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a b s t r a c t

First difference maximum likelihood (FDML) seems an attractive estimation methodology in dynamic
panel data modeling because differencing eliminates fixed effects and, in the case of a unit root,
differencing transforms the data to stationarity, thereby addressing both incidental parameter problems
and the possible effects of nonstationarity. This paper draws attention to certain pathologies that arise in
the use of FDML that have gone unnoticed in the literature and that affect both finite sample performance
and asymptotics. FDML uses the Gaussian likelihood function for first differenced data and parameter
estimation is based on thewhole domain overwhich the log-likelihood is defined. However, extending the
domain of the likelihood beyond the stationary region has certain consequences that have a major effect
on finite sample and asymptotic performance. First, the extended likelihood is not the true likelihood even
in the Gaussian case and it has a finite upper bound of definition. Second, it is often bimodal, and one of
its peaks can be so peculiar that numerical maximization of the extended likelihood frequently fails to
locate the global maximum. As a result of these pathologies, the FDML estimator is a restricted estimator,
numerical implementation is not straightforward and asymptotics are hard to derive in cases where the
peculiarity occurs with non-negligible probabilities. The peculiarities in the likelihood are found to be
particularly marked in time series with a unit root. In this case, the asymptotic distribution of the FDMLE
has bounded support and its density is infinite at the upper bound when the time series sample size
T → ∞. As the panel width n → ∞ the pathology is removed and the limit theory is normal. This result
applies even for T fixed and we present an expression for the asymptotic distribution which does not
depend on the time dimension. We also show how this limit theory depends on the form of the extended
likelihood.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Maximum likelihood estimation based on first-differenced data
(FDML) has recently attracted attention as an alternative estima-
tion methodology to conventional maximum likelihood (ML) and
GMM approaches in dynamic panel models (Hsiao et al., 2002;
Kruiniger, 2008). FDML appears to offer certain immediate advan-
tages in dynamic panels with fixed effects. Unlike unconditional
MLwhere fixed effects are treated as parameters to estimate, FDML
is free from the incidental parameter problem (Neyman and Scott,
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1948) because nuisance individual effects have already been elim-
inated before deriving the likelihood. In addition, the differenced
data are stationary whether the original data are stationary or in-
tegrated, and hence the presence of a unit root does not appear
to require any special treatment or modification of the likelihood
function. This feature is deemed especially useful when panel data
show a large degree of persistence.

These advantages, coupled with the computational conve-
nience of modern numerical optimization, have spurred the use of
FDMLE in applied research. The empirical literature dates back to
MaCurdy (1982). But there has been little research on themethod’s
properties or on certain of its peculiarities such as negative vari-
ance estimates that are known to arise in its implementation by
numerical optimization. Most importantly, it seems not to have
been recognized in the literature that FDMLE is not a maximum
likelihood procedure because the ‘likelihood’ that is used in opti-
mization is based on analytically extending the stationary likeli-
hood outside the stationary region. The resulting function is not a

http://dx.doi.org/10.1016/j.jeconom.2013.03.003
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true likelihood outside the stationary region even though it is well
defined for certain nonstationary regions. This feature of FDMLE
is subtle, which partly explains why it has gone unnoticed in the
literature for so long. But it has significant implications and leads
to further complications, including an upper bound restriction on
the domain that affects both finite sample theory and asymptotic
behavior. An investigator may, of course, choose a priori to restrict
the domain of the autoregressive roots to the unit circle, but in this
event an appropriate asymptotic theory that accounts for the re-
striction would need to be used in practical work.

Wilson (1988) provided an exact likelihood for the differenced
data generated from a stationary AR(1) process based on Ansley’s
(1979) expression for ARMA(1, 1), and discovered in simulations
that FDMLE outperforms the maximum likelihood (ML) estima-
tor in terms of mean squared error for small samples. Hsiao et al.
(2002); hereafter HPT) studied FDML in linear dynamic panelmod-
elswithwide short panels – that is panelswith large cross sectional
dimension (n) and short time series length (T ) – where conven-
tional ML is inconsistent due to the effects of incidental param-
eters. The authors appealed to standard regularity conditions for
the asymptotic theory of FDMLE, and used Newton–Raphson opti-
mization in simulations to compute the FDMLE. Their simulations
confirmed the superior performance of the FDMLE in terms of bias,
root mean square error, test accuracy and power over a range of
commonly used panel estimators. HPT do note that FDMLE ‘‘some-
times breaks down completely’’ giving negative variance estimates
and estimates of the autoregressive coefficient greater than unity
but they ‘‘skipped those replications altogether’’ and provided no
analysis of these anomalies.

The presentworkwill explain these anomalies andmake it clear
why standard asymptotic arguments do not apply to derive the
limit theory of the FDMLE. The most closely related work to the
present paper is Kruiniger (2008). Kruiniger derived asymptotics
for the FDMLE in the panel AR(1) model with large nT (i.e., for n
or T large or both n and T large) for the stationary case, and with
large n and arbitrary T for the unit root case. Though first differ-
encing uses up one observation for each panel, there appears to be
no serious information loss in comparisonwith other methods like
ML because one degree of freedom is needed in conventionalML to
identify each individual intercept. Curiously, the asymptotics that
are nowavailable speak to the opposite, although this has not so far
been discussed in the literature. Indeed, for AR(1) panelswith large
n, large T and a unit root, the LSDV estimator (which is theMLE un-
der normality of the idiosyncratic error, conditional on initial ob-
servations and without any restriction of covariance stationarity)
is known to have a N(0, 51

5 ) limit distribution when the bias is cor-
rected (Hahn andKuersteiner, 2002). By contrast, the FDMLE is also
asymptotically normal, has no asymptotic bias and its limit vari-
ance is 8 (Kruiniger, 2008), thereby producing an asymptotic gain
in efficiency at unity over bias corrected LSDV. This reduction in
asymptotic variance between the two ML approaches is partly ex-
plained by the fact that the FDMLE uses a stationarity condition for
the differenced data in setting up the likelihood. Such a condition
does not allow for the fact that differenced data is explosive when
the AR coefficient exceeds unity, thereby leading to an implied re-
striction on the model and parameter space that affects both finite
sample and asymptotic behavior.

