0986 & .1123 & .2322
\end{pmatrix}
\]

Using the results from the above GLS shrinkage estimation, we construct the adaptive loading parameters in (6.8) and (6.9). Using the adaptive tuning parameters in (6.10) and (6.11), we perform a further GLS shrinkage estimation of the empirical model (8.1). The eigenvalues of the new GLS shrinkage estimate of \(\Pi \) are \(-0.0226 \pm 0.0158i \) and \(0 \), which again imply that \(\Pi \) contains one zero eigenvalue. Of course, the new nonzero eigenvalue estimates also contains nontrivial
shrinkage bias. The new GLS shrinkage estimates of B_2 and B_3 are zero, but the estimate of B_1 becomes

$$\hat{B}_1 = \begin{pmatrix} .0681 & .1100 & .0115 \\ .4288 & .1472 & .4164 \\ .1054 & .1136 & .1919 \end{pmatrix}.$$

Finally, we run a post-Lasso RRR estimation based on the cointegration rank and lagged difference selected in the above GLS shrinkage estimation. The RRR estimates are the following

$$\Delta Y_t = \begin{pmatrix} .026 & -.022 \\ .082 & -.026 \\ -.012 & .013 \end{pmatrix} \begin{pmatrix} .822 & -.555 & -.128 \\ -.265 & .378 & -.887 \end{pmatrix} Y_{t-1}$$

$$+ \begin{pmatrix} .127 & .028 & .312 \\ .598 & -.088 & 1.098 \\ .161 & .055 & .364 \end{pmatrix} \Delta Y_{t-1} + \tilde{u}_t,$$

where the eigenvalues of the RRR estimate of Π are -0.0262, -0.0039, and 0. To sum up, this empirical implementation of our approach estimates cointegrating rank r_o to be 2 and selects one lagged difference in the VECM (8.1). These results corroborate the manifestation of co-movement in the three time series G_t, C_t, and I_t through the presence of two cointegrating vectors in the fitted model, whereas traditional information criteria fail to find any co-movement in the data and set cointegrating rank to be zero.

9. CONCLUSION

One of the main challenges in any applied econometric work is the selection of a good model for practical implementation. The conduct of inference and model use in forecasting and policy analysis are inevitably conditioned on the empirical process of model selection, which typically leads to issues of post-model selection inference. Adaptive Lasso and bridge estimation methods provide a methodology where these difficulties may be partly attenuated by simultaneous model selection and estimation to facilitate empirical research in complex models like reduced rank regressions where many selection decisions need to be made to construct a satisfactory empirical model. On the other hand, as indicated in the Introduction, the methods certainly do not eliminate post-shrinkage selection inference issues in finite samples because the estimators carry the effects of the in-built selections.

This paper shows how to use the methodology of shrinkage in a multivariate system to develop an automated approach to cointegrated system modeling that enables simultaneous estimation of the cointegrating rank and autoregressive order in conjunction with oracle-like efficient estimation of the cointegrating matrix and the transient dynamics. As such the methods offer practical advantages to the empirical researcher by avoiding sequential techniques where cointegrating rank and transient dynamics are estimated prior to model fitting.
As indicated in the Introduction, sequential methods can encounter obstacles to consistent order estimation even when test size is driven to zero as the sample size $n \to \infty$. For instance, in the model (7.3) considered earlier

$$\Delta Y_t = \Pi_o Y_{t-1} + B_{o,1} \Delta Y_{t-1} + B_{o,2} \Delta Y_{t-2} + B_{o,3} \Delta Y_{t-3} + u_t,$$

where $\|B_{o,2}\| = 0$, $\|B_{o,1}\| \neq 0$, and $\|B_{o,3}\| \neq 0$. It is clear that in this model both upward and downward sequential testing procedures either include the second lag difference or exclude it together with the third lag difference. As a result, the true model is never correctly selected by such standard algorithms - much more intensive searches are required. In the more general model

$$\Delta Y_t = \Pi_o Y_{t-1} + \sum_{j=1}^{p} B_{o,j} \Delta Y_{t-j} + u_t,$$

where p is large but fixed, the model selection limitations of standard sequential testing are inevitably worse, although these may be mitigated by orthonormalization, parsimonious encompassing, and other automated devices (Hendry and Krolzig, 2005; Hendry and Johansen, 2015). The methods of the present paper do not require any specific order or format of the lag differences to ensure consistent model selection. As a result, the approach is invariant to permutations of the order of the lag differences. Moreover, the method is easier to implement in empirical work, requires no intensive cross lag search procedures, is automated with data-based tuning parameter selection, and is computationally straightforward.

Various extensions of the methods developed here seem desirable. One rather obvious (and simple) extension is to allow for parametric restrictions on the cointegrating matrix which may relate to theory-induced specifications. Lasso type procedures have so far been confined to parametric models, whereas cointegrated systems are often formulated with some nonparametric elements relating to unknown features of the model. A second extension of the present methodology, therefore, is to semiparametric formulations in which the error process in the VECM is weakly dependent, which is partly considered already in Section 4. Third, it will be interesting and useful, given the growing availability of large dimensional data sets in macroeconomics and finance, to extend the results of the paper to high dimensional VEC systems where the dimension m of the matrix Π_o and the length p of the lag order are large. The effects of post-shrinkage inference issues also merit detailed investigation. These matters and other generalizations of the framework will be explored in future work.

NOTES

1. Note that when $m-r_o > 1$, the normalizations $a_{o,\perp}^t a_{o,\perp} = I_{m-r_o}$ and $\beta_{o,\perp}^t \beta_{o,\perp} = I_{m-r_o}$ are not sufficient to ensure the uniqueness of $a_{o,\perp}$ and $\beta_{o,\perp}$. In the paper, we only need the existence of normalized $a_{o,\perp}$ and $\beta_{o,\perp}$ such that $a_{o,\perp}^t a_{o,\perp} = 0$ and $\beta_{o,\perp}^t \beta_{o,\perp} = 0$.

2. The tranform of the matrix Π is important for rank selection because, by virtue of the consistency of the first step estimator $\hat{\Pi}_{1st}$, $Q_n \Pi_o$ has (and only has) $m-r_o$ rows which are asymptotically
nonzero. Note that the fact that a matrix Π does not have full rank does not necessarily mean that any element in Π should be zero. Hence penalized LS regression in (2.4) with a group Lasso penalty on Π does not deliver any implication for rank selection in general case.

3. The new penalty is defined as a function on $R^{m \times m}$, i.e. on the square matrix Π. While this formulation is relevant in the present setting, it is clear that the approach can be trivially extended to the general case with any matrix.

4. As indicated, the idea in Yuan et al. (2007) is related to the original approach pursued in an earlier version (2010) of the present paper. In that version, we showed that when adding the L-1 penalty on the eigenvalues to the LS criterion, the $m - r_o$ smallest eigenvalues of the penalized LS estimate of the cointegration matrix Π_o have convergence rate faster than n^{-1}. This result has implications for efficient estimation of the VECM when the true model is nested. But it does not necessarily imply model selection because selection requires that zero eigenvalues be estimated as zeros with positive probability. That is a challenging problem due to the highly nonlinear relation between Π_o and its eigenvalues. The approach pursued in the present paper is far simpler, enhancing implementation and leading directly to the required asymptotic result.

5. The adaptive penalization means that the penalization on the estimators of zero components (e.g., zero matrices B_o, j) is large, while the penalization on the estimators of nonzero components (e.g., nonzero matrices B_o, j) is small.

6. Throughout this chapter, for any $m \times m$ matrix Π, we order the eigenvalues of Π in decreasing order by their modulus, i.e. $\|\phi_1 (\Pi)\| \geq \|\phi_2 (\Pi)\| \geq \ldots \geq \|\phi_m (\Pi)\|$. When there is a pair of complex conjugate eigenvalues, we order the one with a positive imaginary part before the other.

7. The eigenvectors in Q_1 are ordered according to the magnitudes of the eigenvalues, i.e. the ordering of the eigenvalues of Π_1.

8. The same intuition applies to the scenario where Assumption LP holds.

9. The proof of Lemma 6.2 is in the supplemental appendix of this paper.

10. Joint determination of the lagged differences and cointegration rank can also be performed using information criteria like AIC and BIC, as suggested in Phillips and McFarland (1997) and Chao and Phillips (1999). As discussed below, the supplemental appendix provides simulation comparisons between information criteria and LS shrinkage estimation.

11. We thank George Athanasopoulos for providing the data.

12. The system (8.1) was fitted with and without an intercept. The findings were very similar and in both cases cointegrating rank was found to be 2. Results are reported here for the fitted intercept case. Of course, Lasso methods can also be applied to determine whether an intercept should appear in each equation or in any long-run relation that might be found. That extension of Lasso is not considered in the present paper. It is likely to be important in forecasting.

REFERENCES

APPENDIX

We start with some standard preliminary results and then prove the main results in each of the sections of the paper in turn, together with various lemmas that are useful in those derivations. Additional technical results are provided in the Supplemental Appendix.

A.1. Some Auxiliary Results

Denote

\[S_{12} = \sum_{t=1}^{n} \frac{Z_{1,t-1}Z'_{2,t-1}}{n}, \quad S_{21} = \sum_{t=1}^{n} \frac{Z_{2,t-1}Z'_{1,t-1}}{n}. \]
The following lemma is standard and useful.

Lemma A.1. Under Assumptions 3.1 and 3.2, we have

(a) $\hat{S}_{11} \rightarrow_{p} \Sigma z_1 z_1$;
(b) $\hat{S}_{21} \rightarrow_{d} - \int B w_2 dB^t w_2 (\alpha o'_o \beta o_o)^{-1} + \Gamma w z_1$;
(c) $n^{-1} \hat{S}_{22} \rightarrow_{d} \int B w_2 B^t w_2$;
(d) $n^{-1} \sum_{t=1}^{n} u_t Z_{1,t-1}^t \rightarrow_{d} N (0, \Omega u \otimes \Sigma z_1 z_1)$;
(e) $n^{-1} \sum_{t=1}^{n} u_t Z_{2,t-1}^t \rightarrow_{d} \left(\int B w_2 dB^t u \right)$.

The quantities in (b), (c), (d), and (e) converge jointly.

A.2. Proofs of Main Results in Section 3

The unrestricted LS estimator $\hat{\Pi}_{1st}$ of Π_o is

$$\hat{\Pi}_{1st} = \arg\min_{\Pi \in \mathbb{R}^{m \times m}} \sum_{t=1}^{n} \| \Delta Y_t - \Pi Y_{t-1} \|^2$$

$$= \left(\sum_{t=1}^{n} \Delta Y_t Y_{t-1}^t \right) \left(\sum_{t=1}^{n} Y_{t-1} Y_{t-1}^t \right)^{-1}.$$ \hspace{1cm} (A.1)

The asymptotic properties of $\hat{\Pi}_{1st}$ and its eigenvalues are described in the following result.

Lemma A.2. Under Assumptions 3.1 and 3.2, we have:

(a) recall $D_n = \text{diag} \left(n^{-\frac{1}{2}} I_{r_o}, n^{-1} I_{m-r_o} \right)$, then $\hat{\Pi}_{1st}$ satisfies

$$\left(\hat{\Pi}_{1st} - \Pi_o \right) Q^{-1} D_n^{-1} \rightarrow_{d} \left(B_{m,1}, B_{m,2} \right),$$ \hspace{1cm} (A.2)

where $B_{m,1}$ and $B_{m,2}$ are defined in Theorem 3.5;

(b) the eigenvalues of $\hat{\Pi}_{1st}$ satisfy $\phi_k (\hat{\Pi}_{1st}) \rightarrow_{p} \phi_k (\Pi_o)$ for $k = 1, \ldots, m$;

(c) the last $m-r_o$ eigenvalues of $\hat{\Pi}_{1st}$ satisfy

$$n \left(\phi_1 (\hat{\Pi}_{1st}), \ldots, \phi_{m-r_o} (\hat{\Pi}_{1st}) \right) \rightarrow_{d} (\bar{\phi}_o, 1, \ldots, \bar{\phi}_{o,m-r_o}),$$ \hspace{1cm} (A.3)

where the $\bar{\phi}_{o,j}$ $(j = 1, \ldots, m-r_o)$ are solutions of the following determinantal equation

$$\left| \mu I_{m-r_o} - \left(\int B w_2 B^t w_2 \right) \left(\int B w_2 B^t w_2 \right)^{-1} \right| = 0.$$ \hspace{1cm} (A.4)
The proof of Lemma A.2 is in the supplemental appendix of this paper. Lemma A.2 is useful because the OLS estimate $\hat{\Pi}_{1st}$ and the related eigenvalue estimates can be used to construct adaptive penalty in the tuning parameters. The convergence rates of $\hat{\Pi}_{1st}$ and $\phi_k(\hat{\Pi}_{1st})$ are important for delivering consistent model selection and cointegrated rank selection.

Let P_n be the inverse of Q_n. We subdivide the matrices P_n and Q_n as $P_n = [P_{a,n}, P_{a \perp,n}]$ and $Q_n = [Q_{a,n}, Q'_{a,\perp,n}]$, where $Q_{a,n}$ and $P_{a,n}$ are the first r_o rows of Q_n and first r_o columns of P_n respectively ($Q_{a,\perp,n}$ and $P_{a,\perp,n}$ are defined accordingly). By definition,

$$Q_{a,\perp,n} P_{a,\perp,n} = I_{m-r_o}, \quad Q_{a,n} P_{a,\perp,n} = 0_{r_o \times (m-r_o)}$$

and more importantly

$$Q_{a,\perp,n} \hat{\Pi}_{1st} = \Lambda_{a,\perp,n} Q_{a,\perp,n},$$ \hspace{1cm} (A.5)

where $\Lambda_{a,\perp,n}$ is an diagonal matrix with the ordered last (smallest) $m-r_o$ eigenvalues of $\hat{\Pi}_{1st}$. Using the results in (A.5), we can define a useful estimator of Π_o as

$$\Pi_{n,f} = \hat{\Pi}_{1st} - P_{a,\perp,n} \Lambda_{a,\perp,n} Q_{a,\perp,n}.$$ \hspace{1cm} (A.6)

The estimator $\Pi_{n,f}$ is infeasible because r_o is unknown. $\Pi_{n,f}$ may be interpreted as a modification to the unrestricted estimate $\hat{\Pi}_{1st}$ which removes components in the eigen-representation of the unrestricted estimate that correspond to the smallest $m-r_o$ eigenvalues.

