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Abstract

This article aims to provide some empirical guidelines for the practical implementation
of right-tailed unit root tests, focusing on the recursive right-tailed ADF test of Phillips
et al. (2011b). We analyze and compare the limit theory of the recursive test under different
hypotheses and model specifications.The size and power properties of the test under various
scenarios are examined and some recommendations for empirical practice are given. Some
new results on the consistent estimation of localizing drift exponents are obtained, which are
useful in assessing model specification. Empirical applications to stock markets illustrate
these specification issues and reveal their practical importance in testing.

I. Introduction

In left-tailed unit root testing, results are often sensitive to model formulation. In
effect, the maintained hypothesis or technical lens through which the properties of the data
are explored can influence outcomes in a major way. Formulating a suitable maintained
hypothesis is particularly difficult in the presence of non-stationarity because of the differ-
ent roles that parameters can play under the null hypothesis of a unit root and the alternative
of stationarity or trend stationarity. Many of these issues of formulation have already been
extensively studied in the literature on left-tailed unit root testing.

Suppose, for example, that the null hypothesis is difference stationarity and the alter-
native is stationarity. In a commonly used regression (Fuller, 1995)
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R1 : yt =�+�yt−1 +
k∑

i=1

�i�yt−i + "t , "t
i.i.d∼ (

0,�2
)
, (1)

the null �=1 is tested against the alternative �< 1 and the formulation (implicitly) allows
for a non-zero mean in yt under the stationary alternative even though � may be zero
under the null. This regression is empirically more appealing than a regression without
an intercept because of that flexibility. But if the null is difference stationarity and the
alternative is trend stationarity, then the regression model (1) is inappropriate because an
empirical trend may be misinterpreted as evidence of a unit root, leading to the augmented
formulation

R2 : yt =�0 +�1t +�yt−1 +
k∑

i=1

�i�yt−i + "t , "t
i.i.d∼ (0,�2), (2)

where we can test the null � = 1 against the alternative � < 1, even if �1 = 0 under the
null. Use of the maintained hypothesis R2 allows for both a unit root with drift (�0 �= 0
and �1 =0) under the null and trend stationarity (�0 �=0 and �1 �=0) under the alternative.
Similar issues, of course, arise with more complex maintained hypotheses that allow for
trend breaks and other deterministic components. The regression model of a left-tailed unit
root test (against stationary or trend stationary alternatives) needs to nest the alternative
hypothesis.1

Right-tailed unit root tests are also of empirical interest, particularly in detecting explo-
sive or mildly explosive alternatives. For example, to find evidence of financial bubbles,
Diba and Grossman (1988) applied right-tailed unit root tests to the fully sampled data.
Phillips, Wu and Yu (2011b, PWY hereafter) suggested sequential implementations of
right-tailed unit root tests to recursive subsamples; see also Phillips and J Yu (2011). As
in left-tailed unit root testing, the formulation of the null and alternative hypotheses and
the regression model specification are important in right-tailed tests. Different suggestions
appear in the literature and no empirical guidelines have yet been offered. For example,
Diba and Grossman used the regression model (2) whereas PWY employed model (1).
Further, Diba and Grossman did not allow for bubble crashes in the alternative whereas
various collapse mechanisms were considered in both Evans (1991) and P.C.B Phillips and
J. Yu (2009, Unpublished Manuscript).

The present article examines appropriate ways of formulating regressions for right-
tailed unit root tests to assess empirical evidence for explosive behaviour. To the best of
our knowledge, this is the first time these formulation issues have been discussed in the
literature. The discussion here focuses on the test procedures in PWY. Other tests for
explosive behaviour are possible and many of these have been evaluated in simulations
by Homm and Breitung (2012). Their simulations show that, while ex post analysis of the
full sample data favors Chow type unit root tests for the detection of break points in the
transition between unit root and explosive behaviour, recursive tests such as those in PWY
perform well in early detection of such transitions and are preferable in this anticipative
role as a monitoring system. Homm and Breitung (2012) also confirm that the PWY tests
are more robust in the detection of multiple bubble episodes than the other tests they

1
Similar arguments can be found in Dickey, William and Millar (1986).
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considered. The primary intent of PWY was to develop recursive procedures that could
assess whether Greenspan’s remark on financial exuberance had empirical content at the
time he made that statement in December 1995. It is in this context as an early warning
device in market surveillance that the PWY tests were developed. Tests for bubbles using
adaptive rolling window (RW) methods have also been developed in concurrent work of
Phillips, Shi and Yu (2011a). RW methods are particularly useful in detecting and dating
multiple bubble episodes.The specification issues raised in the present article apply equally
well to all of these other break tests for financial exuberance.

The PWY test and the other tests discussed above belong to a class of reduced form
approaches to bubble detection. Conventional unit root tests against stationary alternatives
are similar reduced form methods with the explicit purpose of testing shock persistence:
evidence of a unit root in data is interpreted as evidence of persistent shocks rather than tran-
sitory shocks, with obvious economic implications. In such tests the focus is accordingly
very often on the null hypothesis, although we also have tests such as KPSS (Kwaitkowski
et al., 1992) of the null hypothesis of stationarity. In right sided unit root tests, the main
focus is usually on the alternative hypothesis because we are particularly interested in
whether movements in the data reflect evidence of exuberance or departure from funda-
mentals which commonly embody martingale rather than submartingale characteristics.
In financial markets for instance, economic surveillance teams in central banks are now
interested in whether data are indicative of market excesses or mispricing in relation to
fundamentals; investors are interested in timing investment decisions in relation to market
behaviour; and, most especially, regulators and policy makers are concerned to have early
indication of any market excesses so that there is time for policy response. To the extent
that right sided unit root tests are informative about mildly explosive or submartingale
behavior in the data, these tests are useful as a form of market diagnostic or warning alert.