Recent work by Han et al. (2011, forthcoming) shows that
there are other estimators involving difference transformations
that have performance superior to the bias corrected MLE in dy-
namic panels. These authors give a panel fully aggregated estima-
tor (FAE) that aggregates the effects of a full set of differences in
a simple linear regression framework. The panel FAE has a limit-
ing N(0, 9) distribution after centering and standardization, and
like the FDMLE is more efficient asymptotically than the bias cor-
rected MLE with no stationarity restriction imposed (i.e., the bias
corrected LSDV) for the autoregressive coefficient in a vicinity of
unity. There is much other recent work on dynamic panel mod-
els, but none of that work relates to the issues connected with the
FDMLE procedure that are discussed in the present paper.

For all the attractive properties of FDMLE, some of its most
important features have not been noted or studied in the literature.
These features, as we demonstrate here, play a critical role in the
asymptotic theory and in the finite sample performance of the
estimator. First and most importantly, the ‘likelihood’ function
considered in the panel literature that is used for numerical
computation of the FDMLE is not in fact the correct likelihood
function over thewhole domain. As indicated above, it is a pseudo-
likelihood based on extending the stationary likelihood outside its
natural domain of definition to a bounded part of the nonstationary
region. Second, this pseudo ‘likelihood’ function can behave so
wildly that numerical maximization procedures can often fail
to identify the global maximum. These two issues combine to
make a careful analytical treatment of FDMLE very difficult. On
the one hand, the asymptotic theory depends subtly on the
(rapidly changing) form of the likelihood function near its natural
upper boundary which arises from the extension of the stationary
likelihood. On the other hand, the wild behavior of the likelihood
itself often compromises the numerical evaluation of the FDMLE,
giving rise to anomalous results such as those reported above.

The present paper explains these pathologies and theirmaterial
impact on the finite sample distribution and limit distribution of
the FDMLE.We also show how the effects of this anomaly diminish
when the FDML is applied to dynamic panel data as the cross-
sectional dimension increases.

The next section lays out the model, notation and discusses
the FDML ‘likelihood’. Section 3 examines the anomaly that arises
when the data are persistent, considering in turn the time series
(n = 1), panel (n > 1) and panel asymptotic case (n → ∞).
Section 4 concludes. Proofs are given in the Appendix and refer-
ence is made to the original version of this paper (Han and Phillips,
2010) for further technical details. Throughout the remainder of
the paper it will be convenient to use the notation Tm = T −m and
T̃m = T + m.

2. Model, notation and the FDMLE

We consider a Gaussian panel yit generated by the simple panel
dynamic model yit = ηi(1 − ρ0) + ρ0yit−1 + εit , where εit ∼

iid N(0, σ 2
0 ) and −1 < ρ0 ≤ 1.1 Suppose that yit is observed for

i = 1, . . . , n and t = 0, . . . , T .
The likelihood function is derived from the joint distribution of

∆yi := (∆yi1, . . . ,∆yiT )′. Under the stationarity assumption for
∆yit , we have

∆yi ∼ N

0, σ 2

0 CT (ρ0)

, (1)

where CT (ρ0) is a Toeplitz matrix whose leading row is formed
from the elements 1

1+ρ0
{2,−(1−ρ0),−ρ0(1−ρ0), . . . ,−ρT−2

0 (1−
ρ0)}. Direct evaluation leads to det CT (ρ0) = JT (ρ0)/(1 + ρ0),
where JT (ρ) = T̃1 − T1ρ (e.g., Galbraith and Galbraith, 1974; HPT,
2002; Kruiniger, 2008; Han, 2007). Thus, for −1 < ρ ≤ 1 and
σ 2 > 0, the log-likelihood function for∆yi is

ln L(ρ, σ 2) = −
nT
2

ln 2π −
nT
2

ln σ 2
−

n
2
ln

JT (ρ)
1 + ρ


−

1
2σ 2

n
i=1

∆y′

iCT (ρ)
−1∆yi. (2)

1 The analysis can be extended to the model where yit is replaced with yit −

β ′xit and xit contains exogenous regressors. The focus in the present paper is
on the estimation of ρ and the peculiarities of its limit theory. Asymptotics for
the corresponding estimates of β may be derived in a standard way and are not
discussed here.
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This log-likelihood is valid for ρ ∈ (−1, 1]. If the true ρ is
strictly smaller than 1 and if the parameter space (for ρ) is lim-
ited to (−1, 1], then the asymptotic theory for the FDMLE can be
derived by invoking generic theories for MLE under the condition
that the log-likelihood (2) behaves regularly. However, if the true
persistence parameter is ρ0 = 1 and if the parameter space for ρ
is limited to (−1, 1], then the true parameter lies on the bound-
ary of the parameter space and nonstandard results (both for time
series and for panels) are to be expected. In that case the limit dis-
tribution involves a positive probabilitymass at the boundary. (See
Geyer, 1994; Andrews, 1999, 2001.)

Rather than limiting the domain of ρ to (−1, 1], one can
analytically extend the function (2) to the whole domain over
which the criterion ln L(ρ, σ 2) is defined. This is the approach
taken (either explicitly or implicitly) in recent work by HPT (2002)
and Kruiniger (2008). This domain for (ρ, σ 2) is (−1, T+1

T−1 ) ×

(0,∞) (cf., Kruiniger, 2008), which contains ρ = 1 in its interior.
By means of this analytic extension, HPT (2002) and Kruiniger
(2008) proceed to deduce asymptotic normality for the FDMLE
as n → ∞ for all ρ in (−1, 1]. However (2) is the correct log-
likelihood function only for ρ ∈ (−1, 1], but not for ρ ∈ (1, T+1

T−1 )

because (1) does not hold for ρ0 > 1.2 Thus, maximizing (2) over
the whole domain does not yield an MLE but rather a restricted
estimator that depends on an extension of the stationary likelihood
beyond its natural domain of definition. In consequence, deriving
asymptotics using standard regularity properties and stationary
limit theory for the MLE and ‘‘information matrix’’ calculations to
obtain the variance is not justifiedwhen the true value ofρ is unity.