By definition

$$Q_{a,n} \Pi_{n,f} = Q_{a,n} \hat{\Pi}_{1st} - Q_{a,n} P_{a,\perp,n} \Lambda_{a,\perp,n} Q_{a,\perp,n} = \Lambda_{a,n} Q_{a,n},$$ \hspace{1cm} (A.7)

where $\Lambda_{a,n}$ is an diagonal matrix with the ordered first (largest) r_o eigenvalues of $\hat{\Pi}_{1st}$, and more importantly

$$Q_{a,\perp,n} \Pi_{n,f} = Q_{a,\perp,n} \hat{\Pi}_{1st} - Q_{a,\perp,n} P_{a,\perp,n} \Lambda_{a,\perp,n} Q_{a,\perp,n} = 0_{(m-r_o) \times m}.$$ \hspace{1cm} (A.8)

From Lemma A.2.(b), (A.7), and (A.8), we can deduce that $Q_{a,n} \Pi_{n,f}$ is a $r_o \times m$ matrix which is nonzero w.p.a.1 and $Q_{a,\perp,n} \Pi_{n,f}$ is always a $(m-r_o) \times m$ zero matrix for all n. Moreover

$$\Pi_{n,f} - \Pi_o = (\hat{\Pi}_{1st} - \Pi_o) - P_{a,\perp,n} \Lambda_{a,\perp,n} Q_{a,\perp,n}$$

and so under Lemmas A.2.(a) and (c),

$$\left(\Pi_{n,f} - \Pi_o\right) Q^{-1} D_n^{-1} = O_p(1).$$ \hspace{1cm} (A.9)

Thus, the estimator $\Pi_{n,f}$ is at least as good as the OLS estimator $\hat{\Pi}_{1st}$ in terms of its rate of convergence. Using (A.9) we can compare the LS shrinkage estimator $\hat{\Pi}_n$ with $\Pi_{n,f}$ to establish the consistency and convergence rate of $\hat{\Pi}_n$.

Proof of Theorem 3.1. Define

$$V_n(\Pi) = \sum_{t=1}^n \| \Delta Y_t - \Pi Y_{t-1} \|^2 + n \sum_{k=1}^m \lambda r, k, n \| \Phi_{n,k}(\Pi) \|.$$
We can write
\[
\sum_{t=1}^{n} \| \Delta Y_t - \Pi Y_{t-1} \|^2 = \left[\Delta y - \left(Y'_t \otimes I_m \right) \text{vec}(\Pi) \right] \left[\Delta y - \left(Y'_t \otimes I_m \right) \text{vec}(\Pi) \right]^\prime,
\]
where \(\Delta y = \text{vec}(\Delta Y), \Delta Y = (\Delta Y_1, \ldots, \Delta Y_n)_{m \times n} \) and \(Y_{-1} = (Y_0, \ldots, Y_{T-1})_{m \times n} \).

By definition, \(V_n(\hat{\Pi}_n) \leq V_n(\Pi_{n,f}) \) and thus
\[
\text{vec} \left(\Pi_{n,f} - \hat{\Pi}_n \right) \left(\sum_{t=1}^{n} Y'_{t-1} Y_{t-1} \otimes I_m \right) \text{vec} \left(\Pi_{n,f} - \hat{\Pi}_n \right) + 2 \text{vec} \left(\Pi_{n,f} - \hat{\Pi}_n \right)^\prime \text{vec} \left(\sum_{t=1}^{n} Y_{t-1} u'_t \right) \leq n \sum_{k=1}^{m} \lambda_{r,k,n} \left(\| \Phi_{n,k} (\Pi_{n,f}) \| - \| \Phi_{n,k} (\hat{\Pi}_n) \| \right).
\]
\[\text{A.10}\]

When \(r_o = 0 \), \(\Delta Y_t \) is stationary and \(Y_t \) is full rank \(I(1) \), so that
\[
\sum_{t=1}^{n} Y'_{t-1} Y_{t-1} \overset{d}{\rightarrow} \int_0^1 B_0(a) B'_0(a) da \text{ and } \sum_{t=1}^{n} Y_{t-1} u'_t = O_p \left(n^{-1} \right).
\]
\[\text{A.11}\]

From the results in (A.10) and (A.11), we get
\[
\mu_{n,\text{min}} \| \hat{\Pi}_n - \Pi_{n,f} \|^2 - 2(c_{1,n} + c_{2,n}) \| \hat{\Pi}_n - \Pi_{n,f} \| - d_n \leq 0,
\]
where \(\mu_{n,\text{min}} \) denotes the smallest eigenvalue of \(n^{-2} \sum_{t=1}^{n} Y'_{t-1} Y_{t-1} \), which is positive w.p.a.1,
\[
c_{1,n} = \| n^{-2} \sum_{t=1}^{n} Y_{t-1} u'_t \|, \\
c_{2,n} = \lambda \left(n^{-2} \sum_{t=1}^{n} Y_{t-1} Y'_{t-1} \right) \| \Pi_{n,f} - \Pi_o \|, \text{ and } \\
d_n = n^{-1} \sum_{k=1}^{m} \lambda_{r,k,n} \| \Phi_{n,k} (\Pi_{n,f}) \|.
\]
\[\text{A.13}\]

Under (A.9) and (A.11), \(c_{1,n} = o_p(1) \) and \(c_{2,n} = o_p(1) \). Under (A.7), (A.8), and \(\lambda_{r,k,n} = o_p(1) \) for all \(k \in S_{\phi} \),
\[
d_n = n^{-1} \sum_{k=1}^{r_o} \lambda_{r,k,n} \| \Phi_{n,k} (\Pi_{n,f}) \| = o_p \left(n^{-1} \right).
\]
\[\text{A.14}\]

From (A.12), (A.13), and (A.14), it is straightforward to deduce that \(\| \hat{\Pi}_n - \Pi_{n,f} \| = o_p(1) \). The consistency of \(\hat{\Pi}_n \) follows from the triangle inequality and the consistency of \(\Pi_{n,f} \).
When \(r_o = m \), \(Y_t \) is stationary and we have

\[
n^{-1} \sum_{t=1}^{n} Y_{t-1} Y'_{t-1} \rightarrow_d \Sigma_{yy} = R(1) \Omega_{\theta} R(1)' \text{ and}
\]

\[
n^{-1} \sum_{t=1}^{n} Y_{t-1} u'_t = O_p \left(n^{-\frac{1}{2}} \right). \tag{A.15}
\]

From the results in (A.10) and (A.15), we get

\[
\mu_{n,\min} \| (\hat{\Pi}_n - \Pi_{n,f}) \|^2 - 2n(c_1,n + c_2,n) \| (\hat{\Pi}_n - \Pi_{n,f}) \| - nd_n \leq 0, \tag{A.16}
\]

where \(\mu_{n,\min} \) denotes the smallest eigenvalue of \(n^{-1} \sum_{t=1}^{n} Y_{t-1} Y'_{t-1} \), which is positive w.p.a.1, \(c_1,n \), \(c_2,n \), and \(d_n \) are defined in (A.14). It is clear that \(nc_{1,n} = o_p(1) \) and \(nc_{2,n} = o_p(1) \) under (A.15) and (A.9), and \(nd_n = o_p(1) \) under (A.14). So, consistency of \(\hat{\Pi}_n \) follows directly from the inequality in (A.16), triangle inequality and the consistency of \(\Pi_{n,f} \).

Denote \(B_n = (D_n Q)^{-1} \), then when \(0 < r_o < m \), we can use the results in Lemma A.1 to deduce that

\[
\sum_{t=1}^{n} Y_{t-1} Y'_{t-1} = Q^{-1} D_n^{-1} D_n \sum_{t=1}^{n} Z_{t-1} Z'_{t-1} D_n D_n^{-1} Q^{-1}
\]

\[
= B_n \left[\begin{pmatrix} \Sigma_{z_1 z_1} & 0 \\ 0 & \int B_{w^2} B'_{w^2} \end{pmatrix} + o_p(1) \right] B_n',
\]

and thus

\[
\text{vec} (\Pi_{n,f} - \hat{\Pi}_n)' \begin{pmatrix} \sum_{t=1}^{n} Y_{t-1} Y'_{t-1} \otimes I_m \end{pmatrix} \text{vec} (\Pi_{n,f} - \hat{\Pi}_n) \leq \| (\hat{\Pi}_n - \Pi_{n,f}) B_n \| e_{1,n},
\]

\[
\text{vec} (\Pi_{n,f} - \hat{\Pi}_n)' \begin{pmatrix} \sum_{t=1}^{n} Y_{t-1} Y'_{t-1} \otimes I_m \end{pmatrix} \text{vec} (\Pi_{n,f} - \hat{\Pi}_n) \leq \| (\hat{\Pi}_n - \Pi_{n,f}) B_n \| e_{2,n},
\]

where

\[
\epsilon_{1,n} = \| D_n \sum_{t=1}^{n} Z_{t-1} u'_t \| \text{ and}
\]

\[
\epsilon_{2,n} = m \| D_n \sum_{t=1}^{n} Z_{t-1} Z'_{t-1} D_n \| \times \| (\Pi_{n,f} - \Pi_{o}) B_n \|.
\]

\[
(A.17)
\]

\[
(A.18)
\]

\[
(A.19)
\]

\[
(A.20)
\]
Under Lemma A.1 and (A.9), \(e_{1,n} = O_p(1) \) and \(e_{2,n} = O_p(1) \). From (A.10), (A.17), (A.18), (A.19), we have the inequality
\[
\mu_{n,\text{min}} \| (\widehat{\Pi}_n - \Pi_{n,f}) B_n \|^2 - 2 \left(e_{1,n} + e_{2,n} \right) \| (\widehat{\Pi}_n - \Pi_{n,f}) B_n \| - nd_n \leq 0, \tag{A.21}
\]
which implies
\[
(\widehat{\Pi}_n - \Pi_{n,f}) B_n = O_p \left(1 + \sqrt{nd_n} \right). \tag{A.22}
\]
By the definition of \(B_n \), (A.9) and (A.22), we deduce that
\[
\widehat{\Pi}_n - \Pi_o = O_p \left(n^{-\frac{1}{2}} + d_n^\frac{1}{2} \right) = o_p(1),
\]
which implies the consistency of \(\widehat{\Pi}_n \).

Proof of Theorem 3.2. By the triangle inequality and (A.8), we have
\[
\sum_{k=1}^{m} \lambda_{r,k,n} \left[\| \Phi_{n,k}(\Pi_{n,f}) \| - \| \Phi_{n,k}(\widehat{\Pi}_n) \| \right]
\leq \sum_{k=1}^{r_o} \lambda_{r,k,n} \left[\| \Phi_{n,k}(\Pi_{n,f}) \| - \| \Phi_{n,k}(\widehat{\Pi}_n) \| \right]
\leq r_o \max_{k \in \mathcal{S}_o \lambda_{r,k,n} \| \widehat{\Pi}_n - \Pi_{n,f} \| \}. \tag{A.23}
\]
Using (A.23) and invoking the inequality in (A.10) we get
\[
\text{vec} \left(\Pi_{n,f} - \widehat{\Pi}_n \right)' \left(\sum_{t=1}^{n} Y_{t-1} Y_{t-1}' \otimes I_m \right) \text{vec} \left(\Pi_{n,f} - \widehat{\Pi}_n \right)
+ 2\text{vec} \left(\Pi_{n,f} - \widehat{\Pi}_n \right)' \text{vec} \left(\sum_{t=1}^{n} Y_{t-1} u_t' \right)
+ 2\text{vec} \left(\Pi_{n,f} - \widehat{\Pi}_n \right)' \left(\sum_{t=1}^{n} Y_{t-1} Y_{t-1}' \otimes I_m \right) \text{vec} \left(\Pi_o - \Pi_{n,f} \right)
\leq nr_o \sigma_{r,n} \| \widehat{\Pi}_n - \Pi_{n,f} \| \}. \tag{A.24}
\]
When \(r_o = 0 \), we use (A.13) and (A.24) to obtain
\[
\mu_{n,\text{min}} \| (\widehat{\Pi}_n - \Pi_{n,f}) \|^2 - 2 \left(c_{1,n} + c_{2,n} + n^{-1} r_o \sigma_{r,n} \right) \| \widehat{\Pi}_n - \Pi_{n,f} \| \leq 0, \tag{A.25}
\]
where under (A.11) \(c_{1,n} = O_p(n^{-1}) \) and \(c_{2,n} = O_p(n^{-1}) \). We deduce from the inequality (A.25) and (A.9) that
\[
\widehat{\Pi}_n - \Pi_o = O_p(n^{-1} + n^{-1} \delta_{r,n}). \tag{A.26}
\]
When \(r_o = m \), we use (A.24) to obtain
\[
\mu_{n,\text{min}} \| (\widehat{\Pi}_n - \Pi_{n,f}) \|^2 - 2n \left(c_{1,n} + c_{2,n} + n^{-1} r_o \sigma_{r,n} \right) \| \widehat{\Pi}_n - \Pi_{n,f} \| \leq 0, \tag{A.27}
\]
where \(nc_{1,n} = \frac{1}{n} \sum_{t=1}^{n} Y_{t-1} u_t'\) is \(O_p\left(n^{-\frac{1}{2}}\right)\) and \(nc_{2,n} = O_p\left(n^{-\frac{1}{2}}\right)\) by Lemma A.1 and (A.9). The inequality (A.27) and (A.9) lead to

\[
\hat{\Pi}_n - \Pi_o = O_p\left(n^{-\frac{1}{2}} + \delta_{r,n}\right). \tag{A.28}
\]

When \(0 < r_o < m\), we can use the results in (A.17), (A.18), (A.19), (A.20), and (A.24) to deduce that

\[
\mu_{n,\min} \| (\Pi_{n,f} - \hat{\Pi}_n) B_n \|^2 - 2(e_{1,n} + e_{2,n}) \| (\Pi_{n,f} - \hat{\Pi}_n) B_n \| \leq r_o n \delta_{r,n} \| \Pi_{n,f} - \hat{\Pi}_n \|, \tag{A.29}
\]

where \(e_{1,n} = \| D_n Q \sum_{t=1}^{n} Y_{t-1} u_t' \| = O_p(1)\) and \(e_{2,n} = O_p(1)\) by Lemma A.1 and (A.9). By the definition of \(B_n\),

\[
\| (\Pi_{n,f} - \hat{\Pi}_n) B_n B_n^{-1} \| \leq cn^{-\frac{1}{2}} \| (\Pi_{n,f} - \hat{\Pi}_n) B_n \|, \tag{A.30}
\]

where \(c\) is some finite positive constant. Using (A.29), (A.30) and (A.9), we get

\[
(\hat{\Pi}_n - \Pi_o) B_n = O_p\left(1 + n^{\frac{1}{2}} \delta_{r,n}\right), \tag{A.31}
\]

which finishes the proof.

Proof of Theorem 3.3. To facilitate the proof, we rewrite the LS shrinkage estimation problem as

\[
\hat{T}_n = \arg \min_{T \in \mathbb{R}^{m \times m}} \sum_{t=1}^{n} \| \Delta Y_t - P_n T Y_{t-1} \|^2 + n \sum_{k=1}^{m} \lambda_{r,k,n} \| \Phi_{n,k}(P_n T) \|. \tag{A.32}
\]

By definition, \(\Pi_n = P_n \hat{T}_n\) and \(\hat{T}_n = Q_n \hat{\Pi}_n\) for all \(n\). Under (3.6) and (3.7),

\[
\hat{T}_n = \left(\frac{Q_{a,n} \hat{\Pi}_n}{Q_{a,n} \hat{\Pi}_n} \right) = \left(\frac{Q_{a,n} \hat{\Pi}_{1st}}{Q_{a,n} \hat{\Pi}_{1st}} \right) + o_p(1). \tag{A.33}
\]

Results in (3.8) follows if we can show that the last \(m - r_o\) rows of \(\hat{T}_n\) are estimated as zeros w.p.a.1.