The rest of the article is organized as follows. Section II discusses appropriate choices
for the null and alternative hypotheses and the formulation of the fitted regression model,
suggesting a new model with a localized drift process whose magnitude may be determined
empirically. Section III derives the limit distributions of the ADF statistic. Section IV
discusses the explosive model of Evans (1991) for the alternative hypothesis.The sequential
right-tailed ADF test, along with its finite sample and limit distributions, are explored in
Section V. Section VI reports size and power properties for the sequential right-tailed
ADF test. Using the proposed model formulations we apply the test to Nasdaq and S&P
500 market data in section VII. Section VIII concludes. The finite sample distribution
of the ADF statistic and proofs of Proposition 1 are given in Appendix S1. Appendix A
develops new limit theory for the consistent estimation of the localizing exponent in the
drift process. Supporting Information is available in the original version (Phillips, Shi and
Yu, 2012).

II. Formulating hypotheses and the fitted regression

The literature on right-tailed unit root testing has employed several different specifications
for the null hypothesis. In PWY the null hypothesis is

H01: yt = yt−1 + "t , "t
i.i.d∼ (0,�2),

© 2013 The Department of Economics, University of Oxford and John Wiley & Sons Ltd
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so that �yt has mean zero and yt has no deterministic trend. The iid error assumption may
be relaxed but is convenient to retain for expository purposes in discussing the specification
issues that are our main concern in the present article. In contrast to H01, Diba and Grossman
(1988) used the null model

H03: yt = �̃+ yt−1 + "t , with a constant intercept �̃,

so that yt has deterministic trend behaviour when �̃ �=0. Under this null, the behaviour of
yt is dominated by the deterministic drift �̃t.

A model that bridges these two null hypotheses involves a weak (local to zero) intercept
with the form

H02 : yt = �̃T −� + yt−1 + "t with ��0. (3)

Here yt has an array formulation, the mean of �yt is �̃T −� =O(T −�), and yt has a determin-
istic drift of the form �̃t/T � whose magnitude depends on the sample size and the localizing
parameter �. When �> 0, this drift term is small relative to a linear trend. The null model
H02 becomes H01 when �→∞ and H03 when �→0.

Localized drift models of the type (3) are useful in allowing for intermediate cases
where there may be drift in the data but it may not be the dominating component. Much
financial data over short and medium terms are of this type. As yt = �̃t/ T � +∑t

j=1 "j +y0, it
is apparent that the drift is small in relation to the stochastic trend when �> 1

2 and equal to
or stronger than the stochastic trend when �∈ [0, 1

2 ]. When �= 1
2 , the standardized output

T −1/ 2yt behaves asymptotically like a Brownian motion with drift, which is appropriate in
modelling some macroeconomic and financial time series. Moreover, empirical consider-
ations often indicate that the constant is sample size or frequency dependent. For instance,
as suggested by a referee, an annual return of 8% in stock prices corresponds to a monthly
drift of 0.08/ 12=0.0067 or a daily drift of 0.08/ 250=0.00032.

The localizing coefficient � is not a choice or control parameter that is selected by the
empirical investigator. Nonetheless, equation (3) may be formulated and on prior grounds
it may be assumed that � lies in the negligible effect region �>0.5 or the contributing effect
region ��0.5. Importantly, � is not consistently estimable when �> 0.5 because the drift
component is dominated by the stochastic trend. In such cases, estimates of � typically
converge to 1/ 2, corresponding to the order of the stochastic trend (see Appendix A). Of
course in these cases, since the drift effect is negligible relative to the stochastic trend,
estimation is of lesser importance but still may be useful in assessing the trend order as
stochastic. On the other hand, � is consistently estimable when �∈ [0, 1

2 ], although only at
a slow logarithmic rate when �= 1

2 , as shown in Appendix A.
One feature of the null hypothesis (3) is that it allows for an interpretation of the data in

terms of random cycles about a trend. When 0��< 0.5 the deterministic trend effect is a
dominating characteristic.The null model therefore allows for deterministic drift combined
with random wandering behaviour that is associated with a unit root in the system. In this
event, the null offers a potential explanation of what might otherwise be regarded as appar-
ent bubble activity in the data as a random cycle carrying persistent shocks about a deter-
ministic trend. It is particularly helpful for econometric tests to afford some discriminatory
capability between bubbles and this competing interpretation. Allowing for specifications
such as equation (3) gives us the opportunity to do so, as we explain in what follows.

© 2013 The Department of Economics, University of Oxford and John Wiley & Sons Ltd
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Similarly, different alternative hypotheses have been used in the literature on right-tailed
unit root tests. The most obvious ones are the following explosive processes:

HA1 : yt =�yt−1 + "t , �> 1, (4)

HA2 : yt = �̃+�yt−1 + "t , �> 1, (5)

HA3 : yt = �̃+ �t +�yt−1 + "t , �> 1. (6)

These three models mirror alternatives considered in left-tailed unit root tests where
�< 1.

Explosive processes have a long history. In economics, Hicks (1950) suggested the
possibility of explosive cyclical behaviour contained by certain structural floors and ceilings
with the cycles arising from multiplier-accelerator dynamics. In statistics, White (1958) and
Anderson (1959) studied the asymptotic properties of the least squares (LS) estimator under
equation (4). In recent work, Phillips and Magdalinos (2007) suggested mildly explosive
processes of the type

HA4 : yt =�T yt−1 + "t with �T =1+ cT −�, (7)

where c > 0, �∈ (0, 1), T is the sample size and �T is a moving parameter sequence. This
model is called mildly explosive because the autoregressive coefficient �T is in an explosive
region of unity (so that �T → 1+ as T → ∞) that lies beyond the usual ‘local to unity’
interval where �T =1+c/T for which the random wandering limit behaviour of the process
is similar to that of the limiting behaviour of a unit root process. Under HA4, the behaviour
of yt resembles that of an explosive time series rather than that of a unit root process.