A related issue stems from the boundary behavior of (2) as
ρ →

T+1
T−1 . Though ln L(ρ, σ 2) is differentiable on (−1, T+1

T−1 ) ×

(0,∞) as Kruiniger (2008), Lemma 7, finds, the behavior of the
‘log-likelihood’ function may be very violent especially for small
n. Fig. 1 shows a sample path generated with ρ0 = 1, σ 2

0 = 1,
n = 1 and T = 101, inwhich case the upper bound of the extended
domain is 102

100 = 1.02 for the ρ parameter. When the profile ‘log-
likelihood’ criterion function ln L∗(ρ) ≡ maxσ 2>0 ln L(ρ, σ 2) is
plotted over the whole domain (−1, 1.02), we obtain the curve
shown in the left graphic, and numerical optimization (using the
‘optimize’ function of R) finds a maximizer at 0.99 (the vertical
line of alternating dots and dashes). However, when the profile
criterion is plotted on very fine grids near the upper bound, we
obtain the dramatically different curve shown in the right graphic
of Fig. 1. This curve reveals that the profile criterion behaves with
a violent fluctuation as ρ approaches the upper bound 1.02 and
that 0.99 is only a local maximizer. In particular, the criterion rises
sharply and then rapidly falls forρ values close to the upper bound.
(The sharp peak is smooth and differentiable as the inset graph

2 This is most easily seen by noting that ∆yit is explosive when ρ0 > 1 and its
second order moments depend on t , so the process is not stationary. In particular

∆yit = ∆uit = εit + (ρ0 − 1)
t−1
j=1

ρ
j−1
0 εit−j + ρt−1

0 (ρ0 − 1)ui0,

so that

Var(∆uit ) =


1 + (ρ0 − 1)2


ρ
2(t−1)
0 − 1
ρ2
0 − 1


σ 2
0 + (ρ0 − 1)2ρ2(t−1)

0 Var(ui0), (3)

which depends on t explosively when ρ0 > 1. Moreover, when ρ0 > 1 and

σ 2
0 > 0, Var(∆uit ) is the same over t only if ρ

2(t−1)
0
ρ20−1

σ 2
0 + ρ

2(t−1)
0 Var(ui0) = 0,

i.e., if Var(ui0) = σ 2
0 /(1 − ρ2

0 ) < 0, which is impossible. Note also that σ 2
0 CT (ρ0)

is Toeplitz whereas the covariance matrix when ρ0 > 1 is not Toeplitz as it is
not lead diagonal constant — as shown in (3). So σ 2

0 CT (ρ0) is not the covariance
matrix of∆yi when ρ0 > 1. It follows that the FDML ‘likelihood’ (2) is not the true
likelihood between 1 and (T + 1)/(T − 1).
shows.) This anomaly in the criterion function will not be detected
unless the graph is drawn very carefully and, for the considered
sample path, the globalmaximum (the vertical dashed lines)which
is attained in this region may be missed entirely, as it usually is
with standard optimization algorithms unless they are carefully
tuned. For other sample paths the profile criterion may lack such
sharp peaks and be unimodal, while yet other sample paths may
produce bimodal profile criteria for which the global maxima are
attained at the other peak for a smaller (stationary) value of ρ. Fine
grid searches combined with other optimization tools may help in
finding global maxima in particular situations but raise difficulties
in usability because extremely fine grids of unknown precision
may be required for some sample paths and will not be known
a priori, as is evident from Fig. 1. In sum, the criterion function
(2) has the potential for unstable, rapidly fluctuating behavior in
a small region close to the upper bound of the extended domain of
definition. This instability affects both the numerical evaluation of
the FDMLE and its limit theory.

Because (2) is not a proper log-likelihood for the domain (1,
T+1
T−1 ) × (0,∞), general results on MLE for stationary time series
cannot be employed to derive asymptotic results for the FDMLE
even though (2) is differentiable infinitelymany times over the full
domain (−1, T+1

T−1 ) × (0,∞), a property which Kruiniger (2008)
notes. Furthermore, due to the described peculiarity of the pro-
file ‘log-likelihood’ criterion near the upper bound T+1

T−1 , we can-
not expect numerical studies based on simulations conductedwith
standard numerical maximization methods to provide reliable re-
sults. Also, in order to apply a general theory for extremumestima-
tors (which usually involves the use of a quadratic approximation),
some basic properties of (2) should be known so that the existence
of the extremum estimator is verified and the global maximum
(rather than a local one) is characterized and used. It is therefore
necessary to examine the criterion function itself carefully rather
than the first order conditions. The fact that the upper bound de-
pends on the sample size T provides a further source of complica-
tion if T → ∞ because the upper limit of the support shrinks to
unity.

We handle these issues by using a tractable algebraic expres-
sion for the criterion function which allows a direct treatment for
asymptotic analysis and numerical calculation. The unit root limit
theory for the FDMLE developed in the present paper takes an in-
teresting and revealing form. In particular, the FDMLE is shown
to have an asymptote with infinite density at the upper limit of
its support when n = 1, a new feature that is the result of the
anomalies in the criterion function and the fact that the FDMLE is
a restricted estimator. This peculiarity diminishes and then disap-
pears as the objective function is averaged across a large number of
cross sections.3 Simulations are done using an explicit solution to
the profile objective function by finding the roots of a quartic equa-
tion which avoids problems of numerical optimization, and these
corroborate the new asymptotic theory.

The remainder of this section provides an explicit expression
for the criterion function in (2), shows the existence of the global
maximizer, and presents a method to compute the FDMLE which
avoids the numerical difficulties associated with peculiarities of
the type shown in Fig. 1.

The determinant and inverse of CT (ρ) can be analytically evalu-
ated (see, e.g., Kruiniger, 2008;Han and Phillips, 2010). Specifically,

QiT (ρ) := ∆y′

iCT (ρ)
−1∆yi =

T
t=1

uit(ρ)
2
−

1 − ρ

JT (ρ)


T

t=1

uit(ρ)

2

,

3 Simulations conducted for T = 30 and n = 1 with 5000 replications exhibited
a 30% probability of the estimator from a standard numerical optimization (using
R’s optimize function with the parameter space restricted to [−1 + 10−12, 1 +
2
29 − 10−12

]) being different from the global maximizer. This probability falls to
approximately 7.8%, 1.4% and 0.08% for n = 5, n = 15 and n = 30, respectively.
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0

Fig. 1. Multimodal average profile ‘log-likelihood’ for a sample path where numerical optimization finds a local maximum (the lines of alternating dots and dashes) instead
of the global maximum (the dashed lines). The left graph drawn over the whole domain (−1, T+1

T−1 ) fails to reveal the real shape of the criterion near the upper bound, while
the right panel illustrates the violent upshoot and rapid decline as ρ approaches the upper bound.
where uit(ρ) = zit − ρzit−1, zit = yit − yi0 and JT (ρ) = T̃1 − T1ρ as
before. Note that QiT (ρ) is strictly positive if −1 < ρ < T+1

T−1 and
∆yi ≠ 0.