By definition, \(\Phi_{n,k}(P_n T) = Q_n(k) P_n T = T(k)\) and the problem in (A.32) can be rewritten as

\[
\hat{T}_n = \arg \min_{T \in \mathbb{R}^{m \times m}} \sum_{t=1}^{n} \| \Delta Y_t - P_n T Y_{t-1} \|^2 + n \sum_{k=1}^{m} \lambda_{r,k,n} \| T(k) \|, \tag{A.34}
\]

which has the following Karush-Kuhn-Tucker (KKT) optimality conditions

\[
\begin{aligned}
&\frac{1}{n} \sum_{t=1}^{n} \left(\Delta Y_t - P_n \hat{T}_n Y_{t-1} \right)' P_n(k) Y_{t-1}' = \frac{\lambda_{r,k,n}}{2} \hat{T}_n(k) \quad \text{if } \hat{T}_n(k) \neq 0, \\
&\frac{1}{n} \sum_{t=1}^{n} \left(\Delta Y_t - P_n \hat{T}_n Y_{t-1} \right)' P_n(k) Y_{t-1}' \leq \frac{\lambda_{r,k,n}}{2} \quad \text{if } \hat{T}_n(k) = 0,
\end{aligned} \tag{A.35}
\]

for \(k = 1, \ldots, m\). Conditional on the event \(\{Q_n(k_o) \hat{\Pi}_n \neq 0\}\) for some \(k_o\) satisfying \(r_o < k_o \leq m\), we obtain the following equation from the KKT optimality conditions

\[
\frac{1}{n} \sum_{t=1}^{n} \left(\Delta Y_t - P_n \hat{T}_n Y_{t-1} \right)' P_n(k_o) Y_{t-1}' = \frac{\lambda_{r,k_o,n}}{2}. \tag{A.36}
\]
The sample average in the left hand side of (A.36) can be rewritten as

\[
\frac{1}{n} \sum_{t=1}^{n} (\Delta Y_t - \hat{P}_n \hat{Y}_t - 1) \text{'} P_n(k_o) Y_{t-1} \text{'} \\
= \frac{1}{n} \sum_{t=1}^{n} [u_t - (\hat{\Pi}_n - \Pi_o) Y_{t-1}] \text{'} P_n(k_o) Y_{t-1} \text{'} \\
= \frac{P_n'(k_o) \sum_{t=1}^{n} u_t Y_{t-1}'}{n} - \frac{P_n'(k_o) (\hat{\Pi}_n - \Pi_o) \sum_{t=1}^{n} Y_{t-1} \text{'} Y_{t-1}'}{n}.
\]

(A.37)

Under Lemmas A.2 and A.1 and Theorem 3.2

\[
\frac{P_n'(k_o) \sum_{t=1}^{n} u_t Y_{t-1}'}{n} = O_P(1)
\]

(A.38)

and

\[
P_n'(k_o) (\hat{\Pi}_n - \Pi_o) \sum_{t=1}^{n} Y_{t-1} \text{'} Y_{t-1}'
\]

\[
= P_n'(k_o) (\hat{\Pi}_n - \Pi_o) Q^{-1} D_n^{-1} \frac{D_n \sum_{t=1}^{n} Z_{t-1} Z_{t-1}'}{n} Q^{-1} = O_P(1).
\]

(A.39)

Using the results in (A.37), (A.38), and (A.39), we deduce that

\[
\left\| \frac{1}{n} \sum_{t=1}^{n} (\Delta Y_t - \hat{P}_n \hat{Y}_t - 1) \text{'} P_n(k_o) Y_{t-1} \text{'} \right\| = O_P(1).
\]

(A.40)

By the assumption on the tuning parameters, we have \(\frac{\lambda_{r_o,k_o,n}}{2} \rightarrow \rho \), which together with the results in (A.36) and (A.40) implies that

\[
\text{Pr}(Q_n(k_o) \hat{\Pi}_n = 0) \rightarrow 1 \text{ as } n \rightarrow \infty.
\]

As the above result holds for any \(k_o \) such that \(r_o < k_o \leq m \), this finishes the proof. \(\blacksquare \)

Proof of Theorem 3.5. From Corollary 3.4, for large enough \(n \) the shrinkage estimator \(\hat{\Pi}_n \) can be decomposed as \(\hat{\alpha}_n \hat{\beta}_n^\prime \) w.p.a.1, where \(\hat{\alpha}_n \) and \(\hat{\beta}_n \) are some \(m \times r_o \) matrices. Without loss of generality, we assume the first \(r_o \) columns of \(\Pi_o \) are linearly independent. To ensure identification, we normalize \(\beta_o \) as \(\tilde{\beta}_o = [I_{r_o}, O_{r_o}]' \) where \(O_{r_o} \) is some \(r_o \times (m - r_o) \) matrix such that

\[
\Pi_o = \alpha_o \beta_o' = [\alpha_o, \alpha_o O_{r_o}].
\]

(A.41)

Hence \(\alpha_o \) is the first \(r_o \) columns of \(\Pi_o \) which is an \(m \times r_o \) matrix with full rank and \(O_{r_o} \) is uniquely determined by the equation \(\alpha_o O_{r_o} = \Pi_o \odot 2 \), where \(\Pi_o \odot 2 \) denotes the last \(m - r_o \) columns of \(\Pi_o \). Correspondingly, for large enough \(n \) we can normalize \(\tilde{\beta}_n \) as \(\hat{\beta}_n = [I_{r_o}, \hat{\alpha}_n]' \) where \(\hat{\alpha}_n \) is some \(r_o \times (m - r_o) \) matrix. Let \(\beta_{o,\perp} = (\beta_{1,o,\perp}', \beta_{2,o,\perp}')' \) where \(\beta_{1,o,\perp} \) is a \(r_o \times (m - r_o) \) matrix and \(\beta_{2,o,\perp} \) is a \((m - r_o) \times (m - r_o) \) matrix. Then by definition

\[
\beta_{1,o,\perp}' + \beta_{2,o,\perp}' O_{r_o}' = 0 \text{ and } \beta_{1,o,\perp}' \beta_{1,o,\perp} + \beta_{2,o,\perp}' \beta_{2,o,\perp} = I_{m - r_o}
\]

(A.42)
which implies that
\[
\beta_{1,o,\perp}' = -\beta_{2,o,\perp}' O_{r_o} \quad \text{and} \quad \beta_{2,o,\perp} = (I_{m-r_o} + O_{r_o}' O_{r_o})^{-\frac{1}{2}}.
\]
\hspace{1cm} (A.43)

From Theorem 3.2 and \(n^{-\frac{1}{2}} \delta_{r,n} = o_p(1)\), we have
\[
O_p(1) = (\hat{\Pi}_n - \Pi_o) Q^{-1} D_n^{-1}
= (\hat{\Pi}_n - \Pi_o) \left[\sqrt{n} a_o (\beta_o' a_o)^{-1}, n\beta_o, \left(\alpha_o' \beta_{o,\perp} \right)^{-1} \right],
\]
\hspace{1cm} (A.44)

which implies that
\[
O_p(1) = \sqrt{n} (\hat{\Pi}_n - \Pi_o) a_o (\beta_o' a_o)^{-1}
= \sqrt{n} \left[(\hat{a}_n - a_o) \beta_o' + a_o (\hat{\beta}_n - \beta_o)' \right] a_o (\beta_o' a_o)^{-1}
\]
\hspace{1cm} (A.45)

and
\[
n\hat{a}_n (\hat{\beta}_n - \beta_o)' \beta_o, \left(\alpha_o' \beta_{o,\perp} \right)^{-1} = o_p(1).
\]
\hspace{1cm} (A.46)

By the definitions of \(\hat{\beta}_n\) and \(\beta_{o,\perp}\) and the result in (A.46), we get
\[
O_p(1) = \beta_o' \hat{a}_n \left[n (\hat{O}_n - O_{r_o}) \right] \beta_{2,o,\perp} (\alpha_o' \beta_{o,\perp})^{-1}
\]
which implies that
\[
n(\hat{O}_n - O_{r_o}) = \beta_o' a_o + o_p(1) \left(\alpha_o' \beta_{o,\perp} \right)^{-1} O_p(1) \left(I_{m-r_o} + O_{r_o}' O_{r_o} \right)^{\frac{1}{2}}
= o_p(1),
\]
\hspace{1cm} (A.47)

where \(\beta_o' \hat{a}_n = \beta_o' a_o + o_p(1)\) is by the consistency of \(\hat{a}_n\). By the definition of \(\hat{\beta}_n\), (A.47) means that \(n(\hat{\beta}_n - \beta_o) = o_p(1)\), which together with (A.45) implies that
\[
\sqrt{n} (\hat{a}_n - a_o) = \left[O_p(1) - a_o \sqrt{n} (\hat{\beta}_n - \beta_o)' a_o \right] [\beta_o' a_o + o_p(1)]^{-1} = o_p(1).
\]
\hspace{1cm} (A.48)

From Corollary 3.4, we can deduce that \(\hat{a}_n\) and \(\hat{\beta}_n\) minimize the following criterion function w.p.a.1
\[
V_n(a,\beta) = \sum_{t=1}^{n} \| \Delta Y_t - a\beta' Y_{t-1} \|^2 + n \sum_{k=1}^{r_o} \lambda_{r,k,n} || \Phi_{n,k} (a\beta') ||.
\]
\hspace{1cm} (A.49)

Define \(U_{1,n}' = \sqrt{n} (\hat{a}_n - a_o)\) and \(U_{3,n}' = n (\hat{\beta}_n - \beta_o)' = \left[0_{r_o}, n (\hat{O}_n - O_o) \right] \equiv [0_{r_o}, U_{2,n}']\), then
\[
(\hat{\Pi}_n - \Pi_o) Q^{-1} D_n^{-1} = \left[\hat{a}_n (\hat{\beta}_n - \beta_o)' + (\hat{a}_n - a_o) \beta_o' \right] Q^{-1} D_n^{-1}
= \left[n^{-\frac{1}{2}} \hat{a}_n U_{3,n}^* a_o (\beta_o' a_o)^{-1} + U_{1,n}', \hat{a}_n U_{3,n}^* \beta_{o,\perp} (\alpha_o' \beta_{o,\perp})^{-1} \right].
\]

Define
\[
\Pi_n(U) = \left[n^{-\frac{1}{2}} \hat{a}_n U_{3,n}^* a_o (\beta_o' a_o)^{-1} + U_{1,n}', \hat{a}_n U_{3,n}^* \beta_{o,\perp} (\alpha_o' \beta_{o,\perp})^{-1} \right],
\]
where $U_3 = \{0_{r_o}, U_2\}$. Then by definition, $U_n^* = \left(U_{1,n}^*, U_{2,n}^*\right)$ minimizes the following criterion w.p.a.1

$$V_n(U) = \sum_{t=1}^{n} \left(\|\Delta Y_t - \Pi_o Y_{t-1} - \Pi_n(U) D_n Z_{t-1}\|^2 - \|\Delta Y_t - \Pi_o Y_{t-1}\|^2\right)$$

$$+ n \sum_{k=1}^{r_o} \lambda_{r,k,n} \left[||\Phi_{n,k}(\Pi_n(U) D_n Q + \Pi_o)|| - ||\Phi_{n,k}(\Pi_o)||\right].$$

For any compact set $K \subset R^{m \times r_o} \times R^{r_o \times (m-r_o)}$ and any $U \in K$, we have

$$\Pi_n(U) D_n Q = O_p(n^{-\frac{1}{2}}).$$

Hence, from the triangle inequality, we can deduce that for all $k \in S_\phi$

$$n \left[\|\Phi_{n,k}(\Pi_n(U) D_n Q + \Pi_o)|| - ||\Phi_{n,k}(\Pi_o)||\right]$$

$$\leq n \lambda_{r,k,n} \left[||\Phi_{n,k}(\Pi_n(U) D_n Q)||\right] = O_p(n^{\frac{1}{2}} \lambda_{r,k,n}) = o_p(1),$$

(A.50)

uniformly over $U \in K$.

From (A.48),

$$\Pi_n(U) \to_p \left[U_1, a_o U_2 \beta_o, - (a'_o, \beta_o, \perp)^{-1}\right] \equiv \Pi_\infty(U)$$

(A.51)

uniformly over $U \in K$. By Lemma A.1 and (A.51), we deduce that

$$\sum_{t=1}^{n} \left(\|\Delta Y_t - \Pi_o Y_{t-1} - \Pi_n(U) D_n Z_{t-1}\|^2 - \|\Delta Y_t - \Pi_o Y_{t-1}\|^2\right)$$

$$= vec[\Pi_n(U)]' \left(D_n \sum_{t=1}^{n} Z_{t-1} Z_{t-1}' D_n \otimes I_m\right) vec[\Pi_n(U)]$$

$$- 2vec[\Pi_n(U)]' vec\left(\sum_{t=1}^{n} u_t Z_{t-1}' D_n\right)$$

$$\to d vec[\Pi_\infty(U)]' \left[\left(\Sigma_z, B_{w_2} B_{w_2}'\right) \otimes I_m\right] vec[\Pi_\infty(U)]$$

$$- 2vec[\Pi_\infty(U)]' vec\left([V_{1,m}, V_{2,m}]\right) \equiv V(U)$$

(A.52)

uniformly over $U \in K$, where $V_{1,m} = N(0, \Omega_u \otimes C_{z_{z_1}})$ and $V_{2,m} = (\int B_{w_2} dB_{w_2}')'$.

By definition $\Pi_\infty(U) = \left[U_1, a_o U_2 \beta_2, - (a'_o, \perp)^{-1}\right]$, thus

$$vec[\Pi_\infty(U)] = \left[vec(U_1)', vec\left(a_o U_2 \beta_2, - (a'_o, \perp)^{-1}\right)\right]'$$

and

$$vec\left(a_o U_2 \beta_2, - (a'_o, \perp)^{-1}\right) = \left[(\beta'_o, \perp)^{-1} \otimes a_o\right] vec(U_2).$$
Using above expression, we can rewrite $V(U)$ as
\[
\begin{align*}
V(U) &= vec(U_1)' \left[\Sigma_{z_{11}} \otimes I_m \right] vec(U_1) + vec(U_2)' \\
& \quad \times \left[\beta_{2,o,\perp}^{-1} \left(\alpha_{o,\perp} \beta_{2,o,\perp} \right) \right]^{-1} \int B_{w_2} B_{w_2}' \left(\beta_{o,\perp}^{-1} a_o, \perp \right) \beta_{2,o,\perp}^{-1} \otimes a_o' a_o \right] vec(U_2) \\
& \quad - 2 vec(U_1)' vec(V_{1,m}) \\
& \quad - 2 vec(U_2)' vec \left[\alpha_o' V_{2,m} \left(\beta_{o,\perp}^{-1} a_o, \perp \right) \beta_{2,o,\perp}^{-1} \right].
\end{align*}
\] (A.53)

The expression in (A.53) makes it clear that $V(U)$ is uniquely minimized at
\[
\begin{bmatrix}
U_{1}^*, \ U_{2}^*(\alpha_{o,\perp}^{-1} \beta_{o,\perp})^{-1} \beta_{2,o,\perp}^{-1}
\end{bmatrix},
\]
where
\[
U_{1}^* = B_{m,1} \text{ and } U_{2}^* = (\alpha_o' a_o)^{-1} a_o' B_{m,2}.
\] (A.54)

From (A.47) and (A.48), we can see that U_n^* is asymptotically tight. Invoking the Argmax Continuous Mapping Theorem (ACMT), we can deduce that
\[
U_n^* = (U_{1,n}^*, U_{2,n}^*) \rightarrow d \begin{bmatrix} U_{1}^*, \ U_{2}^* \end{bmatrix} \left(\beta_{o,\perp}^{-1} a_o, \perp \right)
\]
which together with (A.51) and CMT implies that
\[
(\hat{\Pi}_n - \Pi_o) Q^{-1} D_n^{-1} \rightarrow d \left(B_{m,1} a_o (\alpha_o' a_o)^{-1} a_o' B_{m,2} \right).
\]
This finishes the proof.