Model (5) is formulated with a non-zero intercept and produces a dominating deter-
ministic component that has an empirically unrealistic explosive form (P. C. B. Phillips
and J. Yu, Unpublished Manuscript 2009, PY hereafter). Similar characteristics apply a
fortiori in the case of the inclusion of a deterministic trend term in model (6). These forms
are unreasonable for most economic and financial time series and an empirically more
realistic description of explosive behaviour is given by models (4) and (7), which are both
formulated without an intercept or a deterministic trend.

The empirical regression of the right-tailed unit root test given in Diba and Grossman
(1988) is R2. This regression has both a constant as well as a deterministic trend. Since the
presence of either of these two terms is empirically unrealistic when � > 1, regression R2

is not suitable for right-tailed unit root testing. By contrast, regression R1 is empirically
more realistic and PWY implemented a right-tailed unit root test using this regression
formulation.

In light of the above discussion, we recommend that right-tailed unit root tests may
be suitably formulated with a null hypothesis H02 and an empirical regression R1. As H02

depends on �, we discuss the asymptotic distribution of the test statistic and examine the
size and the power properties of the right-tailed unit root test for different values of � in
H02. Simulation findings reported below provide further guidelines for the selection of the
null and the regression model with associated test critical values.

We are particularly interested in the robustness of tests to the value of the localizing
coefficient � that determines the strength of the drift function in the data. In general,
our findings indicate that the recommended test is robust to values of � > 0.5, that is for

© 2013 The Department of Economics, University of Oxford and John Wiley & Sons Ltd
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models where the drift component in the data is not the dominant data characteristic. When
the drift is dominant, i.e. when �∈ (0.0.5), test results are sensitive to the value of �. It
therefore seems sensible in empirical work to report results for a range of values of �
so that any such sensitives are evident in the empirical findings. As indicated earlier, the
parameter � may also be estimated (see Appendix A), and when � ∈ (

0.0.5], consistent
estimation of � is possible. These estimation results might be included in the empirical
findings.

III. Full-sample right-tailed unit root tests

Right-tailed unit root tests, like their left-tailed counterparts, have asymptotic distributions
that depend on the specification of the null hypothesis and the regression model. As dis-
cussed above, a suitable regression model for right-tailed testing is R2 and an empirically
reasonable null is a unit root process with a drift of the form �̃T �, arising from H02. The
right-tailed unit root test discussed in this section is the ADF test applied to the full sample.
Other unit root tests can be studied in exactly the same manner. Note that the magnitude of
the drift is inversely related to parameter �.Accordingly, we assume that the data generating
process is given by the model

�yt =�+	yt−1 +
p−1∑
k=1

�k�yt−k + "t , "t
i.i.d.∼ (0,�2), (8)

with �= �̃T −� and null hypothesis H02 :	=0.The assumption of i.i.d errors may be relaxed
in deriving the limit theory under both the null (Phillips, 1987; Phillips and Solo, 1992)
and the alternative (Lee, 2011) but is retained for convenience here.2

Lemma 1. Under the model (8) and null hypothesis H02 with � > 0.5, the asymptotic
distribution of the ADF t-statistic is

ADF
L→

1
2 [W 2(1)−1]−W (1)

∫ 1

0
W (s) ds{∫ 1

0
W 2(s) ds −

[∫ 1

0
W (s) ds

]2
}1/ 2 :=F1(W ), (9)

where W is a standard Wiener process and
L→ denotes convergence in distribution; If H02

holds with 0��< 0.5, then the asymptotic ADF distribution is

ADF
L→

[∫ 1

0
sdW (s)−

∫ 1

0
W (s)ds

](∫ 1

0
s2 ds

)−1/ 2

:=F2(W ). (10)

The proof is subsumed within the proof of proposition 1.
Remark 1. The asymptotic ADF distribution when � > 0.5 is identical to that for the

PWY formulation despite the inclusion of an intercept in the null model. The intercept
does not affect the limit distribution because the implied drift in the process has smaller
order than the stochastic trend.

2
The finite sample distributions of the ADF statistic have a similar pattern to Figure 2.
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Remark 2. Suppose the null hypothesis is specified as H03. The asymptotic ADF
distribution in this case3 is identical to that of the case when 0��<0.5 [equation(10)]. Here
the implied drift has higher order of magnitude and behaves like a linear deterministic trend.

Remark 3. The asymptotic ADF distribution when �=0.5 is

ADF
L→(D� −A�C�)(B� −A2

�)−1/ 2, (11)

with A� = 1
2 �̃ +�

∫ 1
0 W (s)ds, B� = 1

3 �̃
2 +�2

∫ 1
0 W (s)2ds + 2�̃�

∫ 1
0 W (s)sds, C� = W (1) and

D� = �̃[W (1) − ∫ 1
0 W (s)ds] + 1

2�[W (1)2 − 1]. Importantly, the limit theory in this case
depends on the nuisance parameters �̃ and �, so it is not invariant unless we include a trend
in the regression or adjust for the trend in some other way (as, for example in Schmidt and
Phillips, 1992).

IV. Specifications for explosive behaviour

Two specifications for the alternative hypothesis, both formulated without an intercept or
a deterministic trend, are given by model (4) and model (7) in Section II. Neither model
has structural breaks. But as argued in Evans (1991, p. 924) ‘bubbles do not appear to
be empirically plausible unless there is a significant chance that they will collapse after
reaching high levels.’This argument is consistent with other models of explosive processes
such as the business cycle model of Hicks (1950), where each cycle has an explosive
expansion phase and a subsequent downswing due to disinvestment proceeding at the rate
of deterioration of capital. Thus, more complete specification of the alternative hypothesis
requires the inclusion of a downswing or bubble collapse process. This section considers
a simple time series model proposed by Evans (1991).