Let ln L∗(ρ)denote the profile log likelihood function ln L∗(ρ) =

maxσ 2>0 ln L(ρ, σ 2). For given ρ, ln L(ρ, σ 2) is differentiable with
respect to σ 2 and is globally concave in σ 2, so the maximizer
of ln L(ρ, σ 2) for given ρ satisfies the first order condition
∂ ln L(ρ,σ 2)

∂σ 2 = 0. Simple algebra shows that the maximizer is σ 2
=

(nT )−1n
i=1 QiT (ρ) for given ρ. Profiling gives

ln L∗(ρ) = −
nT
2

ln 2π −
nT
2

ln


1
nT

n
i=1

QiT (ρ)



−
n
2
ln

JT (ρ)
1 + ρ


−

nT
2
. (4)

The FDMLE ρ̂ maximizes the profile ‘likelihood’ criterion func-
tion (4), which is defined for −1 < ρ < T+1

T−1 . It is clear that
ln L∗(ρ) → −∞ as ρ → −1 or ρ →

T+1
T−1 and thus ρ̂ exists in

the interval (−1, T+1
T−1 ) almost surely. The first order conditions are

∂
∂ρ

ln L(ρ̂, σ̂ 2) = 0 and ∂

∂σ 2 ln L(ρ̂, σ̂ 2), and by transforming them
Kruiniger (2008) derives a quartic equation

a0 + a1ρ̂ + a2ρ̂2
+ a3ρ̂3

+ a4ρ̂4
= 0, (5)

where some lengthy algebra gives a0 = T̃1c0 + T̃ 2
1 c1 − 2d0 − T̃1d1,

a1 = −T1c0 − T̃1T1c1 − T̃ 2
1 c2 + T̃3d1 + T̃1d2, a2 = −T1T̃1c1 +

T̃1T2c2 + T̃1d1 − T̃1d2, a3 = T 2
1 c1 + T1T̃2c2 − T1d1 − T̃1d2, and

a4 = −T 2
1 c2 + T1d2.4 This equation can be solved directly, for ex-

ample by Euler’s method (see Appendix B of Han and Phillips, 2010
for details), and σ̂ 2 is obtained by σ̂ 2

=
1
nT

n
i=1 QiT (ρ̂). Eq. (5)

removes the singularity that occurs in the criterion ln L(ρ, σ 2) at
ρ = −1 and ρ =

T+1
T−1 so its solutions can lie outside of the domain

(−1, T+1
T−1 ). Thus, for optimization it is important to check that ρ̂

4 Earlier versions of this paper suggested an iterative procedure where the first
order condition for ρ is expressed as a quartic equation for each σ 2 . The authors
thank a referee for referring to Kruiniger (2008) who expresses the concentrated
first order condition as a quartic form after some transformation. The equations
used to construct the quartic equation are (1 + ρ̂)σ̂ 2JT (ρ̂)2 ∂

∂ρ
ln L(ρ̂, σ̂ 2) = 0 and

σ̂ 2
=

1
nT

n
i=1 QiT (ρ̂).
falls in the domain (−1, T+1
T−1 ). If there are multiple solutions of (5)

in the domain (−1, T+1
T−1 ), then the ln L(ρ, σ 2) values are compared

in order to maximize the criterion. Simulations in the present pa-
per have been conducted using this optimization routine.

The following Section 3 establishes asymptotics for time series
and for panels when ρ0 = 1. The time series unit root case
clarifies the impact of the criterion function peculiarity and shows
its asymptotic effects. Although the panel asymptotic case has
already been studied in Kruiniger (2008), it is reconsidered here
in the second part of Section 3 because the unusual behavior of
the objective function requires special treatment which has been
overlooked in the literature.

3. Asymptotic anomalies for persistent data

For the model yit = ηi(1 − ρ0) + ρ0yit−1 + εit with εit ∼

iid N(0, σ 2
0 ), the asymptotic theory for the FDMLE is known in the

stationary case |ρ0| < 1, is equivalent to that of theMLE if T → ∞,
and follows by standard arguments.We here establish asymptotics
for the case ρ0 = 1 which turn out to be very different from the
usual unit root theory for the MLE.

Following the standard approach to deriving asymptotics, we
reparameterize ρ as rnT (ρ − 1) for some appropriate convergence
rate rnT . We may reasonably conjecture (and confirm below) that
rnT = O(

√
nT ), where the usual Op(

√
n) rate is obtained from

cross sectional aggregation and the fast Op(T ) rate is common for
unit root time series asymptotics. Given rnT and following the usual
procedure (e.g., Geyer, 1994; Knight, 2003) for extremum asymp-
totic theory, we consider the reparameterized objective function
fnT (θ) := 2[ln L∗(1 + r−1

nT θ) − ln L∗(1)] obtained by letting θ =

rnT (ρ − 1), which is maximized at rnT (ρ̂ − 1). It is notationally
convenient to let rnT =

√
nT1. Using the notations σ̃ 2

=
1
nT

n
i=1T

t=1 ε
2
it , V0i,T =

1
σ̃
√
T

T
t=1 εit , V1i,T =

1
σ̃T3/2

zit−1, V2i,T =
1

σ̃ 2T2T
t=1 z

2
it−1, Wi,T =

1
σ̃ 2T

T
t=1 zit−1εit , V ∗

0i,T = ( T
T1
)1/2V0i,T , V ∗

1i,T =

( T
T1
)3/2V1i,T , V ∗

2i,T = ( T
T1
)2V2i,T , and W ∗

i,T =
T
T1
Wi,T , we have

fnT (θ) = −nT ln

1 +

gnT (θ)
nT


+ n ln


1 +


T
T1


θ/

√
n

2 − θ/
√
n


, (6)
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gnT (θ) =
θ2

n

n
i=1

V ∗

2i,T −
2θ
√
n

n
i=1

W ∗

i,T

+
θ/

√
n

2 − θ/
√
n

n
i=1


V ∗

0i,T −
θV ∗

1i,T
√
n

2

. (7)

(The algebra is lengthy but straightforward. Details of the deriva-
tion are given inHan and Phillips, 2010.) Then the limit distribution
of

√
nT1(ρ̂ − 1) can be characterized in terms of the maximizer of

the limit of fnT (θ) by a suitable argmax theorem once the condi-
tions are checked.