Proof of Corollary 3.6. The consistency, convergence rate, and super efficiency of $\hat{\Pi}_g,n$ can be established using similar arguments in the proof of Theorems 3.1, 3.2, and 3.3.

Under the super efficiency of $\hat{\Pi}_g,n$, the true rank r_o is imposed on $\hat{\Pi}_g,n$ w.p.a.1. Thus for large enough n, the GLS shrinkage estimator $\hat{\Pi}_g,n$ can be decomposed as $\hat{\alpha}_g,n \hat{\beta}_g,n$ w.p.a.1, where $\hat{\alpha}_g,n$ and $\hat{\beta}_g,n$ are some $m \times r_o$ matrices and they minimize the following criterion function w.p.a.1
\[
\sum_{t=1}^{n} (\Delta Y_t - \alpha \beta' Y_{t-1})' \hat{\Omega}^{-1}_{n,t} (\Delta Y_t - \alpha \beta' Y_{t-1}) + n \sum_{k=1}^{r_o} \hat{\lambda}_{r,k,n} ||\Phi_{n,k}(\alpha \beta)||. \quad \text{(A.55)}
\]

Using the similar arguments in the proof of Theorem 3.5, we define
\[
\Pi_o = \alpha_o \beta_o' = [a_o, a_o O_{r_o}] \text{ and } \beta_o = [I_{r_o}, O_{r_o}]',
\]
where O_{r_o} is some $r_o \times (m - r_o)$ matrix uniquely determined by the equation $a_o O_{r_o} = \Pi_o, 2$, where $\Pi_o, 2$ denotes the last $m - r_o$ columns of Π_o.

Define $U_{1,n}^* = \sqrt{n}(\hat{\alpha}_g,n - a_o)$ and $U_{3,n}^* = n(\hat{\beta}_g,n - \beta_o)' = [0_{r_o}, n (\hat{\Omega}_g,n - O_o)] \equiv \left[0_{r_o}, U_{2,n}^* \right]$, then
\[
(\hat{\Pi}_n - \Pi_o) Q^{-1} D_n^{-1} = \left[\alpha_g,n (\hat{\beta}_g,n - \beta_o)' + (\alpha_g,n - a_o) \beta_o' \right] Q^{-1} D_n^{-1} = \left[n^{-1/2} \alpha_g,n U_{3,n}^* a_o (\beta_o' a_o)^{-1} \right.
\]
\[
\left. + U_{1,n}^* \right] \hat{\alpha}_g,n U_{3,n}^* \beta_o, \perp \left(\alpha_o, \perp \beta_o, \perp \right)^{-1} \right]'.
\]
Define
\[\Pi_n(U) = \left[n^{-\frac{1}{2}} \tilde{\alpha}_{g,n} U_3 a_o (\beta_o' a_o)^{-1} + U_1, \tilde{\alpha}_{g,n} U_3 \tilde{\beta}_{o,\perp} \left(a_o' \perp \beta_o, \perp \right)^{-1} \right], \]
then by definition, \(U_n^* = \left(U_{1,n}^*, U_{2,n}^* \right) \) minimizes the following criterion function w.p.a.1
\[V_n(U) = \sum_{t=1}^{n} \left[(u_t - \Pi_n(U) D_n Z_{t-1})' \tilde{\Omega}_{n,t}^{-1} (u_t - \Pi_n(U) D_n Z_{t-1}) - u_t' \tilde{\Omega}_{n,t}^{-1} u_t \right] + n \sum_{k=1}^{r_o} \lambda_{r,k,n} \left[||\Phi_{n,k}(\Pi_n(U) D_n Q + \Pi_o)|| - ||\Phi_{n,k}(\Pi_o)|| \right]. \quad (A.56) \]
Following similar arguments in the proof of Theorem 3.5, we can deduce that for any \(k \in \mathcal{S}_\phi \)
\[n \left| \lambda_{r,k,n} \left[||\Phi_{n,k}(\Pi_n(U) D_n Q + \Pi_o)|| - ||\Phi_{n,k}(\Pi_o)|| \right] \right| = o_p(1), \quad (A.57) \]
and
\[\sum_{t=1}^{n} (u_t - \Pi_n(U) D_n Z_{t-1})' \tilde{\Omega}_{n,t}^{-1} (u_t - \Pi_n(U) D_n Z_{t-1}) - \sum_{t=1}^{n} u_t' \tilde{\Omega}_{n,t}^{-1} u_t \]
\[\rightarrow_d vec(U_1)' \left(\Sigma_{z_{1,z_{1}}} \otimes \Omega_u^{-1} \right) vec(U_1) + vec(U_2)' \times \left[\beta_{2,o,\perp} (a_o' \perp \beta_o, \perp)^{-1} \int B_{w_2}B_{w_2} (\beta_o' \perp a_o, \perp)^{-1} \beta_{2,o,\perp} \otimes a_o' \Omega_u^{-1} a_o \right] vec(U_2) \]
\[- 2vec(U_1)' vec(\Omega_u^{-1} V_{1,m}) - 2vec(U_2)' vec \left[a_o' \Omega_u^{-1} V_{2,m} (\beta_o' \perp a_o, \perp)^{-1} \beta_{2,o,\perp} \right] \]
\[\equiv V(U). \quad (A.58) \]
uniformly over \(U \) in any compact subspace of \(R^{m \times r_o} \times R^{r_o \times (m-r_o)} \). \(V(U) \) is uniquely minimized at \(\left(U_{g,1}^*, U_{g,2}^* \right) \), where \(U_{g,1}^* = B_{1,m} \Sigma_{z_{1,z_{1}}}^{-1} \) and
\[U_{g,2}^* = (a_o' \Omega_u^{-1} a_o)^{-1} \left(a_o' \Omega_u^{-1} V_{2,m} \right) \left(\int B_{w_2}B_{w_2} \right)^{-1} \left(a_o' \perp \beta_o, \perp \right)^{-1} \beta_{2,o,\perp}. \]
Invoking the ACMT, we obtain
\[(\tilde{\Pi}_{g,n} - \Pi_o) Q^{-1} D_n^{-1} = \left[\tilde{\alpha}_{g,n} (\beta_{g,n} - \beta_o)' + (\tilde{\alpha}_{g,n} - a_o) \beta_o' \right] Q^{-1} D_n^{-1} \]
\[\rightarrow_d \left(V_{1,m} \Sigma_{z_{1,z_{1}}}^{-1}, a_o (a_o' \Omega_u^{-1} a_o)^{-1} \right) \times \left(a_o' \Omega_u^{-1} V_{2,m} \right) \left(\int B_{w_2}B_{w_2} \right)^{-1}. \quad (A.59) \]
By the definition of \(w_1 \) and \(w_2 \), we can define \(\Omega_{\tilde{u}} = Q \Omega_u Q' \) such that
\[\Omega_{\tilde{u}} = \left(\begin{array}{c} \Sigma_{w_1 w_1} \Sigma_{w_1 w_2} \\ \Sigma_{w_2 w_1} \Sigma_{w_2 w_2} \end{array} \right) \quad \text{and} \quad \Omega_{\tilde{u}}^{-1} = \left(\begin{array}{cc} \Omega_{\tilde{u}}(11) & \Omega_{\tilde{u}}(12) \\ \Omega_{\tilde{u}}(21) & \Omega_{\tilde{u}}(22) \end{array} \right). \]
Note that
\[
\left(a_o' \Omega_u^{-1} a_o \right)^{-1} a_o' \Omega_u^{-1} = \left(a_o' Q' \Omega_u^{-1} Q a_o \right)^{-1} a_o' Q' \Omega_u^{-1} Q
= \left[(a_o' \beta_o) \Omega_u(11) (\beta_o' a_o) \right]^{-1} \left[(a_o' \beta_o), 0 \right] \Omega_u^{-1} Q
= (\beta_o' a_o)^{-1} \Omega_u^{-1} \left[(\Omega_u(11) \beta_o' + \Omega_u(12) a_o', \perp) \right]. \tag{A.60}
\]

Under $\Omega_u(12) = -\Omega_u(11) \Sigma w_1 w_2 \Sigma^{-1} w_2 w_2$,
\[
\left(a_o' \Omega_u^{-1} a_o \right)^{-1} a_o' \Omega_u^{-1} = (\beta_o' a_o)^{-1} \left(\beta_o' - \Sigma w_1 w_2 \Sigma^{-1} w_2 w_2 a_o', \perp \right). \tag{A.61}
\]

Now, using (A.59) and (A.61), we can deduce that
\[
(\tilde{\Pi}_{g,n} - \Pi_o) Q^{-1} D_n^{-1} \rightarrow d \left(B_{m,1} a_o (\beta_o' a_o)^{-1} \left(\int B_{w_2} dB_{w_2}' \right) \left(\int B_{w_2} B_{w_2}' \right)^{-1} \right).
\]

This finishes the proof.

\section*{A.3. Proofs of Main Results in Section 4}

The following lemma is useful in establishing the asymptotic properties of the shrinkage estimator with weakly dependent innovations.

LEMMA A.3. Under Assumption 3.2 and 4.1, (a), (b), and (c) of Lemma A.1 are unchanged, while Lemma A.1.(d) becomes
\[
n^{-1} \sum_{t=1}^{n} \left[u_t Z_{1,t-1} - \Sigma u_z(1) \right] \rightarrow d N(0, V_{u_z1}), \tag{A.62}
\]

where $\Sigma u_z(1) = \sum_{j=0}^{\infty} \Sigma u u(j) \beta_o \left(R^j \right)' < \infty$ and V_{u_z1} is the long run variance matrix of $u_t \otimes Z_{1,t-1}$; and Lemma A.1.(e) becomes
\[
n^{-1} \sum_{t=1}^{n} u_t Z_{2,t-1} \rightarrow d \left(\int B_{w_2} dB_{w_2}' \right)' + (\Gamma_{uu} - \Sigma_{uu}) a_o \perp. \tag{A.63}
\]

The proof of Lemma A.3 is in the supplemental appendix of this paper. Let $P_1 = (P_{11}, P_{12})$ be the orthonormalized right eigenvector matrix of Π_1 and A_1 be a $r_1 \times r_1$ diagonal matrix of nonzero eigenvalues of Π_1, where P_{11} is an $m \times r_1$ matrix (of eigenvectors of nonzero eigenvalues) and P_{12} is an $m \times (m - r_1)$ matrix (of eigenvectors of zero eigenvalues). By the eigenvalue decomposition,
\[
\Pi_1 = (P_{11}, P_{12}) \begin{pmatrix} \Lambda_1 & 0 \\ 0 & 0_{m-r_1} \end{pmatrix} \begin{pmatrix} Q_{11} \\ Q_{12} \end{pmatrix} = P_{11} \Lambda_1 Q_{11}, \tag{A.64}
\]

where $Q' = (Q_{11}, Q_{12}')$ and $Q = P^{-1}$. By definition
\[
\begin{pmatrix} Q_{11} \\ Q_{12} \end{pmatrix} (P_{11}, P_{12}) = \begin{pmatrix} Q_{11} P_{11} \\ Q_{12} P_{12} \end{pmatrix} = I_m, \tag{A.65}
\]
which implies that \(Q_{11} P_{11} = I_{r_1} \). From (A.64), without loss of generality, we can define \(\bar{\alpha}_1 = P_{11} \) and \(\bar{\beta}_1 = Q'_{11} \Lambda_1 \). By (A.65), we deduce that
\[
\bar{\beta}_1' \bar{\alpha}_1 = \Lambda_1 Q_{11} P_{11} = \Lambda_1 \quad \text{and} \quad \bar{\alpha}_1' \bar{\beta}_1 = P_{11}' Q'_{11} \Lambda_1 = \Lambda_1
\]
which imply that \(\bar{\beta}_1' \bar{\alpha}_1 \) and \(\bar{\alpha}_1' \bar{\beta}_1 \) are nonsingular \(r_1 \times r_1 \) matrix. Without loss of generality, we let \(\bar{\alpha}_1' \perp = P_{12} \) and \(\bar{\beta}_1' \perp = Q_{12}' \), then \(\bar{\beta}_1' \perp \bar{\beta}_1' \perp = I_{m - r_1} \) and under (A.65),
\[
\bar{\beta}_1' \perp \bar{\alpha}_1 = Q_{12} P_{11} = 0,
\]
which implies that \(\bar{\beta}_1' \perp \bar{\alpha}_1 = 0 \) as \(\bar{\beta}_1' \perp = (\bar{\beta}_1' \perp, \beta_0' \perp) \).

Let \(\{\phi_1(\bar{\Pi}_{1st}), \ldots, \phi_m(\bar{\Pi}_{1st})\} \) and \(\{\phi_1(\Pi_1), \ldots, \phi_m(\Pi_1)\} \) be the ordered eigenvalues of \(\bar{\Pi}_{1st} \) and \(\Pi_1 \) respectively. For the ease of notation, we define
\[
\mathcal{N}_1 = \left[N(0, V_{uz_1}) + \Sigma_{uz_1}^{-1}(1) \Sigma_{z_1' z_1}^{-1} N(0, V_{z_1 z_1}) \right]^{-1} \Sigma_{z_1' z_1}^{-1} \beta_0',
\]
where \(N(0, V_{uz_1}) \) is a random matrix defined in (A.62) and \(N(0, V_{z_1 z_1}) \) denotes the matrix limit distribution of \(\sqrt{n} (\bar{S}_{11} - \Sigma_{z_1 z_1}) \). We also define
\[
\mathcal{N}_2 = \left[\int d B_u B_u' + (\Gamma_{uu} - \Sigma_{uu}) \right] a_o' \left(\int B_{w2} B_{w2}' \right)^{-1} a_o.
\]

The next lemma provides asymptotic properties of the OLS estimate and its eigenvalues when the data is weakly dependent.