The DGP proposed by Evans (1991) consists of a market fundamental component Pf
t ,

which follows a random walk process

P f
t = ũ+P f

t−1 +�f "t , "t
i.i.d.∼ N (0, 1), (12)

and a periodically collapsing explosive bubble component such that

Bt+1 =
−1Bt"B,t+1, if Bt < b (13)

Bt+1 = [�+ (�
)−1�t+1(Bt −
�)]"B,t+1, if Bt �b, (14)

where 
−1 > 1 and "B,t = exp(yt − 2/ 2) with yt
i:i:d∼ N (0, 2). �t follows a Bernoulli process

which takes the value 1 with probability � and 0 with probability 1−�. � is the remaining
size after the bubble collapse.The bubble component has the property that Et(Bt+1)=
−1Bt .
By construction, the bubbles collapse completely in a single period when triggered by the
Bernoulli process realization.

The market fundamental equation (12) may be obtained by combining a random walk
dividend process with a Lucas asset pricing equation as follows

3
The asymptotic ADF distribution under this case is well documented in the unit root literature; see Phillips (1987)

and Phillips and Perron (1988)
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TABLE 1

Parameter settings

ũ �f Pf
0 
 b B0 � �  �

Yearly 0.740 7.869 41.195 0.952 1 0.50 0.85 0.50 0.05 20
Monthly 0.131 3.829 94.122 0.985 1 0.50 0.85 0.50 0.05 150

Dt =�+Dt−1 + "Dt , "Dt
i.i.d.∼ N (0,�2

D), (15)

Pf
t = �


(1−
)2
+ 


1−

Dt , (16)

where � is the drift of the dividend process and �2
D the variance of the dividend innovations.

The drift (ũ) of the market fundamental process is �
(1−
)−1 and the standard deviation is
�f =�D
(1−
)−1. In Evans (1991), the parameter values for � and �2

D were matched to the
sample mean and sample variance of the first differences of real S&P500 dividends from
1871 to 1980. The value for the discount factor 
 is equivalent to a 5% annual interest rate.
So the parameter settings in Evans (1991) correspond to a yearly frequency. In accordance
with our empirical application, we consider a parameter set calibrated to monthly data.
Correspondingly, the parameters � and �2

D are determined as the sample mean and sample
variance of the monthly first differences of real Nasdaq dividends as described in the
application section (normalized to unity at the beginning of the sample period). These are
�=0.0020 and �2

D =0.0034, respectively. The discount factor equals 0.985. We can then
calculate the values of ũ, �f , Pf

0 based on those of �, �2
D, D0.

The settings of the parameters in the bubble components [equations (13)–(14)] are
the same as those in Evans (1991). The asset price Pt is equal to the sum of the market
fundamental component and the bubble component, namely Pt =Pf

t +�Bt , where� controls
the relative magnitudes of these two components. The parameter settings are given in
Table 1 for yearly and monthly data.

V. The sup ADF test

Evans (1991) argued that right-tailed unit root tests, when applied to the full sample,
have little power to detect periodically collapsing bubbles and demonstrated this effect in
simulations. The low power of standard unit root tests is due to the fact that periodically
collapsing bubble processes behave rather like an I (1) process or even a stationary linear
autoregressive process when the probability of bubble collapse is non-negligible.

To overcome the problem identified in Evans, PWY proposed a sup ADF (SADF) statis-
tic to test for the presence of explosive behaviour in a full sample. In particular, the methods
rely on forward recursive regressions coupled with sequential right-sided unit root tests.
Similar methods using other test procedures like the cumulative sum (CUSUM) test have
been considered recently in Homm and Breitung (2012). Generalized versions of the sup
ADF test that employs variable rolling windows are also possible (see Phillips et al. 2011a).

These sequential tests assess period by period evidence for unit root behaviour against
explosive alternatives. If the right-tailed ADF test is employed in each period, the test
statistic proposed by PWY is the sup value of the corresponding ADF sequence. In this

© 2013 The Department of Economics, University of Oxford and John Wiley & Sons Ltd
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setup, the alternative hypothesis of the test therefore includes the periodically collapsing
explosive behaviour. The null hypotheses are exactly the same as that for the right-tailed
unit root test in equation (3).

Suppose r is the window size of the regression (in proportion to the full sample size)
for the right-tailed unit root test. In the sup ADF test, the window size r expands from r0

to 1 through recursive calculations. The smallest window size r0 is selected to ensure that
there are sufficient observations to initiate the recursion. The number of observations in
the regression is Tr = [Tr], where [·] signifies the integer part of its argument and T is the
total number of observations.

The fitted regression model for the sup ADF test is R1. The corresponding ADF
t-statistic is denoted by ADFr. To test for the existence of bubbles, inferences are based on
the sup ADF statistic SADF(r0)= supr∈[r0,1] ADFr. This notation highlights the dependence
of SADF on the initialization parameter r0.