The remainder of this section considers separately the two cases
where n is fixed and where n → ∞.

3.1. Large T asymptotics

We start by deriving large-T asymptotics, where n is fixed and
T → ∞. In this case the peculiarity of the criterion function
noted earlier is a prominent characteristic and must be addressed
in the asymptotics together with its impact on the distribution
of the FDMLE. The technicalities are challenging and of some
independent interest.

For n fixed, gnT (θ) is stochastically bounded for each θ and we
are first interested in the pointwiseweak limit of gnT (θ) as T → ∞.
For the components of gnT (θ), the limits follow fromstandardweak
convergence theory for unit root time series (Phillips, 1987). That
is, V ∗

0i,T ⇒ V0i := Bi(1), V ∗

1i,T ⇒ V1i :=

Bi, V ∗

2i,T ⇒ V2i :=

B2
i ,

and W ∗

i,T ⇒ Wi :=

BidB, where the Bi are standard Brownian

motions independent over i.
Because lim nT ln[1+ (nT )−1gnT ] = lim gnT for bounded gnT , as

T → ∞, for every θ we have

fnT (θ) ⇒ fn(θ) := −gn(θ)+ n ln
2

2 − θ/
√
n
, (8)

and

gn(θ) = θ2


1
n

n
i=1

V2i


− 2θ


1

√
n

n
i=1

Wi



+
n−1/2θ

2 − n−1/2θ

n
i=1


V0i −

θ
√
n
V1i

2

= −

n
i=1

V 2
0i −

2θ
√
n

n
i=1

W̃i +
θ2

n

n
i=1

Ṽ2i

+
2

2 − n−1/2θ

n
i=1


V0i −

θ
√
n
V1i

2

, (9)

where Ṽ2i = V2i − V 2
1i =


B2
i − (


Bi)

2, and W̃i = Wi − V0iV1i =
BidBi − Bi(1)


Bi.

We first provide technical results which hold as T → ∞ for
fixed n.

Lemma 1. As T → ∞, (i)
√
nT1(ρ̂ − 1) = Op(1)5; (ii) in ev-

ery compact subset of (−∞, 2
√
n), fnT (θ) ⇒ fn(θ) uniformly in

θ ; (iii) fn(θ) → −∞ as θ → −∞ or θ ↑ 2
√
n for almost all sample

paths; and (iv) almost surely, the global maximizer θ̃ of fn(θ) exists
and is in (−∞, 2

√
n).

The implication is the following asymptotic theory for the
FDMLE.

5 Kruiniger (2008) establishes consistency for large T and fixed n by evaluating
the limit of the quartic first order condition.
Theorem 2.
√
nT1(ρ̂ − 1)→d argmaxθ<2

√
n fn(θ).

It isworthnoting that the argmax theoremrequires the stochas-
tic boundedness of the rescaled and centered estimator, which
is satisfied for the explosive domain for fixed n because

√
nT1

(ρ̂ − 1) < 2
√
n.

We will examine the asymptotic distribution for n = 1 and
n > 1 separately below. The single time series case (n = 1) illu-
minates the peculiarity at the upper bound, and the multiple time
series case (n > 1) reveals how this peculiarity diminishes with
cross section averaging as n increases. The limit theory as n → ∞

is treated separately later.

The case n = 1
Let n = 1 and omit the i and n subscripts from all notation for

the analysis of this case. From (8) and (9) with n = 1, we deduce
the following limit behavior and form of the limit function.

When n = 1, the function fn(θ) in (8) reduces to

f (θ) = V 2
0 + 2W̃θ − Ṽ2θ

2
−

2
2 − θ

(V0 − V1θ)
2
+ ln

2
2 − θ

. (10)

Importantly, the peculiarity that is manifest in Fig. 1 carries
over to the limit criterion function f (θ), yielding a function with
similar potential characteristics to those of Fig. 2. Brownianmotion
trajectories giving rise to a limit function f (θ) similar to Fig. 2 are
not rare. Note again that the sharp peak close to the upper bound is
smooth in this graph, just as it is in the finite sample case, although
it is not immediately apparent on the scale shown.

The global maximizer θ̃ of f (θ) can be found by evaluating the
first order condition, which is validated by Lemma 1(iii). According
to straightforward algebra, θ̃ solves the cubic equation

3
j=0 bjθ

j
=

0, where b0 = 4W − V 2
0 + 1, b1 = −4V2 − 4W̃ −

1
2 , b2 =

4Ṽ2 + W̃ +V 2
1 , and b3 = −Ṽ2.6 In the above V2 := Ṽ2 +V 2

1 =

B2,

and W := W̃ + V0V1 =

BdB.

Simulations of 10,000 replications were conducted with σ 2
0 =

1.3 for T = 50, 100, 500, 1000. (Scaling the data by considering
different σ 2

0 values does not affect the ρ̂ value.) For the asymptotic
expression, the components bj were computed using the finite
sample formulas (V0,T , V1,T , Ṽ2,T and W̃T ) with T = 5000. The
empirical distribution functions are plotted in Fig. 3, where the
asymptotic expression is simulated by independently generating
T = 5000 observations for each replication. The finite sample
distribution is well approximated by the limit theory even for T =

50 and convergence to the asymptotic is manifest as T increases.
The asymptotic (centered) density has a mode at a negative value
and an asymptote at 2. As seen in Fig. 3, theweak limit θ̃ of T1(ρ̂−1)
is not median unbiased. The median of θ̃ is approximately −0.5,
and P{θ̃ ≤ 0} ≃ 56.5% according to simulations with T = 5000.
The simulated mean of θ̃ is approximately −1.88. While θ̃ < 2
with probability 1, we have the successive probabilities P(θ̃ >

1) ≃ 33.8%, P(θ̃ > 1.9) ≃ 20.2%, P(θ̃ > 1.99) ≃ 8.6%, and
even P(θ̃ > 1.999) ≃ 3.1%. This means a considerable probability
mass is placed in a range very close to the upper bound, implying
that cases similar to Figs. 1 and 2 are far from being rare.