Lemma A.4. Under Assumption 3.2 and 4.1, we have the following results:

(a) the OLS estimator \(\hat{\Pi}_{1st} \) satisfies
\[
(\hat{\Pi}_{1st} - \Pi_1) Q^{-1} D_n^{-1} = O_p(1), \tag{A.66}
\]
where \(\Pi_1 \) is defined in (4.2);

(b) the eigenvalues of \(\hat{\Pi}_{1st} \) satisfy \(\phi_k(\hat{\Pi}_{1st}) \rightarrow_d \phi_k(\Pi_1) \) for \(k = 1, \ldots, m \);

(c) the last \(m - r_0 \) ordered eigenvalues of \(\hat{\Pi}_{1st} \) satisfy
\[
n[\phi_{r_0 + 1}(\hat{\Pi}_{1st}), \ldots, \phi_m(\hat{\Pi}_{1st})] \rightarrow_d [\bar{\phi}_{r_0 + 1}', \ldots, \bar{\phi}_m'], \tag{A.67}
\]
where \(\bar{\phi}_j \) (\(j = r_0 + 1, \ldots, m \)) are the ordered solutions of
\[
\left| u_{I_{m - r_0}} - \beta_{o \perp}' \mathcal{N}_2 + \mathcal{N}_1 \bar{\beta}_1' (\bar{\beta}_1' \mathcal{N}_1 \bar{\beta}_1')^{-1} \bar{\beta}_1' \mathcal{N}_2 \right| \beta_{o \perp} = 0; \tag{A.68}
\]

(d) \(\hat{\Pi}_{1st} \) has \(r_0 - r_1 \) eigenvalues satisfying
\[
\sqrt{n}[\phi_{r_1 + 1}(\hat{\Pi}_{1st}), \ldots, \phi_{r_0}(\hat{\Pi}_{1st})] \rightarrow_d [\bar{\phi}_{r_1 + 1}', \ldots, \bar{\phi}_{r_0}'], \tag{A.69}
\]
where \(\bar{\phi}_j \) (\(j = r_1 + 1, \ldots, r_0 \)) are the ordered solutions of
\[
\left| u_{I_{r_0 - r_1}} - \bar{\beta}_{r_1 \perp}' \mathcal{N}_1 \bar{\beta}_{r_1 \perp} \right| = 0. \tag{A.70}
\]
The proof of Lemma A.4 is in the supplemental appendix of this paper. Recall that P_n is defined as the inverse of Q_n. We divide P_n and Q_n as $P_n = [P_{\bar{a},n}, P_{\bar{a}_{\perp},n}]$ and $Q_n = [Q_{\bar{a},n}, Q_{\bar{a}_{\perp},n}]$, where $Q_{\bar{a},n}$ and $P_{\bar{a},n}$ are the first r_1 rows of Q_n and first r_1 columns of P_n respectively ($Q_{\bar{a}_{\perp},n}$ and $P_{\bar{a}_{\perp},n}$ are defined accordingly). By definition,

$$Q_{\bar{a},n}P_{\bar{a}_{\perp},n} = I_{m-r_1}, Q_{\bar{a},n}P_{\bar{a},n} = 0_{r_1 \times (m-r_1)} \quad \text{and}$$

$$Q_{\bar{a}_{\perp},n}\tilde{\Pi}_{1st} = \Lambda_{\bar{a}_{\perp},n}Q_{\bar{a}_{\perp},n},$$ \hspace{1cm} (A.71)

where $\Lambda_{\bar{a}_{\perp},n}$ is an diagonal matrix with the ordered last (smallest) $m-r_1$ eigenvalues of $\tilde{\Pi}_{1st}$. Using the results in (A.71), we can define a useful estimator of Π_1 as

$$\tilde{\Pi}_{n,f} = \tilde{\Pi}_{1st} - P_{\bar{a}_{\perp},n}\Lambda_{\bar{a}_{\perp},n}Q_{\bar{a}_{\perp},n}. \hspace{1cm} (A.72)$$

By definition

$$Q_{\bar{a},n}\tilde{\Pi}_{n,f} = Q_{\bar{a},n}\tilde{\Pi}_{1st} - Q_{\bar{a},n}P_{\bar{a}_{\perp},n}\Lambda_{\bar{a}_{\perp},n}Q_{\bar{a}_{\perp},n} = \Lambda_{\bar{a},n}Q_{\bar{a},n},$$ \hspace{1cm} (A.73)

where $\Lambda_{\bar{a},n}$ is an diagonal matrix with the ordered first (largest) r_o eigenvalues of $\tilde{\Pi}_{1st}$, and more importantly

$$Q_{\bar{a}_{\perp},n}\tilde{\Pi}_{n,f} = Q_{\bar{a}_{\perp},n}\tilde{\Pi}_{1st} - Q_{\bar{a}_{\perp},n}P_{\bar{a}_{\perp},n}\Lambda_{\bar{a}_{\perp},n}Q_{\bar{a}_{\perp},n} = 0_{(m-r_1) \times m}.$$ \hspace{1cm} (A.74)

From Lemma A.4.(b), (A.73), and (A.74), we can deduce that $Q_{\bar{a},n}\tilde{\Pi}_{n,f}$ is a $r_1 \times m$ matrix which is nonzero w.p.a.1 and $Q_{\bar{a}_{\perp},n}\tilde{\Pi}_{n,f}$ is a $(m-r_1) \times m$ zero matrix for all n. Using (A.71), we can write

$$\tilde{\Pi}_{n,f} - \Pi_1 = (\tilde{\Pi}_{1st} - \Pi_1) - P_{\bar{a}_{\perp},n}\Lambda_{\bar{a}_{\perp},n}Q_{\bar{a}_{\perp},n}$$

$$= (\tilde{\Pi}_{1st} - \Pi_1) - P_{\bar{a}_{\perp},n}Q_{\bar{a}_{\perp},n}(\tilde{\Pi}_{1st} - \Pi_1) - P_{\bar{a}_{\perp},n}Q_{\bar{a}_{\perp},n}\Pi_1, \hspace{1cm} (A.75)$$

where Lemma A.4.(a),

$$\tilde{\Pi}_{1st} - \Pi_1 \quad \text{and} \quad O_p(1) \hspace{1cm} (A.76)$$

and by Lemmas A.4.(a), (c) and (d)

$$P_{\bar{a}_{\perp},n}Q_{\bar{a}_{\perp},n}\Pi_1 \quad \text{and} \quad O_p(1) \hspace{1cm} (A.77)$$

Thus under (A.75), (A.76), and (A.77), we get

$$\tilde{\Pi}_{n,f} - \Pi_1 \quad \text{and} \quad O_p(1) \hspace{1cm} (A.78)$$

Comparing (A.76) with (A.78), we see that $\tilde{\Pi}_{n,f}$ is as good as the OLS estimate $\tilde{\Pi}_{1st}$ in terms of its rate of convergence.

Proof of Corollary 4.1. First, when $r_o = 0$, then $\Pi_1 = \bar{a}_o \beta_o' p = 0 = \Pi_o$. Hence, the consistency of $\tilde{\Pi}_n$ follows by the similar arguments to those in the proof of Theorem 3.1. To finish the proof, we only need to consider the scenarios where $r_o = m$ and $r_o \in (0, m)$.
Using the same notation for \(V_n(\cdot) \) defined in the proof of Theorem 3.1, by definition we have \(V_n(\hat{\Pi}_n) \leq V_n(\Pi_{n,f}) \), which implies

\[
\begin{align*}
\left[vec(\Pi_{n,f} - \hat{\Pi}_n) \right]' \left(\sum_{t=1}^n Y_{t-1} Y_{t-1}' \otimes I_m \right) \left[vec(\Pi_{n,f} - \hat{\Pi}_n) \right] \\
+ 2 \left[vec(\Pi_{n,f} - \hat{\Pi}_n) \right]' vec \left(\sum_{t=1}^n u_t Y_{t-1}' - (\Pi_1 - \Pi_o) \sum_{t=1}^n Y_{t-1} Y_{t-1}' \right) \\
- 2 \left[vec(\Pi_{n,f} - \hat{\Pi}_n) \right]' \left(\sum_{t=1}^n Y_{t-1} Y_{t-1}' \otimes I_m \right) vec(\Pi_{n,f} - \Pi_1) \\
\leq n \left\{ \sum_{k=1}^m \lambda_{r,k,n} \left[||\Phi_{n,k}(\Pi_{n,f})|| - ||\Phi_{n,k}(\hat{\Pi}_n)|| \right] \right\}.
\end{align*}
\]

(A.79)

When \(r_o = m, Y_t \) is stationary and we have

\[
\frac{1}{n} \sum_{t=1}^n Y_{t-1} Y_{t-1}' \rightarrow_p \Sigma_{yy} = R(1)\Omega_u R(1)',
\]

(A.80)

From the results in (A.79) and (A.80), we get w.p.a.1,

\[
\mu_{n,\min} ||\Pi_n - \Pi_{n,f}|| - ||\Pi_n - \hat{\Pi}_n|| (c_{1n} + c_{2n}) - d_n \leq 0,
\]

(A.81)

where \(\mu_{n,\min} \) denotes the smallest eigenvalue of \(\frac{1}{n} \sum_{t=1}^n Y_{t-1} Y_{t-1}' \), which is positive w.p.a.1,

\[
c_{1n} = \left\| \sum_{t=1}^n u_t Y_{t-1}' - (\Pi_1 - \Pi_o) \sum_{t=1}^n Y_{t-1} Y_{t-1}' \right\| \\
\rightarrow_p \left\| \Sigma_{uy}(1) - \Sigma_{uy}(1) \Sigma_{yy}^{-1} \Sigma_{yy} \right\| = 0
\]

(A.82)

by Lemma A.3 and the definition of \(\Pi_1 \), and

\[
c_{2n} = m \left\| n^{-1} \sum_{t=1}^n Y_{t-1} Y_{t-1}' \right\| ||\Pi_{n,f} - \Pi_1|| = o_p(1)
\]

(A.83)

by Lemma A.3 and (A.78), and

\[
d_n = \sum_{k=1}^r \lambda_{r,k,n} \left[||\Phi_{n,k}(\Pi_{n,f})|| - ||\Phi_{n,k}(\Pi_n)|| \right]
\]

\[
\leq \sum_{k=1}^{r_1} \lambda_{r,k,n} ||\Phi_{n,k}(\Pi_{n,f})|| = o_p(1)
\]

(A.84)

by Lemma A.4, (A.74) and \(\lambda_{r,k,n} = o_p(1) \) for \(k = 1, \ldots, r_1 \). So the consistency of \(\hat{\Pi}_n \) follows directly from (A.78), the inequality in (A.81) and the triangle inequality.
When $0 < r_o < m$,

$$\text{vec} \left(\hat{\Pi}_n - \bar{\Pi}_{n,f} \right)' \left(\sum_{t=1}^{n} Y_{t-1} Y_{t-1}' \otimes I_m \right) \text{vec} \left(\hat{\Pi}_n - \bar{\Pi}_{n,f} \right)$$

$$= \text{vec} \left(\hat{\Pi}_n - \bar{\Pi}_{n,f} \right)' \left(B_n D_n \sum_{t=1}^{n} Z_{t-1} Z_{t-1}' D_n B_n' \otimes I_m \right) \text{vec} \left(\hat{\Pi}_n - \bar{\Pi}_{n,f} \right)$$

$$\geq \mu_{n,\min} \| (\hat{\Pi}_n - \bar{\Pi}_{n,f}) B_n \|^2,$$

(A.85)

where $\mu_{n,\min}$ denotes the smallest eigenvalue of $D_n \sum_{t=1}^{n} Z_{t-1} Z_{t-1}' D_n$ which is positive definite w.p.a.1 under Lemma A.3. Next, note that

$$\left\{ \sum_{t=1}^{n} u_t \left(\sum_{t=1}^{n} Z_{t-1} Z_{t-1}' \right) \right\} D_n$$

$$= \left[n^{-\frac{1}{2}} \sum_{t=1}^{n} Z_{1,t-1} u_t^t \right]' \left[n^{-\frac{1}{2}} \sum_{t=1}^{n} Z_{1,t-1} Z_{1,t-1}' \right] - \left[n^{-\frac{1}{2}} \sum_{t=1}^{n} Z_{1,t-1} Z_{1,t-1}' \right]' \left[n^{-\frac{1}{2}} \sum_{t=1}^{n} Z_{1,t-1} Z_{1,t-1}' \right].$$

(A.86)

From Lemma A.3, we can deduce that

$$n^{-1} \sum_{t=1}^{n} Z_{2,t-1} u_t^t = O_p(1)$$

and

$$n^{-1} \sum_{t=1}^{n} Z_{2,t-1} Z_{1,t-1}' \sum_{z_{1,z_1}}' \sum_{z_{1,z_1}} = O_p(1).$$

(A.87)

Similarly, we get

$$n^{-\frac{1}{2}} \sum_{t=1}^{n} \left[Z_{1,t-1} u_t^t - \sum_{z_{1,z_1}}' \sum_{z_{1,z_1}} \right] = O_p(1).$$

(A.88)

Define $e_{2n} = \left\| \sum_{t=1}^{n} u_t (1 - (\Pi_1 - \Pi_o) Q^{-1} \sum_{t=1}^{n} Z_{1,t-1} Z_{1,t-1}') \right\|$, then from (A.86)–(A.88) we can deduce that $e_{2n} = O_p(1)$. By the Cauchy–Schwarz inequality, we have

$$\text{vec} \left(\hat{\Pi}_n - \bar{\Pi}_{n,f} \right)' \text{vec} \left[\sum_{t=1}^{n} u_t Y_{t-1} Y_{t-1}' - (\Pi_1 - \Pi_o) Q^{-1} \sum_{t=1}^{n} Z_{t-1} Z_{t-1}' \right]$$

$$= \text{vec} \left(\hat{\Pi}_n - \bar{\Pi}_{n,f} \right)' \text{vec} \left[\sum_{t=1}^{n} u_t Z_{t-1}' - (\Pi_1 - \Pi_o) Q^{-1} \sum_{t=1}^{n} Z_{t-1} Z_{t-1}' \right] D_n B_n'$$

$$\leq \| (\hat{\Pi}_n - \bar{\Pi}_{n,f}) B_n \| e_{2n}.$$
From results in (A.79), (A.89), and (A.90), we get w.p.a.1

$$\mu_{n, \min} \| (\widehat{\Pi}_n - \Pi_{n,f}) B_n \|^2 - 2 \| (\widehat{\Pi}_n - \Pi_{n,f}) B_n \| (e_{1n} + e_{2n}) - d_n \leq 0,$$

(A.91)

where \(d_n = o_p(1) \) by (A.84). Now, the consistency of \(\widehat{\Pi}_n \) follows by (A.91) and the same arguments in Theorem 3.1.

Proof of Corollary 4.2. From Lemma A.4 and Corollary 4.1, we deduce that w.p.a.1

$$\sum_{k=1}^{m} \lambda_{r,k,n} \left[\| \Phi_{n,k} (\widehat{\Pi}_{n,f}) \| - \| \Phi_{n,k} (\Pi_n) \| \right]$$

\[\leq \sum_{k \in \mathcal{S}_\phi} \lambda_{r,k,n} \left[\| \Phi_{n,k} (\widehat{\Pi}_{n,f}) \| - \| \Phi_{n,k} (\Pi_n) \| \right] \]

\[\leq d_{\mathcal{S}_\phi} \max_{k \in \mathcal{S}_\phi} \lambda_{r,k,n} \| \widehat{\Pi}_n - \Pi_{n,f} \|. \]

(A.92)

Using (A.79) and (A.92), we have

\[
\begin{align*}
 &\left[\text{vec} \left(\Pi_{n,f} - \widehat{\Pi}_n \right) \right]' \left(\sum_{t=1}^{n} Y_{t-1} Y_{t-1}' \otimes I_m \right) \left[\text{vec} \left(\Pi_{n,f} - \widehat{\Pi}_n \right) \right] \\
 &\quad + 2 \left[\text{vec} \left(\Pi_{n,f} - \widehat{\Pi}_n \right) \right]' \left[\sum_{t=1}^{n} u_t Y_{t-1}' - (\Pi_1 - \Pi_o) \sum_{t=1}^{n} Y_{t-1} Y_{t-1}' \right] \\
 &\quad - 2 \left[\text{vec} \left(\Pi_{n,f} - \widehat{\Pi}_n \right) \right]' \left(\sum_{t=1}^{n} Y_{t-1} Y_{t-1}' \otimes I_m \right) \text{vec} \left(\Pi_{n,f} - \Pi_1 \right) \\
 &\leq c \max_{k \in \mathcal{S}_\phi} \lambda_{r,k,n} \| \widehat{\Pi}_n - \Pi_{n,f} \|,
\end{align*}
\]

(A.93)

where \(c > 0 \) is a generic positive constant. When \(r_o = 0 \), the convergence rate of \(\Pi_1 \) could be derived using the same arguments in Theorem 3.2. Hence, to finish the proof, we only need to consider scenarios where \(r_o = m \) or \(0 < r_o < m \).