Limit distribution of sup ADF

Proposition 1. Under the model (8) and null hypothesis H02 with �> 0.5, the asymptotic
distribution of the sup ADF statistic is

SADF(r0)
L→ sup

r∈[r0, 1]

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
2 r[W (r)2 − r]−

∫ r

0
W (s)dsW (r)

r1/ 2

{
r
∫ r

0
W (s)2ds −

[∫ r

0
W (s)ds

]2
}1/ 2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

:=F3(W , r0), (17)

If H02 holds with 0��< 0.5, the sup ADF statistic converges to

SADF(r0)
L→ sup

r∈[r0,1]

{[∫ r

0
sdW (s)−

∫ r

0
W (s)ds

](∫ r

0
s2ds

)−1/ 2
}

:=F4(W , r0). (18)

Remark 4. The asymptotic ADFr distribution when 0��< 0.5 is

ADFr
L→

[∫ r

0
sdW (s)−

∫ r

0
W (s) ds

](∫ r

0
s2ds

)−1/ 2

, (19)

which is distributed as standard normal. Suppose rA, rB ∈ [r0, 1] and rA �= rB, the asymptotic
ADFrA distribution and the asymptotic ADFrB distribution are correlated since both are
functions of the same standard Wiener process.

Remark 5. The asymptotic distribution of the SADF statistic when �=0.5 is

SADF(r0)
L→ sup

r∈[r0,1]
[r−1/ 2(rDr,� −Ar,�Cr,�)(rBr,� −A2

r,�)−1/ 2],

with Ar,� = 1
2 �̃r2 +�

∫ r

0 W (s)ds, Br,� = 1
3 �̃

2r3 +�2
∫ r

0 W (s)2ds+2�̃�
∫ r

0 W (s)sds, Cr,� =W (r)
and Dr, � = �̃[rW (r)−∫ r

0 W (s)ds]+ 1
2�[W (r)2 − r]. Similar to the ADF statistic, in this case

the limit theory depends on the nuisance parameters �̃ and �.
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Figures 1(a,b) examine the sensitivity of the asymptotic distributions of SADF when
� > 0.5 and 0 � � < 0.5 with respect to r0. The distributions are obtained from 20000
replications, approximating the Wiener process by partial sums of standard normal vari-
ates with 5000 steps, and using a standard Gaussian kernel density estimate and Silver-
man rule for bandwidth choice (Silverman, 1986). The smallest window size r0 is set to
{0.2, 0.15, 0.10, 0.05}.

Figure 1(a) displays the asymptotic distributions when � > 0.5 (i.e. F3(W , r0)) while
Figure 1(b) is for the case 0��<0.5 (i.e. F4(W , r0)). Under both cases, the asymptotic dis-
tributions of the SADF statistic move sequentially to the right as r0 decreases.4 In addition,
the asymptotic distribution F4(W , r0) has larger values for the 90%, 95% and 99% quantiles.
For example, the 95% critical values of F3(W , r0) with r0 ={0.2, 0.15, 0.10, 0.05} are respec-
tively 1.39, 1.44, 1.50, 1.57 while those of F4(W , r0) are respectively 2.79, 2.84, 2.90, 3.00.
Obviously, the critical values are sensitive to r0 and this needs to be taken into account
in empirical work. The smallest window size r0 is a choice parameter and will typically
be selected closer to zero when the early part of the sample is of interest and needs to be
included in the recursion, subject to degrees of freedom in the ADF regression.

The finite sample distribution of sup ADF

The finite sample distribution of the SADF statistic depends on the sample size T , the value
of the drift in the null hypothesis (depending on T and �) and the smallest window size r0.
Figure 2 describes the finite sample distributions of the SADF statistic obtained by kernel
density estimation for T = 400, r0 = 0.1, �̃ = 1,5 and �={1, 0.8, 0.6, 0.5, 0.4, 0.2, 0}. The
bold solid lines are the asymptotic distributions and the dotted lines are the finite sample
distributions. For given T and r0 the finite sample distribution moves towards F3(W , 0.1)

Figure 1. The asymptotic distributions of the SADF statistic with r0 ={0.20, 0.15, 0.10, 0.05}

4
Intuitively, when r0 is smaller, the feasible range of r (i.e. [r0, 1]) becomes wider and hence the parameter space

of the distribution of limT→∞ ADFr expands. The asymptotic SADF distribution, which applies the sup function to
the aforementioned distribution, then moves sequentially towards the right as r0 decreases.

5
With this normalization, �T =T −� and the localization exponent � is the sole determinant of drift magnitude. See

the discussion in Appendix A.
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Figure 2. The finite sample distributions of the SADF statistic when T = 400, r0 = 0.1 and � =
{1, 0.8, 0.6, 0.5, 0.4, 0.2, 0}
as � increases and shifts towards F4(W , 0.1) as � decreases. An obvious separation occurs
when �=0.5. The discrepancies among the finite sample distributions are negligible with
�∈{0.6, 0.8, 1} but become larger for �∈{0.4, 0.2, 0}.

The finite sample SADF distribution is invariant to�when�>0.5 but varies significantly
with � when � is less than 0.5.

VI. Size and power comparison

The 90%, 95% and 99% quantiles of the asymptotic distributions of the SADF statistic when
� > 0.5 and 0 � � < 0.5 (i.e. F3(W , r0) and F4(W , r0)) are presented in Table 2. As before,
critical values are obtained by simulations with 20,000 replications of Wiener processes in
terms of partial sums of standard normal variates with 5,000 steps.

Table 3 gives sizes for the SADF test based on nominal asymptotic critical values
with sample sizes T = 100, 200 and 400. The nominal size is 5%. The DGP is specified
according to the respective null hypotheses with �̃ = 1, � = {1, 0.8, 0.6, 0.4, 0.2, 0}. The
number of replications is 20,000. The lag order is determined by BIC with maximum lag
length 12. The smallest window size has 40 observations. Table 3 shows that for all cases
with �> 0.5 there is no obvious size distortion when using the asymptotic critical values,6

whereas there are significant size distortions for some cases with 0��< 0.5. In particular,
we note that there is little size distortion for the case � = 0 but size distortion becomes
progressively more severe when the value of � increases to 0.5. For example, the size of
the SADF test is 0.045, 0.021 and 0.002 for �={0, 0.2, 0.4} respectively when the sample
size T = 400 and r0 = 0.1.7 The jump in size between the two cases �= 0.4 and �= 0.6
is caused by the discontinuity in the asymptotic theory between �� 0.5 and 0 � � < 0.5,
as shown in Figure 2(a),(b). The finite sample distributions approach F4(W , r0) as �→ 0

6
There are significant size distortions when using the significance test proposed by Campbell and Perron (1991)

(with the maximum lag length 12) to determine the lag order. For example, the size of the SADF test when �=1 is
0.119, 0.122 and 0.122 for T ={100, 200, 400} respectively.