While T1(ρ̂ − 1) never reaches the upper bound 2 for finite T ,
the simulated distributions (both finite sample and asymptotic) of
T1(ρ̂ − 1) are all highly peaked near 2. From Fig. 3, which shows
the asymptotic distribution based on simulations with T = 5000,
it appears that the density of the limit distribution of T1(ρ̂ − 1) is

6 A referee pointed out that this is given in Kruiniger (2008) as an intermediate
step.
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Fig. 2. Reparameterized limit ‘log-likelihood’ criterion f (θ) exhibiting violent
behavior near the upper bound θ = 2.

Fig. 3. Simulated finite sample and asymptotic CDFs for T1

ρ̂ − 1


.

infinite at the boundary. The following theorem establishes that
fact, showing that although there is no probability mass at the
boundary in the limit, the density of θ̃ escapes at 2.

Theorem 3. (i) P(θ̃ > 2 − ϵ) = O(ϵ1/2) as ϵ → 0, and
(ii) limϵ→0 P(θ̃ > 2 − ϵ)/

√
ϵ > 0.

According to the first part of the theorem, there is no probability
mass at boundary 2, which is to be expected because θ̃ can never
attain the boundary. However, the second part of Theorem 3
implies that the density of θ̃ is infinite at 2 because the density,
which is the limit of P(θ̃ > 2 − ϵ)/ϵ, diverges at an ϵ−1/2 rate
as ϵ → 0. Simulations of 10,000 replications show the results
of Table 1 for different values of ϵ indicating that P(θ̃ > 2 − ϵ)

diminishes at a rate no faster than
√
ϵ, corroborating the finding

of Theorem 3. As a result, P(θ̃ > 2 − ϵ)/ϵ diverges, which implies
that the density is infinite at the upper bound.
Table 1
Simulated right tail probabilities for the FDMLE.

ϵ 0.1 0.01 0.001 0.0001 · · · → 0

P(θ̃ > 2 − ϵ) 0.2017 0.0862 0.0306 0.0107 · · · → 0
P(θ̃ > 2 − ϵ)/

√
ϵ 0.6378 0.862 0.9677 1.07 · · · >0

P(θ̃ > 2 − ϵ)/ϵ 2.017 8.62 30.6 107 · · · → ∞

The last two terms of the limit criterion (10), viz.,

−
2

2 − θ
(V0 − V1θ)

2
+ ln

2
2 − θ

(11)

are responsible for the limit distribution having an infinite density
at the boundary. The factor 2

2−θ diverges to infinity as θ → 2, so
2

2−θ (V0 − V1θ)
2 eventually dominates ln 2

2−θ for almost all sample
paths and Lemma1(ii) holds. However, even for a θ value very close
to 2 and thus for a very large value of ln 2

2−θ , there is still a nonneg-
ligible probability that V0 −2V1 is very close to zero with the effect
that 2

2−θ (V0 − V1θ)
2 is dominated by ln 2

2−θ giving a maximum of
the criterion at a value in an extremely tight (left hand) neighbor-
hood of 2. Theorem 3 shows that this probability shrinks to zero at
a rate slower than θ approaches to 2 so the density is infinite at 2.
Note that the 2− θ term that appears in the denominator of (11) is
JT (ρ) = T1(1+ 2

T1
−ρ) = 2−θ . Thus, the source of the abnormal be-

havior of the limit criterion and the distribution around 2 is that for
θ in a shrinking neighborhood of the upper bound 2 the component
(11) of the limit criterion cannot be approximated uniformly by a
quadratic in θ . The limit function is therefore not locally asymp-
totic quadratic (LAQ) and the limit distribution is correspondingly
very different from that of the unit root MLE.

The case n > 1
We next examine the case where n > 1 but fixed and T → ∞.

From (8) and (9), we have fnT (θ) ⇒ fn(θ), where

fn(θ) =

n
i=1

V 2
0i +

2
√
n

n
i=1

W̃iθ −
1
n

n
i=1

Ṽ2iθ
2

−
2

2 − n−1/2θ

n
i=1

(V0i − n−1/2V1iθ)
2
+ n ln

2
2 − n−1/2θ

.

We now have the restriction
√
nT1(ρ−1) < 2

√
n or 2−n−1/2θ >

0, which is clearlymuch less restrictive for large n.However, for all
finite n, fn(θ) is still not LAQ and the global maximizer of fn(θ) is
still nonstandard — both non-normal and non-unit root class. The
simulated cumulative distribution functions are drawn in Fig. 4,
obtained from 5000 replications with T = 500. For small n values,
the limit distribution is far from normality, but the simulated
distribution for n = 100 is quite close to normal and, in particular,
to the N(0, 8) distribution.

Theorem 3 established that the probability P(θ̃ > 2 − ϵ) is
O(ϵ1/2) as ϵ → 0, where θ̃ has the limit distribution of T1(ρ̂ − 1)
for the case with n = 1. When n > 1, the probability of the limit
distribution being close to the upper bound is much smaller as the
following result shows.

Theorem 4. Let ξ2i = W̃i + V 2
1i. Then P(θ̃ > 2

√
n − ϵ) ≤ 2

3eϵ/
√
n
n/2

+

4ϵ2/n2


E(ξ 22i).

The density of the limit distribution of n1/2T1(ρ̂−1) at the upper
bound 2

√
n is finite for n = 2 and zero for n ≥ 3, which can

be verified by differentiating P(θ̃ > 2
√
n − ϵ) and evaluating at

ϵ = 0. Note that Theorem 4 covers cases with fixed n, although
it is suggestive that the upper bound becomes unimportant as n
increases. For large n, we have an asymptotic normal result, as
presented in the following section.
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Fig. 4. Empirical distribution functions for
√
nT1(ρ̂−1) for n = 1, 2, 5, 10, 50, 100

and T = 500.