When \(r_o = m \), following similar arguments to those of Theorem 3.2, we get

$$\mu_{n, \min} \| \Pi_{n,f} - \widehat{\Pi}_n \|^2 - c \| \Pi_{n,f} - \widehat{\Pi}_n \| (c_{1n} + c_{2n} + \bar{\delta}_{r,n}) \leq 0,$$

(A.94)

where

\[
\begin{align*}
 c_{1n} &= \left\| n^{-1} \sum_{t=1}^{n} u_t Y_{t-1}' - n^{-1} (\Pi_1 - \Pi_o) \sum_{t=1}^{n} Y_{t-1} Y_{t-1}' \right\| \\
 &= n^{-\frac{1}{2}} \left\| n^{-\frac{1}{2}} \sum_{t=1}^{n} \left[u_t Y_{t-1}' - \Sigma_{uy}(1) - \Sigma_{uy}(1) \Sigma_{zi}^{-1} \left(\bar{S}_{11} - \Sigma_{zi} \right) \right] \right\| \\
 &= o_p \left(n^{-\frac{1}{2}} \right)
\end{align*}
\]

(A.95)
by Lemma A.3, and
\[c_{2n} = \left\| n^{-\frac{1}{2}} \sum_{t=1}^{n} Y_{t-1} Y_{t-1}^\prime \right\| \left\| \hat{\Pi}_n, f - \Pi_1 \right\| = \mathcal{O}_p \left(n^{-\frac{1}{2}} \right) \] \quad (A.96)

by Lemma A.3 and A.78. From the results in (A.78), (A.94), (A.95), and (A.96), we deduce that
\[\hat{\Pi}_n - \Pi_1 = \mathcal{O}_p \left(n^{-\frac{1}{2}} + \delta_{r,n} \right) . \] \quad (A.97)

When \(0 < r_0 < m \), we can use (A.89) and (A.90) in the proof of Corollary 4.1 and (A.93) and get w.p.a.1
\[\mu_{n, \min} \| (\hat{\Pi}_n, f - \hat{\Pi}_n) B_n \|^2 - 2\| (\hat{\Pi}_n, f - \hat{\Pi}_n) B_n \| (e_{1,n} + e_{2,n}) \leq cn\delta_n \| \hat{\Pi}_n, f - \hat{\Pi}_n \| , \] \quad (A.98)

where \(e_{1,n} = \mathcal{O}_p(1) \) and \(e_{2,n} = \mathcal{O}_p(1) \) as illustrated in the proof of Corollary 4.1. By the Cauchy-Schwarz inequality,
\[\| (\hat{\Pi}_n, f - \hat{\Pi}_n) B_n B_n^{-1} \| \leq cn^{-\frac{1}{2}} \| (\hat{\Pi}_n, f - \hat{\Pi}_n) B_n \| . \] \quad (A.99)

Using (A.98) and (A.99), we obtain
\[\mu_{n, \min} \| (\hat{\Pi}_n, f - \hat{\Pi}_n) B_n \|^2 - 2\| (\hat{\Pi}_n, f - \hat{\Pi}_n) B_n \| (e_{1,n} + e_{2,n} + n^{\frac{1}{2}} \delta_{r,n}) \leq 0 . \] \quad (A.100)

From (A.78) and the inequality in (A.100), we obtain
\[(\hat{\Pi}_n - \Pi_1) B_n = (\hat{\Pi}_n - \hat{\Pi}_n, f) B_n + (\hat{\Pi}_n, f - \Pi_1) B_n = \mathcal{O}_p \left(1 + n^{\frac{1}{2}} \delta_{r,n} \right) , \]
which finishes the proof.

Proof of Corollary 4.3. Using similar arguments in the proof of Theorem 3.3, we can rewrite the LS shrinkage estimation problem as
\[\hat{T}_n = \arg \min_{T \in \mathbb{R}^{m \times m}} \sum_{t=1}^{n} \| \Delta Y_t - P_n T Y_{t-1} \| ^2 + n \sum_{k=1}^{m} \lambda_{r,k,n} \left\| T(k) \right\| . \] \quad (A.101)

Result in (4.6) is equivalent to \(\hat{T}_n(k) = 0 \) for any \(k \in \{ r_0 + 1, \ldots, m \} \). Conditional on the event \(\{ Q_n(k_o) \hat{\Pi}_n \neq 0 \} \) for some \(k_o \) satisfying \(r_0 < k_o \leq m \), we get the following equation from the KKT optimality conditions,
\[\frac{1}{n} \sum_{t=1}^{n} \left(\Delta Y_t - P_n \hat{T}_n Y_{t-1} \right)^\prime P_n(k_o) Y_{t-1}' = \frac{\lambda_{r,k_o,n}}{2} . \] \quad (A.102)

The sample average in the left hand side of (A.102) can be rewritten as
\[\frac{1}{n} \sum_{t=1}^{n} \left(\Delta Y_t - P_n \hat{T}_n Y_{t-1} \right)^\prime P_n(k_o) Y_{t-1}' = \frac{P_n'(k_o)}{n} \sum_{t=1}^{n} \left[u_t - (\Pi_1 - \Pi_0) Y_{t-1} \right] Y_{t-1}' . \] \quad (A.103)
From the results in (A.86), (A.87), and (A.88),
\[
P'_n(k_0) \sum_{t=1}^{n} [u_t - (\Pi_1 - \Pi_0)Y_{t-1}]Y'_{t-1} \frac{1}{n} = O_p(1). \tag{A.104}
\]

From Corollary 4.2 and Lemma A.3,
\[
\left(\hat{\Pi}_n - \Pi_1 \right) \frac{1}{n} \sum_{t=1}^{n} Y_{t-1}Y'_{t-1} = \left(\hat{\Pi}_n - \Pi_1 \right) B_n D_n \sum_{t=1}^{n} Z_{t-1}Z'_{t-1}Q'^{-1} = O_p(1). \tag{A.105}
\]

Using the results in (A.103), (A.104), and (A.105), we deduce that
\[
\left\| \frac{1}{n} \sum_{t=1}^{n} \left(\Delta Y_t - P_n \tilde{T}_n Y_{t-1} \right)' P_n(k_0)Y'_{t-1} \right\| = O_p(1). \tag{A.106}
\]

While by the assumption on the tuning parameters, \(\lambda_{r,k_0,n} \to p \infty \), which together with the results in (A.102) and (A.106) implies that
\[
\Pr \left(Q_n(k_0) \hat{\Pi}_n = 0 \right) \to 1 \text{ as } n \to \infty.
\]

As the above result holds for any \(k_0 \) such that \(r_0 < k_0 \leq m \), this finishes the proof. \(\blacksquare \)

Let \(P_{r_0,n} \) and \(Q_{r_0,n} \) be the first \(r_0 \) columns of \(P_n \) and the first \(r_0 \) rows of \(Q_n \) respectively. Let \(P_{r_0-r_1,n} \) and \(Q_{r_0-r_1,n} \) be the last \(r_0 - r_1 \) columns of \(P_{r_0,n} \) and the last \(r_0 - r_1 \) rows of \(Q_{r_0,n} \) respectively. Under Lemma A.4.(c),
\[
Q_{r_0-r_1,n} \hat{\Pi}_n B_n = Q_{r_0-r_1,n} (\hat{\Pi}_n - \tilde{\Pi}_1) B_n + Q_{r_0-r_1,n} (\hat{\Pi}_1 - \Pi_1) B_n + Q_{r_0-r_1,n} \Pi_1 B_n
\]
\[
= \sqrt{n} Q_{r_0-r_1,n} \Pi_1 Q^{-1} + O_p(1)
\]
\[
= \sqrt{n} Q_{r_0-r_1,n} (\Pi_1 - \tilde{\Pi}_1) Q^{-1} + \sqrt{n} Q_{r_0-r_1,n} \Pi_1 Q^{-1} + O_p(1)
\]
\[
= \sqrt{n} \Lambda_{r_0-r_1,n} Q_{r_0-r_1,n} Q^{-1} + O_p(1) = O_p(1), \tag{A.107}
\]
where \(\Lambda_{r_0-r_1,n} \) is a diagonal matrix with the \((r_1 + 1) \)-th to the \(r_0 \)-th eigenvalues of \(\tilde{\Pi}_1 \). Let \(\tilde{T}_{\alpha,n} \) be the first \(r_0 \) rows of \(\tilde{T}_n = Q_n \hat{\Pi}_n \), then \(\tilde{T}_{\alpha,n} = Q_{r_0,n} \hat{\Pi}_n \). Define \(T_{\alpha,n}' = \left[\Pi_1 Q_{\alpha,n} \right]_{0 \times (r_0-r_1)} \), then
\[
(\tilde{T}_{\alpha,n}' - T_{\alpha,n}) B_n = \left[Q_{\alpha,n} (\hat{\Pi}_n - \Pi_1) B_n \right] = O_p(1) \tag{A.108}
\]
where the last equality is by Corollary 4.2 and (A.107).

Proof of Corollary 4.4. Using the results of Corollary 4.3, we can rewrite the LS shrinkage estimation problem as
\[
\hat{T}_n = \arg \min_{T \in \mathbb{R}^{m \times m}} \sum_{t=1}^{n} \| \Delta Y_t - P_n T Y_{t-1} \|^2 + n \sum_{k=1}^{r_0} \lambda_{r,k,n} \| T(k) \|, \tag{A.109}
\]
with the constraint \(T(k) = 0 \) for \(k = r_0 + 1, \ldots, m \). Recall that \(\hat{T}_{\alpha,n} \) is the first \(r_0 \) rows of \(\hat{T}_n \), then the problem in (A.109) can be rewritten as
\[
\hat{T}_{\alpha,n} = \arg \min_{T_{\alpha} \in \mathbb{R}^{r_0 \times m}} \sum_{t=1}^{n} \| \Delta Y_t - P_{r_0,n} T_{\alpha} Y_{t-1} \|^2 + n \sum_{k=1}^{r_0} \lambda_{r,k,n} \| T_{\alpha}(k) \|, \tag{A.110}
\]
where \(P_{r_0,n} \) is the first \(r_0 \) columns of \(P_n \).
Let \(u_n^* = (\tilde{T}_{a,n} - T_{a,n}) B_n \) and note that the last \(r_o - r_1 \) rows of \(T_{a,n} \) are zeros. By definition, \(u_n^* \) is the minimizer of

\[
V_n(U) = \sum_{t=1}^{n} \left[\left\| \Delta Y_t - P_{r_o,n} \left(UB_n^{-1} + T_{a,n} \right) Y_{t-1} \right\|^2 - \left\| \Delta Y_t - P_{r_o,n} T_{a,n} Y_{t-1} \right\|^2 \right] + n \sum_{k=1}^{r_o} \lambda_{r,k,n} \left[\left\| UB_n^{-1} + T_{a,n}(k) \right\| - \left\| T_{a,n}(k) \right\| \right]
\]

For any \(U \) in some compact subset of \(R^{r_o \times m} \), \(n^{1/2} U D_n Q = O(1) \). Thus \(n^{1/2} \delta_{r,n} = o_p(1) \) and Lemma A.4.d imply that

\[
n\lambda_{r,k,n} \left\| \left(UB_n^{-1} + T_{a,n} \right)(k_o) \right\| - \left\| T_{a,n}(k_o) \right\| \leq n^{1/2} \lambda_{r,k,n} n^{1/2} \left(UB_n^{-1} \right)(k_o)
\]

(\text{A.111})

for \(k_o = 1, \ldots, r_o \). On the other hand, \(n^{1/2} \lambda_{r,k,n} = o_p(1) \) implies that

\[
n\lambda_{r,k,n} \left\| \left(UB_n^{-1} + T_{a,n} \right)(k_o) \right\| - \left\| T_{a,n}(k_o) \right\| \leq n^{1/2} \lambda_{r,k,n} n^{1/2} \left(UB_n^{-1} \right)(k_o)
\]

(\text{A.112})

for any \(k_o = 1, \ldots, r_o \). Moreover, we can rewrite \(V_{1,n}(U) \) as

\[
V_{1,n}(U) = A_{n,t}(U) - 2B_{n,t}(U),
\]

where

\[
A_{n,t}(U) \equiv \text{vec}(U)' \left(B_n^{-1} \sum_{t=1}^{n} Y_{t-1} Y_{t-1}' P_{r_o,n}' \otimes P_{r_o,n} P_{r_o,n} \right) \text{vec}(U)
\]

and

\[
B_{n,t}(U) \equiv \text{vec}(U)' \text{vec} \left[P_{r_o,n}' \sum_{t=1}^{n} (\Delta Y_t - P_{r_o,n} T_{a,n} Y_{t-1}) Y_{t-1}' B_{r_o,n}' \right].
\]

It is clear that \(V_{1,n}(U) \) is minimized at

\[
U_n^* = \left(P_{r_o,n}' P_{r_o,n} \right)^{-1} P_{r_o,n}' \sum_{t=1}^{n} (\Delta Y_t - P_{r_o,n} T_{a,n} Y_{t-1}) Y_{t-1}' \left(\sum_{t=1}^{n} Y_{t-1} Y_{t-1}' \right)^{-1} B_n
\]

\[
= \left[(P_{r_o,n}' P_{r_o,n})^{-1} P_{r_o,n}' \hat{\Pi}_{1st} - T_{a,n} \right] B_n.
\]

By definition, \(P_n = [P_{r_o,n}, P_{m-r_o,n}] \), where \(P_{r_o,n} \) and \(P_{m-r_o,n} \) are the right normalized eigenvectors of the largest \(r_o \) and smallest \(m - r_o \) eigenvalues of \(\hat{\Pi}_{1st} \) respectively. From Lemmas A.4.(c) and (d), we deduce that \(P_{r_o,n}' P_{m-r_o,n} = 0 \) w.p.a.1. Thus, we can rewrite \(U_n^* \) as

\[
U_n^* = \left[(P_{r_o,n}' P_{r_o,n})^{-1} P_{r_o,n}' Q_n \hat{\Pi}_{1st} - T_{a,n} \right] B_n = (Q_n P_{r_o,n} \hat{\Pi}_{1st} - T_{a,n}) B_n
\]
w.p.a.1. Results in (A.111) and (A.112) imply that \(u_n^* = U_n^* + o_p(1) \). Thus the limiting distribution of the last \(r_o - r_1 \) rows of \(U_n^* \) is identical to the limiting distribution of the last \(r_o - r_1 \) rows of \(U_n^* \). Let \(U_{r_0-r_1,n} \) be the last \(r_o - r_1 \) rows of \(U_n^* \), then by definition

\[
Q_{r_o-r_1,n} \hat{\Pi}_n B_n = U_{r_o-r_1,n} + o_p(1) = \Lambda_{r_o-r_1,n} Q_{r_o-r_1,n} B_n + o_p(1),
\]

where \(\Lambda_{r_o-r_1,n} \equiv \text{diag} \left[\phi_{r_1+1}(\hat{\Pi}_{1st}), \ldots, \phi_{r_o}(\hat{\Pi}_{1st}) \right] \). From (A.113) and Lemma A.4, we obtain

\[
n^{-\frac{1}{2}} Q_{r_o-r_1,n} \hat{\Pi}_n = n^{-\frac{1}{2}} \Lambda_{r_o-r_1,n} Q_{r_o-r_1,n} + o_p(1) = \Lambda_{r_o-r_1}(\hat{\phi}') Q_{r_o-r_1,o} + o_p(1),
\]

where \(\Lambda_{r_o-r_1}(\hat{\phi}') \equiv \text{diag} \left(\hat{\phi}_{r_1+1}, \ldots, \hat{\phi}_{r_o} \right) \) is a nondegenerated full rank random matrix, and \(Q_{r_o-r_1,o} \) denotes the probability limit of \(Q_{r_o-r_1,n} \) and it is a full rank matrix. From (A.114), we deduce that

\[
\lim_{n \to \infty} \sup \Pr \left(n^{-\frac{1}{2}} Q_{r_o-r_1,n} \hat{\Pi}_n = 0 \right) = 0
\]

which finishes the proof.