7
We observe similar patterns of size distortion when r0 =0.4 for all sample sizes. However, when T is large, there

is some advantage to using a small value for r0 so that the sup ADF test does not miss any opportunity to capture an
explosive phase in the data, as discussed earlier in the text.
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TABLE 2

Asymptotic critical values of the SADF statistic
(against explosive alternative)

F3(W , r0) F4(W , r0)

90% 95% 99% 90% 95% 99%

r0 =0.4 0.86 1.17 1.77 2.29 2.60 3.21
r0 =0.2 1.10 1.39 1.95 2.47 2.79 3.40
r0 =0.1 1.23 1.51 2.04 2.62 2.90 3.48

Note: Asymptotic critical values are obtained using
20,000 replications and partial sums with 5, 000 steps.

TABLE 3

Sizes of the SADF test (using asymptotic critical values).
The data generating process is specified according to the respective

null hypothesis. The nominal size is 5%

�> 0.5 0��< 0.5

�=1 �=0.8 �=0.6 �=0.4 �=0.2 �=0

T =100 and r0 =0.4 0.043 0.046 0.056 0.004 0.019 0.039
T =200 and r0 =0.2 0.045 0.046 0.056 0.003 0.020 0.044
T =400 and r0 =0.1 0.048 0.048 0.056 0.002 0.021 0.045

Note: Size calculations are based on 20,000 replications.

which causes the reduction in the size distortion observed in Table 3 as �→ 0. Note that
in all these cases for 0��< 0.5, the distortion is towards conservative tests.

To assess test power we assume the DGP is Evans (1991) periodically collapsing
explosive process, with both yearly and monthly parameters settings (see Table 1). The
sample sizes considered for those two parameters settings are T = {100, 200} and T =
{100, 200, 400}, respectively. For each parameter and sample size setting, we calculate
powers of the sup ADF test under four different specifications in the null hypothesis:
�> 0.5,8 �=0.4, �=0.2 and �=0, all with �̃=1. The powers for cases �> 0.5 and �=0
are calculated from the 95% quantile of F3(W , r0) and F4(W , r0), respectively (Table 2).
The power calculations for �=0.4 and �=0.2 are based on the 95% quantiles of the finite
sample distributions (Table 4). These calculations are intended to show how power may
depend on �, while noting that � is not a choice parameter and is typically unknown to
the empirical investigator. The number of replications in all simulations reported below is
20,000.

From Table 5, test power evidently increases with sample size. Under the yearly
parameter setting and T =200, power for �> 0.5, �=0.4, �=0.2 and �=0 is 20%, 21%,
21% and 22% higher than when T = 100. Power for � > 0.5 is always higher than when
0 � � < 0.5, as might be expected because a significant deterministic trend (0 � � < 0.5)
provides an alternate mechanism for capturing the variation in periodically explosive data.

8
This is due to the observation that as long as � is greater than 0.5, the discrepancy among the finite sample critical

values of the SADF statistic is negligible.
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TABLE 4

The finite sample critical values of the SADF statistic
(against explosive alternative)

�=0.4 �=0.2

90% 95% 99% 90% 95% 99%

T =100 and r0 =0.4 1.27 1.61 2.28 1.86 2.20 2.85
T =200 and r0 =0.2 1.50 1.81 2.44 2.13 2.45 3.05
T =400 and r0 =0.1 1.63 1.91 2.46 2.29 2.59 3.17

Note: The finite sample critical values are obtained by simulation with
20, 000 replications.

TABLE 5

Powers of the SADF test under Evans (1991) periodically
collapsing explosive behaviour

�> 0.5 �=0.4 �=0.2 �=0

Yearly parameter settings
T =100 and r0 =0.4 0.43 0.36 0.27 0.22
T =200 and r0 =0.2 0.63 0.57 0.48 0.44
Monthly parameter settings
T =100 and r0 =0.4 0.58 0.49 0.34 0.26
T =200 and r0 =0.2 0.75 0.67 0.53 0.48
T =400 and r0 =0.1 0.86 0.81 0.71 0.68

Note: Power calculations are based on 20, 000 replications.

In addition, when 0 � � < 0.5 , power decreases as �→ 0. From the lower panel of Table
5 (monthly parameters settings), when T =400, for instance, the power of the test is 86%
when �> 0.5 and then declines from 81% to 68% as � changes from 0.4 to zero.

VII. Empirics

We conduct an empirical application of the sup ADF test to the Nasdaq and S&P 500. The
Nasdaq composite index and the Nasdaq dividend yield are sampled from February 1973
to July 2009 (constituting 438 observations), obtained from DataStream International. The
consumer price index, which is used to convert stock prices and dividends into real series,
is downloaded from the Federal Reserve Bank of St Louis. The real S&P 500 stock price
index and the real S&P 500 stock price index dividend are obtained from Robert Shiller’s
website.