3.2. Large-n asymptotics

In this subsection, we let n → ∞. Kruiniger (2008) established
consistency and asymptotics for this case using general arguments
on MLE by Newey and McFadden (1994). But the validity of this
application has yet to be verified because the FDMLE is not an
MLE, as noted earlier, and the conditions for application of their
result do not hold. Specifically, the parameter space is not compact
and ln L(ρ, σ 2) in (2) does not necessarily converge uniformly
when rescaled appropriately. Moreover, the objective function is
not concave, so pointwise convergence (e.g., Theorem2.7 of Newey
and McFadden (1994)) does not suffice. In fact, general results of
this type for consistency are not applicable to the FDMLE. Instead,
the objective function must be carefully investigated in order to
establish the asymptotic behavior of the FDMLE. The task is non-
trivial and is related with the particular form of the extended
likelihood that is used in FDML estimation. This form produces a
particular limit distribution which, while Gaussian, is dependent
on the nature of the extension of the likelihood function to the
region where ρ > 1.

Once these technical details are fully considered, we have the
following consistency result as n → ∞ for the case ρ0 = 1.
Here consistency is established in terms of the limiting behavior
of the probability function of T1(ρ̂ − 1). The arguments present
a nontrivial technical challenge and may be useful in other cases
where usual asymptotic results fail.

Theorem 5. If ρ0 = 1, limn→∞ supT P{T1|ρ̂ − 1| ≥ ϵ} = 0 for all
ϵ > 0.

From (6) and (7), we get

fnT (θ) =
1

√
n

n
i=1


1
T1

T
t=1

zit−1εit

σ 2


θ −


T
8T1


θ2 + op(1),

where the op(1) term converges to zero pointwise in θ and uni-
formly on every compact set as well. (See Han and Phillips (2010)
for a detailed derivation with θ reparameterized to T

T1
θ .) However,

the local uniformity of convergence is not sufficient for the argmax
theorem (e.g., Theorem 3.2.2 of Van der Vaart and Wellner, 1996),
and we also need the Op(

√
nT ) convergence rate for ρ̂. This impor-

tant aspect of the proof has gone unnoticed in the literature. Unlike
the case of fixed n, the tightness of θ̂ ≡

√
nT1(ρ̂ − 1) is not at all
Fig. 5. Empirical distribution functions for
√
nTT1(ρ̂ − 1) for n = 500 and T =

3, 5, 10, 100.

obvious as the upper bound (2
√
n) expands with n. Theorem 5 is

particularly important for the convergence rate because it prevents
ρ̂ from approaching the upper bound (which depends on T ). As a
result the following property holds as n → ∞ (irrespective of the
size of T ).

Theorem 6. As n → ∞,
√
nT1(ρ̂ − 1) = Op(1).

In view of Theorem 6, we are now able to invoke the argmax
theorem to establish asymptotics for

√
nT1(ρ̂−1) as themaximizer

of the weak limit of fnT (θ). By further letting θ∗ =
√
T/T1θ so that

θ =
√
T1/Tθ∗, we have

fnT (

T1/Tθ∗) = WnT θ∗ −

θ2
∗

8
+ op(1),

WnT =


T1
T

1/2 1
√
n

n
i=1


1
T1

T
t=1

zit−1εit

σ 2


,

⇒ f∗(θ∗) ≡ Wθ∗ −
θ2
∗

8
, W ∼ N


0,

1
2


,

where the variance of WnT is 1
2 for all T , and so is that of W . The

limit is maximized at 4W ∼ N(0, 8). Noting that fnT (
√
T1/Tθ∗) is

maximized at
√
nTT1(ρ̂ − 1), we have the final result that

nTT1(ρ̂ − 1)→d N(0, 8) (12)

as n → ∞ by virtue of the argmax continuous mapping theorem
regardless of the size of T . This limit theory provides a rigorous
proof of the result in Kruiniger (2008). The standardization in (12)
confirms the

√
nT convergence rate as n, T → ∞.

Asymptotic normality results from the fact that JT (1 + θ/
(
√
nT1)) converges to a constant and higher order terms become

negligible as n → ∞. TheN(0, 8) limit distribution for
√
nTT1(ρ̂−

1) is valid for all T , whether small or large, as long as n → ∞. The
same limit is obtained as T → ∞ and then n → ∞ sequentially
as well.

Simulated cumulative distribution functions from 5000 repli-
cations for n = 500 and T = 3, 5, 10, 100 are drawn in Fig. 5
and confirm the accuracy of this large n limit theory even for small
T ≥ 3.

We finally note that the N(0, 8) asymptotic distribution (12)
for the unit root case with large n is obtained because the log-
likelihood for ρ ≤ 1 is extended to the explosive region in a par-
ticular way by FDML estimation. In fact, the analytical extension
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of ln L(θ, σ 2) to the mildly explosive domain is so smooth at unity
that the asymptotic distribution is symmetric on both sides of the
origin. If ln L(ρ, σ 2) is extended to the explosive region in a differ-
entway, the limit distribution for largenmaynot even beGaussian.
For example, if the objective function is ln L(ρ, σ 2) · 1{−1 < ρ ≤

1} − ∞ · 1{ρ > 1}, which is equivalent to restricting the parame-
ter space to (−1, 1], then the limit distribution of

√
nTT1(ρ̂ − 1) is

4W {W ≤ 0} for W ∼ N(0, 1
2 ). In this case the distribution is one

sided with a point mass at the origin and overall variance less than
the limit variate of the FDML estimator in (12). As another exam-
ple, if the objective function is ψ(ρ, σ 2) ≡ ln L(ρ, σ 2) · 1{−1 <
ρ ≤ 1} + ln L(2ρ, σ 2) · 1{ρ > 1}, then the concentrated lo-
calized objective function fnT (θ) ≡ 2[ψ∗(ρnT ) − ψ∗(1)], where
ψ∗(ρ) ≡ maxσ 2>0 ψ(ρ, σ

2) and ρnT = 1 + θ/(
√
nT ), has the fol-

lowing asymptotic form

fnT (

T/T1θ∗) ⇒


Wθ∗ −

θ2
∗

8


{θ∗ ≤ 0}

+ 2

Wθ∗ −

θ2
∗

4


{θ∗ > 0},

where W ∼ N(0, 1
2 ). The maximizer of the right hand side is

4W {W ≤ 0} + 2W {W > 0}, which is non-normal. Other ex-
tensions (e.g., using

√
ρ in place of 2ρ for the explosive domain

in the ψ(ρ, σ 2) function above) can even make the convergence
rate slower than the

√
nTT1 rate. These examples reveal that the

shape of the limit distribution, its variance, and the rate of conver-
gence are all contingent on the form of the extension used for the
likelihood function to the region ρ > 1.