\[\boxed{\text{A.4. Proofs of Main Results in Section 5}}\]

Lemma A.5. Under Assumption 3.1 and Assumption 5.1, we have

\[
\begin{align*}
\text{(a)} & \quad n^{-1} \sum_{t=1}^n Z_{3,t-1} Z_{3,t-1}' \to p \Sigma_{33}; \\
\text{(b)} & \quad n^{-\frac{3}{2}} \sum_{t=1}^n Z_{3,t-1} Z_{2,t-1}' \to p 0; \\
\text{(c)} & \quad n^{-2} \sum_{t=1}^n Z_{2,t-1} Z_{2,t-1}' \to d \int B_{w_2} B_{w_2}'; \\
\text{(d)} & \quad n^{-\frac{1}{2}} \sum_{t=1}^n u_t Z_{3,t-1} \to d N(0, \Omega_{3} \otimes \Sigma_{33}); \\
\text{(e)} & \quad n^{-1} \sum_{t=1}^n u_t Z_{2,t-1} \to d \left(\int B_{w_2} d B_{d}'; \right); \\
\end{align*}
\]

and the quantities in (c), (d), and (e) converge jointly.

Lemma A.5 follows by standard arguments like those in Lemma A.1 and its proof is omitted. We next establish the asymptotic properties of the OLS estimator \((\hat{\Pi}_{1st}, \hat{B}_{1st})\) of \((\Pi_{1o}, B_o)\) and the asymptotic properties of the eigenvalues of \(\hat{\Pi}_{1st}\). The estimate \((\hat{\Pi}_{1st}, \hat{B}_{1st})\) has the following closed-form solution

\[
\left(\hat{\Pi}_{1st}, \hat{B}_{1st} \right) = \left(\hat{S}_{y_0y_1}, \hat{S}_{y_0x_0} \right) \left(\begin{array}{cc} \hat{S}_{y_1y_1} & \hat{S}_{y_1x_0} \\ \hat{S}_{x_0y_1} & \hat{S}_{x_0x_0} \end{array} \right)^{-1},
\]

where

\[
\begin{align*}
\hat{S}_{y_0y_1} &= \frac{1}{n} \sum_{t=1}^n \Delta Y_t \Delta Y_{t-1}', \\
\hat{S}_{y_0x_0} &= \frac{1}{n} \sum_{t=1}^n \Delta Y_t \Delta X_{t-1}', \\
\hat{S}_{y_1y_1} &= \frac{1}{n} \sum_{t=1}^n Y_{t-1} Y_{t-1}', \\
\hat{S}_{y_1x_0} &= \frac{1}{n} \sum_{t=1}^n Y_{t-1} \Delta X_{t-1}', \\
\hat{S}_{x_0y_1} &= \hat{S}_{y_1x_0} = \hat{S}_{x_0x_0} = \frac{1}{n} \sum_{t=1}^n \Delta X_{t-1} \Delta X_{t-1}'.
\end{align*}
\]
Denote \(Y_\tau = (Y_0, \ldots, Y_{n-1})_{m \times n}, \Delta Y = (\Delta Y_1, \ldots, \Delta Y_n)_{m \times n} \) and
\[
\hat{M}_0 = I_n - n^{-1} \Delta X' \hat{S}_{X|Y=0}^{-1} \Delta X,
\]
where \(\Delta X = (\Delta X_0, \ldots, \Delta X_{n-1})_{m \times n} \), then \(\hat{\Pi}_{1st} \) has the explicit partitioned regression representation
\[
\hat{\Pi}_{1st} = (\Delta Y \hat{M}_0 Y') (Y - \hat{M}_0 Y')^{-1} = \Pi_o + (U \hat{M}_0 Y') (Y - \hat{M}_0 Y')^{-1},
\]
where \(U = (u_1, \ldots, u_n)_{m \times n} \). Recall that \([\hat{\phi}_1(\hat{\Pi}_{1st}), \ldots, \hat{\phi}_m(\hat{\Pi}_{1st})]\) and \([\phi_1(\Pi_o), \ldots, \phi_m(\Pi_o)]\) are the ordered eigenvalues of \(\hat{\Pi}_{1st} \) and \(\Pi_o \) respectively, where \(\phi_j(\Pi_o) = 0 \) \((j = r_o + 1, \ldots, m) \). Let \(Q_n \) be the normalized left eigenvector matrix of \(\hat{\Pi}_{1st} \).

Lemma A.6. Suppose Assumption 3.1 and Assumption 5.1 hold.

(a) Recall \(D_{n,B} = \text{diag}(n^{-\frac{1}{2}} I_{r_o + m_p} n^{-1} I_{m - r_o}) \), then
\([\hat{\Pi}_{1st}, \hat{B}_{1st}] - (\Pi_o, B_o)\]

\[
Q_B^{-1} D_{n,B}^{-1} \]

has the following partitioned limit distribution
\[
\left[N \left(0, \Omega_u \otimes \Sigma_{z_{33}}^{-1} \right), \int dB u B' w_2 \left(\int B w_2 B'_w \right)^{-1} \right];
\]

(b) The eigenvalues of \(\hat{\Pi}_{1st} \) satisfy \(\phi_k(\hat{\Pi}_{1st}) \to_p \phi_k(\Pi_o) \) for \(\forall k = 1, \ldots, m \);

(c) For \(\forall k = r_o + 1, \ldots, m \), the eigenvalues \(\phi_k(\hat{\Pi}_{1st}) \) of \(\hat{\Pi}_{1st} \) satisfy Lemma A.2.(c).

The proof of Lemma A.6 is in the supplemental appendix of this paper. Lemma A.6 is useful, because the first step estimator \((\hat{\Pi}_{1st}, \hat{B}_{1st}) \) and the eigenvalues of \(\hat{\Pi}_{1st} \) are used in the construction of the penalty function.

Proof of Lemma 5.1. Let \(\Theta = (\Pi, B) \) and

\[
V_n(\Theta) = \sum_{t=1}^n \left\| \Delta Y_t - \Pi Y_{t-1} - \sum_{j=1}^p B_j \Delta Y_{t-j} \right\|^2
+ n \sum_{j=1}^p \lambda_{b,j,n} \left\| B_j \right\| + n \sum_{k=1}^m \lambda_{r,k,n} \left\| \Phi_{n,k}(\Pi) \right\|
\]

Set \(\tilde{\Theta}_n = (\hat{\Pi}_n, \hat{B}_n) \) and define an infeasible estimator \(\widetilde{\Theta}_n = (\Pi_{n,f}, B_o) \), where \(\Pi_{n,f} \) is defined in (A.6). Then by definition

\[
(\tilde{\Theta}_n - \Theta_o) Q_B^{-1} D_{n,B}^{-1} = (\Pi_{n,f} - \Pi_o, 0) Q_B^{-1} D_{n,B}^{-1} = O_p(1),
\]

where the last equality is by (A.9).

By definition \(V_n(\Theta_n) \leq V_n(\tilde{\Theta}_n) \), so that

\[
\begin{align*}
&\left\{ \text{vec} \left[(\tilde{\Theta}_n - \Theta_o) Q_B^{-1} D_{n,B}^{-1} \right] \right\}' W_n \left\{ \text{vec} \left[(\tilde{\Theta}_n - \Theta_o) Q_B^{-1} D_{n,B}^{-1} \right] \right\}' \\
&+ 2 \left\{ \text{vec} \left[(\tilde{\Theta}_n - \Theta_o) Q_B^{-1} D_{n,B}^{-1} \right] \right\}' \left\{ \text{vec} \left(D_{n,B} \sum_{t=1}^n Z_{t-1} u_t' \right) \right\} \\
&+ 2 \left\{ \text{vec} \left[(\tilde{\Theta}_n - \Theta_o) Q_B^{-1} D_{n,B}^{-1} \right] \right\}' W_n \left\{ \text{vec} \left[(\Theta_o - \tilde{\Theta}_o) Q_B^{-1} D_{n,B}^{-1} \right] \right\} \\
\leq & (d_{1,n} + d_{2,n})
\end{align*}
\]

(A.120)
where
\[W_n = D_{n, B} \sum_{t=1}^{n} Z_{t-1} Z_{t-1}^t D_{n, B} \otimes I_m(p+1), \]
\[d_{1, n} = n \sum_{j \in \mathcal{S}_B} \lambda_{b, j, n} \| B_{o, j} \| - \| \tilde{B}_{n, j} \|, \]
\[d_{2, n} = n \sum_{k \in \mathcal{S}_\phi} \lambda_{r, k, n} \| \Phi_{n, k}(\Pi_n, j) \| - \| \Phi_{n, k}(\tilde{\Pi}_n) \|. \]

Applying the Cauchy–Schwarz inequality to (A.120), we deduce that

\[\mu_n \left((\tilde{\Theta}_n - \Theta_0) Q_B^{-1} D_{n, B} \right)^2 - \left((\tilde{\Theta}_n - \Theta_0) Q_B^{-1} D_{n, B} \right) (c_{1, n} + c_{2, n}) \leq (d_{1, n} + d_{2, n}), \]

where \(\mu_n \) denotes the smallest eigenvalue of \(W_n \), which is bounded away from zero w.p.a.1.

\[c_{1, n} = \left\| D_{n, B} \sum_{t=1}^{n} Z_{t-1} u_t^t \right\| \quad \text{and} \quad c_{2, n} = \| W_n \| \left\| (\Theta_o - \tilde{\Theta}_n) Q_B^{-1} D_{n, B} \right\|. \]

By the definition of the penalty function, Lemma A.6 and the Slutsky theorem, we find that
\[d_{1, n} \leq n \sum_{j \in \mathcal{S}_B} \lambda_{b, j, n} \| B_{o, j} \| = O_P(n \delta_{b, n}) \quad \text{and} \quad d_{2, n} \leq n \sum_{k \in \mathcal{S}_\phi} \lambda_{r, k, n} \| \Phi_{n, k}(\Pi_n, j) \| = O_P(n \delta_{r, n}). \] (A.123) (A.124)

Using Lemma A.5 and (A.119), we obtain
\[c_{1, n} = O_P(1) \quad \text{and} \quad c_{2, n} = O_P(1). \] (A.125)

From the inequality in (A.121), the results in (A.123), (A.124) and (A.125), we deduce that
\[\left\| (\tilde{\Theta}_n - \Theta_0) Q_B^{-1} D_{n, B} \right\| = O_P \left(1 + n^{1/2} \delta_{b, n}^{1/2} + n^{1/2} \delta_{r, n}^{1/2} \right). \] (A.126)

which implies \(\| \tilde{\Theta}_n - \Theta_0 \| = O_P \left(n^{-1/2} + \delta_{b, n}^{1/2} + \delta_{r, n}^{1/2} \right) = o_p(1) \). This shows the consistency of \(\tilde{\Theta}_n \).

We next derive the convergence rate of the LS shrinkage estimator \(\tilde{\Theta}_n \). Using the similar arguments in the proof of Theorem 3.2, we get
\[\left| d_{1, n} \right| \leq cn^{1/2} \delta_{b, n} \\left\| (\tilde{\Theta}_n - \Theta_o) Q_b^{-1} D_{n, B} \right\| \] (A.127)

and
\[\left| d_{2, n} \right| \leq cn^{1/2} \delta_{r, n} \\left\| (\tilde{\Theta}_n - \Theta_o) Q_b^{-1} D_{n, B} \right\|. \] (A.128)

Combining the results in (A.126)-(A.127), we get
\[\left| d_{1, n} + d_{2, n} \right| \leq cn^{1/2} \delta_{n} \\left\| (\tilde{\Theta}_n - \Theta_o) Q_b^{-1} D_{n, B} \right\|. \] (A.129)

where \(\delta_n = \delta_{b, n} + \delta_{r, n} \). From the inequality in (A.121) and the result in (A.128),
\[\mu_n \left((\tilde{\Theta}_n - \Theta_0) Q_b^{-1} D_{n, B} \right)^2 - \left((\tilde{\Theta}_n - \Theta_0) Q_b^{-1} D_{n, B} \right) (c_{1, n} + c_{2, n} + n^{1/2} \delta_n) \leq 0, \] (A.129)
which together with (A.125) implies that \(\| (\hat{\Theta}_n - \Theta_n) Q_B^{-1} D_{n,B}^{-1} \| = O_p \left(1 + n^{2}\delta_n \right) \). This finishes the proof.

Proof of Theorem 5.1. The first result can be proved using similar arguments in the proof of Theorem 3.3. Specifically, we rewrite the LS shrinkage estimation problem as

\[
(T_n, \hat{B}_n) = \arg\min_{T, B_1, \ldots, B_p \in \mathbb{R}^{m \times m}} \frac{1}{n} \sum_{t=1}^{n} \left\| \Delta Y_t - P_n T Y_{t-1} - \sum_{j=1}^{p} B_j \Delta Y_{t-j} \right\| + n \sum_{j=1}^{p} \lambda_{b,j,n} \| B_j \|.
\]

(A.130)

By definition, \(\hat{\Pi}_n = P_n T_n \) and \(\hat{T}_n = Q_n \hat{\Pi}_n \) for all \(n \). Results in (5.8) follows if we can show that the last \(m - r_o \) rows of \(\hat{T}_n \) are estimated as zeros w.p.a.1.