Table 6 displays the SADF statistics for the logarithmic real Nasdaq index and the
logarithmic real Nasdaq dividend, along with respective critical values for �> 0.5, �=0.4,
�= 0.2 and �= 0 using the normalized form of the localized drift parameter �T = �̃T −�

with �̃ = 1 under the null (2). Table 7 presents the SADF statistic and respective critical
values for the S&P 500 price-to-dividend ratio. The lag order is determined by BIC with
maximum lag length 12. The smallest fractional window r0 is set to be 0.1. As in the
simulation experiments, we use asymptotic critical values for the specifications �> 0.5 and
�=0 and finite sample critical values for the specifications �=0.4 and �=0.2. Although
the parameter � is generally unknown to the investigator, we report critical values for
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TABLE 6

The sup ADF test of the NASDAQ stock market

SADF statistic
Log Real NASDAQ Index 2.56
Log Real NASDAQ Dividend −1.07

�> 0.5 �=0.4 �=0.2 �=0

90% 1.23 1.63 2.29 2.62
95% 1.51 1.91 2.59 2.90
99% 2.04 2.51 3.16 3.48

Note: Critical values of the sup ADF test under the specification
of � = 0.4 and � = 0.2 are obtained by simulations with 20, 000
replications and sample size 438. The smallest fractional window r0 is
set to be 0.1.

TABLE 7

The sup ADF test of the S&P 500 stock market

SADF statisticPrice-to-
dividend ratio 3.44

�> 0.5 �=0.4 �=0.2 �=0

90% 1.23 1.70 2.43 2.62
95% 1.51 1.99 2.73 2.90
99% 2.04 2.56 3.26 3.48

Note: Critical values of the sup ADF test under the
specification of � = 0.4 and � = 0.2 are obtained
by simulations with 20, 000 replications and sam-
ple size 1,680. The smallest fractional window r0 is
set to be 0.1.

these cases so that the robustness of the empirical results can be assessed against model
specifications with various values of �. The finite sample critical values for the Nasdaq and
the S&P 500 markets are obtained from simulations with 20, 000 replications and sample
size 438 and 1, 680 respectively.

As is evident by Table 6, for the logarithmic real Nasdaq index, we reject the unit
root null hypothesis in favour of the explosive alternative at the 10% significance level
under model specifications with �> 0.5, �=0.4 and �=0.2, whereas we fail to reject the
null hypothesis at the 10% significance level under the specification of � = 0 (although
the difference between the test statistic and the critical value is very small in this case).
Furthermore, we cannot reject the null hypothesis of a unit root at the 10% significance
level for the logarithmic real Nasdaq dividend under all specifications considered.

In other words, for model specifications with � > 0.5, � = 0.4 and � = 0.2, we find
evidence of explosive behaviour in the Nasdaq stock market using the sup ADF test.
However, if the null hypothesis is specified as

H03 : yt =1+ yt−1 + "t , "t
i.i.d.∼ N (0,�2), (20)
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Figure 3. The deterministic drift component. (a) the logarithmic real NASDAQ index; (b) the S&P 500
price-to-dividend ratio

(i.e. the specification corresponding to �= 0), the sup ADF finds no evidence of bubble
existence in the Nasdaq during the sample period. This null hypothesis implies that the
long-term average return of the stock index is 100%, which is obviously unrealistic and
can be excluded on prior grounds. That is, for this parameterization of the drift the null
specification has a constant proportional growth component in the specification that implies
a null generating mechanism yt = t +∑t

s=1 "s +y0 with a strongly dominant linear trend that
gives a growth rate of 100% a year. Evidence discussed below indicates that the localizing
drift coefficient � for this series is close to 1, providing confirmatory empirical rejection
of equation (20).

From Table 7, we reject the unit root null hypothesis against the explosive alternative at
the 10% significance level under all model specifications for the S&P 500 price-to-dividend
ratio. Accordingly, the SADF test provides strong evidence for the presence of explosive
behaviour in both the Nasdaq (confirming the conclusion of PWY) and the S&P 500 stock
markets, showing that the evidence is robust to all specifications of the null model (with
the exception of extreme models such as equation (20) for the Nasdaq for which there is
little prior or empirical support).

As shown in Appendix A, the localizing drift exponent � in the null model can be
consistently estimated when 0 � �� 0.5. When � > 0.5 the dominating component is the
stochastic trend and estimates of � accordingly converge in probability to 0.5. The empir-
ical estimate obtained by the method of Appendix A (fitted intercept) is �̂= 0.99 for the
logarithmic real Nasdaq index and �̂= 0.30 for the S&P 500 price-to-dividend ratio. The
deterministic drift component (i.e. �T t) of the logarithmic real Nasdaq index and the S&P
500 price-to-dividend ratio is displayed in Figure 3(a,b) respectively. The bubble charac-
ter of the data are prominent in these figures even with the removal of the deterministic
drift.

VIII. Conclusion

This article has investigated various formulations of the null and alternative hypotheses
in studying empirical evidence of exuberance in economic and financial time series. The
formulations involve different specifications of the regression models used for the construc-
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tion of empirical tests of exuberance, which are shown to impact both the finite sample and
the asymptotic distributions of the tests.