The KKT optimality conditions for \(\hat{T}_n \) are

\[
\left\{ \begin{array}{l}
\frac{1}{n} \sum_{t=1}^{n} \left(\Delta Y_t - \hat{\Pi}_n Y_{t-1} - \sum_{j=1}^{p} \hat{B}_{n,j} \Delta Y_{t-j} \right) \left(P_n(k) Y_{t-1} \right) = \frac{n \lambda_{r,k,n} \hat{T}_n(k)}{2 \| \hat{T}_n(k) \|} & \text{if } \hat{T}_n(k) \neq 0 \\
\frac{1}{n} \sum_{t=1}^{n} \left(\Delta Y_t - \hat{\Pi}_n Y_{t-1} - \sum_{j=1}^{p} \hat{B}_{n,j} \Delta Y_{t-j} \right) \left(P_n(k) Y_{t-1} \right) < \frac{\lambda_{r,k,n}}{2} & \text{if } \hat{T}_n(k) = 0
\end{array} \right.
\]

for \(k = 1, \ldots, m \). Conditional on the event \(\{ Q_{\alpha,n}(k_o) \hat{\Pi}_n \neq 0 \} \) for some \(k_o \) satisfying \(r_o < k_o \leq m \), we obtain the following equation from the KKT optimality conditions

\[
\frac{1}{n} \sum_{t=1}^{n} \left(\Delta Y_t - \hat{\Pi}_n Y_{t-1} - \sum_{j=1}^{p} \hat{B}_{n,j} \Delta Y_{t-j} \right) \left(P_n(k_o) Y_{t-1} \right) = \frac{\lambda_{r,k,n}}{2}.
\]

(A.131)

The sample average in the left hand side of (A.36) can be rewritten as

\[
\frac{1}{n} \sum_{t=1}^{n} \left(\Delta Y_t - \hat{\Pi}_n Y_{t-1} - \sum_{j=1}^{p} \hat{B}_{n,j} \Delta Y_{t-j} \right) \left(P_n(k_o) Y_{t-1} \right) = \frac{1}{n} \sum_{t=1}^{n} \left[u_t - (\hat{\Theta}_n - \Theta_o) Q_B^{-1} Z_{t-1} \right] \left(P_n(k_o) Y_{t-1} \right)
\]

\[
= \frac{P_n'(k_o) \sum_{t=1}^{n} u_t Y_{t-1}'}{n} - \frac{P_n'(k_o) (\hat{\Theta}_n - \Theta_o) Q_B^{-1} \sum_{t=1}^{n} Z_{t-1} Y_{t-1}'}{n} = O_p(1)
\]

(A.132)

where the last equality is by Lemmas A.5 and 5.1. However, under the assumptions on the tuning parameters \(\lambda_{r,k,n} \rightarrow p \infty \), which together with the results in (A.131) and (A.132) implies that

\[
\Pr \left(Q_{\alpha,n}(k_o) \hat{\Pi}_n = 0 \right) \rightarrow 1 \text{ as } n \rightarrow \infty.
\]

As the above result holds for any \(k_o \) such that \(r_o < k_o \leq m \), this finishes the proof of (5.8).

We next show the second result. The LS shrinkage estimators of the transient dynamic matrices satisfy the following KKT optimality conditions:

\[
\left\{ \begin{array}{l}
\frac{1}{n} \sum_{t=1}^{n} \left(\Delta Y_t - \hat{\Pi}_n Y_{t-1} - \sum_{j=1}^{p} \hat{B}_{n,j} \Delta Y_{t-j} \right) \Delta Y_{t-j} = \frac{n \lambda_{b,j,n} \hat{B}_{n,i}}{2 \| B_{n,j} \|} & \text{if } \hat{B}_{n,j} \neq 0 \\
\frac{1}{n} \sum_{t=1}^{n} \left(\Delta Y_t - \hat{\Pi}_n Y_{t-1} - \sum_{j=1}^{p} \hat{B}_{n,j} \Delta Y_{t-j} \right) \Delta Y_{t-j}' < \frac{\lambda_{b,j,n}}{2} & \text{if } \hat{B}_{n,j} = 0
\end{array} \right.
\]
for any \(j = 1, \ldots, p \). On the event \(\{ \hat{B}_{n,j} \neq 0_{m \times m} \} \) for some \(j \in \mathcal{S}_B^c \), we get the following equation from the optimality conditions,

\[
\left\| n^{-\frac{1}{2}} \sum_{t=1}^{n} \left(\Delta Y_t - \hat{\Pi}_n Y_{t-1} - \sum_{j=1}^{p} \hat{B}_{n,j} \Delta Y_{t-j} \right) \Delta Y'_{t-j} \right\| = \frac{n^{1/2} \lambda_{b,j,n}}{2}.
\]

(A.133)

The sample average in the left hand side of (A.133) can be rewritten as

\[
n^{-\frac{1}{2}} \sum_{t=1}^{n} \left(\Delta Y_t - \hat{\Pi}_n Y_{t-1} - \sum_{j=1}^{p} \hat{B}_{n,j} \Delta Y_{t-j} \right) \Delta Y'_{t-j} = n^{-\frac{1}{2}} \sum_{t=1}^{n} \left[u_t - (\hat{\Theta}_n - \Theta_0) \hat{Q}_B^{-1} Z_{t-1} \right] \Delta Y'_{t-j} = n^{-\frac{1}{2}} \sum_{t=1}^{n} u_t \Delta Y'_{t-j} - n^{-\frac{1}{2}} (\hat{\Theta}_n - \Theta_0) \hat{Q}_B^{-1} \sum_{t=1}^{n} Z_{t-1} \Delta Y'_{t-j} = O_p(1)
\]

(A.134)

where the last equality is by Lemmas A.5 and 5.1. However, by the assumptions on the tuning parameters \(n^{1/2} \lambda_{b,j,n} \to \infty \), which together with (A.133) and (A.134) implies that

\[
\Pr(\hat{B}_{n,j} = 0_{m \times m}) \to 1 \text{ as } n \to \infty
\]

for any \(j \in \mathcal{S}_B^c \), which finishes the proof.

Proof of Theorem 5.2. Follow the similar arguments in the proof of Theorem 3.5, we normalize \(\beta_0 \) as \(\hat{\beta}_0 = [I_{r_o}, O_{r_o}]' \) to ensure identification, where \(O_{r_o} \) is some \(r_o \times (m - r_o) \) matrix such that \(\Pi_o = \alpha_o \beta_0 = [\alpha_o, \alpha_o O_{r_o}] \). From Lemma 5.1, we have

\[
\left(n\frac{1}{2} (\hat{\Pi}_n - \Pi_o) \alpha_o (\beta_o' \alpha_o)^{-1} n\frac{1}{2} (\hat{B}_n - B_o) n(\hat{\Pi}_n - \Pi_o) \beta_{o,\perp} (\alpha_{o,\perp} \beta_{o,\perp})^{-1} \right) = O_p(1),
\]

which implies that

\[
n\left(\hat{\Theta}_n - O_o \right) = O_p(1), \quad \hat{\Pi}_n - B_o = O_p(1), \quad n\frac{1}{2} (\hat{\alpha}_n - \alpha_o) = O_p(1),
\]

(A.135)

(A.136)

(A.137)

where (A.135) and (A.137) hold with similar arguments in showing (A.47) and (A.48) in the proof of Theorem 3.5.

From the results of Theorem 5.1, we deduce that \(\hat{\alpha}_n, \hat{\beta}_n \) and \(\hat{B}_{\mathcal{S}_B} \) minimize the following criterion function w.p.a.1,

\[
V_n(\Theta_\mathcal{S}) = \sum_{t=1}^{n} \left\| \Delta Y_t - \alpha \beta' Y_{t-1} - \sum_{j \in \mathcal{S}_B} B_j \Delta Y_{t-j} \right\|^2 + n \sum_{k \in \mathcal{S}_\mathcal{B}} \lambda_{r,k,n} \| \Phi_n,k(\alpha \beta') \| + n \sum_{j \in \mathcal{S}_B} \lambda_{b,j,n} \| B_j \|.
\]
Define $U_{1,n}^* = \sqrt{n} (a_n - a_0)$ and $U_{2,n}^* = \begin{bmatrix} \theta_n^* \end{bmatrix}'$, where $U_{2,n}^* = n (\hat{O}_n - O_o)$ and $U_{3,n}^* = \sqrt{n} (\hat{B}_S^* - B_o, S_B)$. Then

$$\begin{bmatrix} (\hat{\Pi}_n - \Pi_o) \\ (\hat{B}_S^* - B_o, S_B) \end{bmatrix} Q_S^{-1} D_{n,S}^{-1} = \begin{bmatrix} n^{-\frac{1}{2}} a_n U_{2,n} a_o (\beta_o a_o)^{-1} + U_{1,n}^*, U_{3,n}^*, \tilde{a}_n U_{2,n} \beta_o, (a_o, \beta_o) \end{bmatrix}^{-1}.$$

Denote

$$\Pi_n(U) = \begin{bmatrix} n^{-\frac{1}{2}} a_n U_{2,n} a_o (\beta_o a_o)^{-1} + U_{1,n}, U_{3,n}, \tilde{a}_n U_{2,n} \beta_o, (a_o, \beta_o) \end{bmatrix}^{-1},$$

then by definition, $U_n^* = (U_{1,n}^*, U_{2,n}^*, U_{3,n}^*)$ minimizes the following criterion function

$$V_n(U) = \sum_{t=1}^{n} \left(\| u_t - \Pi_n(U) D_{n,S}^{-1} Z_{S,t-1} \|^2 - \| u_t \|^2 \right)$$

$$+ n \sum_{k, \in S_B^\phi} \lambda_{r,k} \left[\| \Phi_n,k \left[\Pi_n(U) D_{n,S}^{-1} Q_S L_1 + \Pi_o \right] - \| \Phi_{n,k}(\Pi_o) \|^2 \right]$$

$$+ n \sum_{j, \in S_B} \lambda_{b,j,n} \left[\| \Pi_n(U) D_{n,S}^{-1} Q_S L_{j+1} + B_o, j \| - \| B_o, j \| \right].$$

where $L_j = diag(A_j, 1, \ldots, A_j, d_{S_B} + 1)$ with $A_j, 1 = 1$ and $A_i, j = 0$ for $i \neq j$ and $j = 1, \ldots, d_{S_B} + 1$.

For any compact set $K \in R^{m \times r_o} \times R^{r_o \times (m - r_o)} \times R^{m \times m d_{S_B}}$ and any $U \in K$, there is

$$\Pi_n(U) D_{n,S}^{-1} Q_S = O_p \left(n^{-\frac{1}{2}} \right).$$

Hence using similar arguments in the proof of Theorem 3.5, we can deduce that

$$n \sum_{k, \in S_B^\phi} \lambda_{r,k} \left[\| \Phi_n,k \left[\Pi_n(U) D_{n,S}^{-1} Q_S L_1 + \Pi_o \right] - \| \Phi_{n,k}(\Pi_o) \| \right] = o_p(1)$$

(A.138)

and

$$n \sum_{j, \in S_B} \lambda_{b,j,n} \left[\| \Pi_n(U) D_{n,S}^{-1} Q_S L_{j+1} + B_o, j \| - \| B_o, j \| \right] = o_p(1)$$

(A.139)

uniformly over $U \in K$.

Next, note that

$$\Pi_n(U) \rightarrow_p \begin{bmatrix} U_1, U_3, a_o U_2 \beta_o, (a_o, \beta_o) \end{bmatrix} \equiv \Pi_\infty(U)$$

(A.140)

uniformly over $U \in K$. By Lemma A.5 and (A.140), we can deduce that

$$\sum_{t=1}^{n} \left(\| u_t - \Pi_n(U) D_{n,S}^{-1} Z_{S,t-1} \|^2 - \| u_t \|^2 \right)$$

$$\rightarrow_d vec [\Pi_\infty(U)] \left[\begin{bmatrix} \Sigma_{S_n S_{n-1}}^{0} \otimes B_{w_2} B_{w_2}' \end{bmatrix} \right] vec [\Pi_\infty(U)]$$

$$- 2 vec [\Pi_\infty(U)]' vec \left[(V_{3,m}, V_{2,m}) \right] \equiv V(U)$$

(A.141)
uniformly over $U \in K$, where $V_{3,m} = N(0, \Omega_u \otimes \Sigma_{33S} \Sigma_{3S})$ and $V_{2,m} = (\int B_{w_2} dB_{w_2}^\prime)\prime$.

Using similar arguments in the proof of Theorem 3.5, we can rewrite $V(U)$ as

\[
V(U) = \text{vec}(U_1, U_3)^\prime \left(\Sigma_{33S} \Sigma_{3S} \otimes I_m \right) \text{vec}(U_1, U_3)
+ \text{vec}(U_2)^\prime \left[\beta_{2,o,\perp} (a_o,\perp \beta_{o,\perp})^{-1} \int B_{w_2} B_{w_2}^\prime \left(\beta_{2,o,\perp} (a_o,\perp \beta_{o,\perp})^{-1} \beta_{2,o,\perp}^\prime \otimes a_o^\prime a_o \right) \right] \text{vec}(U_2)
- 2\text{vec}(U_1, U_3)^\prime \text{vec}(V_{3,m})
- 2\text{vec}(U_2)^\prime \text{vec} \left[a_o^\prime V_{2,m} \left(\beta_{2,o,\perp} (a_o,\perp \beta_{o,\perp})^{-1} \beta_{2,o,\perp}^\prime \otimes a_o^\prime a_o \right) \right].
\]

(A.142)

The expression in (A.142) makes it clear that $V(U)$ is uniquely minimized at (U_1^*, U_2^*, U_3^*), where $(U_1^*, U_3^*) = V_{3,m} \Sigma_{33S}^{-1}$ and

\[
U_2^* = (a_o^\prime a_o)^{-1} a_o^\prime V_{2,m} \left(\int B_{w_2} B_{w_2}^\prime \right)^{-1} (a_o^\prime \beta_{o,\perp}) \beta_{2,o,\perp}^{-1}.
\]

(A.143)

From (A.135), (A.136), and (A.137), we see that U_n^* is asymptotically tight. Invoking the ACMT, we deduce that $U_n^* \rightarrow_d U^*$. The results in (5.11) follow by applying the CMT. ■

A.5. Proofs of Main Results in Section 6

Proof of Lemma 6.1.

(i) For any $k \in S_\phi$, by Lemma A.2.(b), $||\phi_k(\Pi_{1st})||^\omega \rightarrow_p ||\phi_k(\Pi_0)||^\omega > 0$, which implies that

\[
n^{\frac{1}{2}} \delta_{r,n} = \frac{n^{\frac{1}{2}} \lambda_{r,k,n}^*}{||\phi_k(\Pi_{1st})||^\omega} \rightarrow_p 0.
\]

(A.144)

On the other hand, for any $k \in S_\phi^c$, by Lemma A.2.(c), $||n \phi_k(\Pi_{1st})||^\omega \rightarrow_d ||\phi_{o,k}||^\omega = O_p(1)$, which implies that

\[
\frac{\lambda_{r,k,n}}{||n \phi_k(\Pi_{1st})||^\omega} \rightarrow_p \infty.
\]

(A.145)

This finishes the proof of the first claim.

(ii) We only need to show $n^{\frac{1}{2} + \omega} \lambda_{r,k,n} = o_p(1)$ for any $k \in \{r_1 + 1, \ldots, r_o\}$, because the other two results can be proved using the same arguments showing (A.144)–(A.145). For any $k \in \{r_1 + 1, \ldots, r_o\}$, by Lemma A.4.(d), $||n^{\frac{1}{2}} \phi_k(\Pi_{1st})||^\omega \rightarrow_d ||\phi_k^\prime||^\omega$ which is a nondegenerated and continuous random variable. As a result, we can deduce that

\[
n^{\frac{1}{2}} \lambda_{r,k,n} = \frac{n^{\frac{1}{2} + \omega} \lambda_{r,k,n}^*}{||n^{\frac{1}{2}} \phi_k(\Pi_{1st})||^\omega} = o_p(1),
\]

(A.146)

which finishes the proof of the second claim.

(iii) The proof follows similar arguments to (i) and is therefore omitted.