Our findings suggest an empirical model specification for use in practical work. The
empirical model does not include a linear deterministic trend in the regression but has a
fitted intercept and thereby allows for some deterministic drift in the process under the null
hypothesis of a unit root. The drift coefficient is generally unknown to the investigator but
may be consistently estimated even when it is local to zero, although the rate of convergence
is slow in this case, as discussed in Appendix A. Moreover, empirical findings may be
assessed against a wide range of specifications that include drift in the null. The test relies
on estimation (or recursive estimation) of the autoregressive coefficient in the model

�yt =�T +	yt−1 +
k∑

i=1

�i�yt−i + "t ,

where the null hypothesis (	 = 0) allows for an intercept �T = �̃T −� that is local to zero.
The limit distributions of the ADF and SADF statistics are derived for cases where �> 0.5,
� = 0.5 and 0 � � < 0.5 with corresponding asymptotic critical values that may be used
to assess evidence in support of the null or alternative (	 > 0) contingent on the model
specification for a range of values of �. This approach permits the investigator to assess
the robustness of the findings to different specifications of the deterministic trend in the
model. When ��0.5, the parameter may be consistently estimated using the method given
in Appendix A.
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Appendix A

Estimation of the localizing trend exponent �

Suppose 0���0.5. We develop a procedure for the consistent estimation of � in this case.
Consider the null model

yt =�T t +
t∑

s=1

us + y0 =�T t +�t + y0, (21)

where �T =�T −� with � �=0, �t =
∑t

s=1 us, and ut =�(L)"t =
∑∞

j=0 �j"t−j with
∑∞

j=0 j|�j|<

∞ and "t
i.i.d.∼ (0,�2) with finite fourth moment. The fitted slope regression estimator is

�̂T =
T∑

t=1

tyt

/ T∑
t=1

t2 =�T +
T∑

t=1

t(�t + y0)
/ T∑

t=1

t2,

or in the fitted intercept case �̆T =∑T
t=1 t̃yt /

∑T
t=1 t̃

2 =�T +∑T
t=1 t̃(�t +y0)/

∑T
t=1 t̃

2
, where

t̃ = t −T −1
∑T

s=1 s. For y0 =op(
√

T ), we have by standard methods

�T :=
√

T (�̂T −�T )∼ T −5/ 2
∑T

t=1 t�t

T −3
∑T

t=1 t2

L→3�(1)�
∫ 1

0
W (s)s ds =:�,

�̆T :=
√

T (�̆T −�T )∼ T −5/ 2
∑T

t=1 t̃�t

T −3
∑T

t=1 t̃
2

L→12�(1)�
∫ 1

0
W (s)

(
s − 1

2

)
ds =: �̆

so that �̂T − �T
p→0 and �̆T − �T

p→0. Hence, both �̂T and �̆T are
√

T consistent. The
following derivations are identical for both these estimates so we confine attention to �̆T .

Take an expanded probability space where �̆T
p→ �̆. In this space we have �̆T =�̆+op(1),

and then

�̆T =�T +T −1/ 2�̆+op(T −1/ 2). (22)
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This implies

log |�̆T |= log |�T +T −1/ 2�̆+op(T −1/ 2)|
= log

∣∣∣ �

T �
+T −1/ 2�̆+op(T −1/ 2)

∣∣∣
=−� log T + log |�|+ T �

�T 1/ 2
�̆+op

(
1

T 1/ 2−�

)
.

Hence
log |�̆T |
log T

=−�+ log |�|
log T

+ 1

�T 1/ 2−� log T
�̆+op

(
1

T 1/ 2−� log T

)
.

We therefore have the rate estimator

�̆T =− log |�̆T |
log T

p→�, (23)

and

T 1/ 2−� log T

(
�̆T −�+ log |�|

log T

)
L→−�̆/�. (24)

Both equations (23) and (24) also hold in the original probability space. Note that �̆T is
consistent for all 0 � � � 0.5 and all � �= 0. However, equation (24) indicates that �̆T is
consistent but has a second order bias of −(log |�|/ log T ). Similar results hold in the no
intercept case. In particular, using �̂T we have the rate estimator

�̂T =− log
∣∣�̂T

∣∣
log T

p→�, (25)

and the corresponding limit distribution is

T 1/ 2−� log T

(
�̂T −�+ log |�|

log T

)
L→−�/�. (26)

Note that �̆T and �̂T remain consistent for �= 1
2 but at a slow logarithmic rate and with

appropriately modified limit variates �̆ and �.
If the model has no drift component, yt =

∑t
s=1 us + y0 =�t +op(

√
T ). Similarly, when

�> 0.5, we have yt = (�/ T �)t +∑t
s=1 us =�t +op(

√
T ) and in place of equation (22) �̆T =∑T

t=1 t̃(�t + y0)/
∑T

t=1 t̃
2 =T −1/ 2�̆+op(T −1/ 2) in the enlarged space. Then,

log |�̆T |= log |T −1/ 2�̆+op(T −1/ 2)|=−1

2
log T + log |�̆|+op(1),

and it follows that �̆T =−(log |�̆T |/ log T )→p
1
2 . The same result holds for �̂T and when

�= 1
2 . In this case both �̆T and �̂T consistently estimate the dominant stochastic trend order

(0.5).
Rate estimators like �̂T and �̆T are affected by scaling just like intercepts and deter-

ministic trends, none of which are invariant under scale transformations of the data. In
the present case, the intercept �T =�/ T � is influenced by two parameters. As the above
analysis shows, the rate parameter �< 1

2 can be consistently estimated and the limit theory
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equations (24) and (26) show that there is a second order bias effect in the limit distribution
that involves log |�|/ log T . The specification of the weak trend parameter �T =�/ T � means
that data scaling potentially affects both parameters (�,�). Normalization such as |�|= 1
means that scale effects are either explicitly or implicitly carried by estimators of � like �̂:
explicitly if we incorporate the effect directly into the parameterization by changing � (for
given T ) to preserve the normalization9 or implicitly in terms of the bias effect when �
is estimated, as shown in the limit theory. These potential effects need to be considered in
interpreting rate estimates.

Supporting Information

Additional Supporting Information may be found in the online version of this article:

Appendix S1. The finite sample distribution of ADF and proofs.

9
For example, given T and setting �T =�/ T � =1/ T �+� implies �=−(log �/ log T ) and normalization effectively

transforms � �−→ �− (log �/ log T )=�′ so that scale effects are absorbed into the parameter �.
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