4. Conclusion

As argued in earlier work by HPT (2002), transforming the
likelihood offers certain key advantages in dynamic panel data
modeling and estimation. The removal of incidental parameters
and the transformation to stationarity by differencing when there
is a unit autoregressive rootmake the FDMLE approach particularly
appealing. There also appeared to be efficiency gains in the use of
FDMLE over conventional and bias correctedMLE (appliedwithout
stationarity conditions), even in the limit theory as n → ∞.

The present paper provides a rigorous justification for these
heuristics and develops a complete asymptotic theory that covers
the unit root case when T → ∞ and n is finite or tends to infinity.
As shown here, the FDML criterion function combines the Gaus-
sian likelihood over the stationary part of the domain of definition
with an analytic extension of that likelihood into the nonstationary
region where it is not the true likelihood. When n is finite, the re-
strictions in the FDMLE are binding and affect the support and the
form of the distribution. The restrictions even bound the domain of
the limit distribution when T → ∞ for finite n. But as n increases,
the bounds are much less restrictive. And when n → ∞, the limit
distribution is normal and normality holds even for fixed T and
when the autoregressive root is unity. Thus, analytically extend-
ing the likelihood in the unit root case beyond its natural domain
of definition for a stationary panel is not restrictive in terms of the
limit theory (and preserves asymptotic normality) provided n in-
creases and the extension is smooth. The parameter space widens
as n increases and the support of the limit distribution as n → ∞

is the whole real line. Nonetheless, the effects of the domain re-
strictions and the implied stationarity condition on the differences
(from the extension of the stationary likelihood) result in a reduc-
tion of the limit variance in comparison with the unrestricted MLE
(or bias corrected LSDV).

For all practical purposes, at least when n is large and a smooth
extension of the likelihood function is used, the limit normal dis-
tribution appears to be a good approximation of finite sample
behavior. Only when n is small do the restrictions produce se-
vere irregularities in the criterion function. These irregularities se-
riously affect the reliability of conventional numerical optimiza-
tion in the persistent case and they even manifest in the large T
limit distribution which is neither normal nor a standard unit root
type and has an unusual asymptote at the upper limit of the do-
main of definition, which reflects the importance of the domain
restriction and the shape of the extended likelihood.

Appendix A. Proofs

We first prove Lemma 1. The expressions for fnT (θ) and fn(θ)
are given in (6) and (8), respectively.

Proof of Lemma 1. (i) Because ρ̂ = ρ̂1{ρ̂ ≤ 1} + ρ̂1{ρ̂ > 1}, it
suffices to show that

√
nT1(ρ̂ − 1)1{ρ̂ ≤ 1} = Op(1) and

√
nT1

(ρ̂ − 1)1{ρ̂ > 1} = Op(1). The first part is standard because
ln L∗(ρ) is the true concentrated log-likelihood for ρ ∈ (−1, 1].
The second term is in (0, 2

√
n) so it is obviously bounded when

n is fixed.
(ii) Fix a compact subset K of (−∞, 2

√
n). For given T , fnT (θ) is

defined on (−2
√
nT1, 2

√
n), so K ⊂ (−2

√
nT1, 2

√
n) for all large

enough T . Thus, fnT (θ) converges weakly to fn(θ) pointwise. The
weak convergence is also uniform over all θ ∈ K because in K ,
fnT (θ) is uniformly continuous for all large enough T and finite al-
most surely.

(iii) Almost surely Ṽ2i andV 2
1i are strictly positive, so gn(θ) → ∞

almost surely as θ → −∞. Also ln 2
2−θ/

√
n → −∞ as θ → −∞.

Thus, fn(θ) = −gn(θ) + n ln 2
2−θ/

√
n → −∞ almost surely as

θ → −∞. Next, for the case θ ↑ 2
√
n, we have

fn(θ) =


n

i=1

V 2
0i +

2θ
√
n

n
i=1

W̃i −
θ2

n

n
i=1

Ṽ2



+


n ln

2
2 − θ/

√
n

−
2

2 − θ/
√
n

n
i=1

(V0i − V1iθ)
2


= f (1)n (θ)+ f (2)n (θ).

As θ ↑ 2
√
n, f (1)n (θ) converges to a tight random variable, andwith

probability 1, limθ↑2
√
n(V0i − V1iθ)

2 > 0 for all i, implying that
limθ↑2

√
n f

(2)
n (θ) = −∞ almost surely as claimed.

(iv) The global maximizer θ̃ is in (−∞, 2
√
n) by (iii) and the

continuity of fn(θ). Also the differentiability of fn(θ) implies that
f ′
n(θ̃) = 0. �

Proof of Theorem 2. By Lemma 1(ii), as T → ∞, fnT (θ) ⇒ fn(θ)
uniformly in every compact subset of (−∞, 2

√
n). The limit pro-

cess fn(θ) has continuous sample paths, and by Lemma 1(iii), the
global maximizer of fn(θ) exists. Lemma 1(i) verifies that T1(ρ̂ −

1) is tight. The probability of fn(θ)havingmultiple globalmaxima is
zero, and the result follows from a standard argmax theorem (e.g.,
Corollary 5.58 of Van der Vaart, 1998). �

For the next proofs we need the following preliminaries. First

−
(V0i − n−1/2Vi1θ)

2

2 − n−1/2θ
= n−1/2V 2

1iθ + 2(V 2
1i − V0iV1i)

+
(V0i − 2V1i)

2

2 − n−1/2θ
.

Thus, letting ξ1i = V0i − 2V1i and ξ2i = W̃i + V 2
1i, we have

fn(θ) = fan(θ)+ fbn(θ), (13)
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where fan(θ) =
n

i=1 ξ
2
1i +

2
√
n

n
i=1 ξ2iθ−

1
n

n
i=1 Ṽ2iθ

2 and fbn(θ)

= n ln 2
2−n−1/2θ

−
2

2−n−1/2θ

n
i=1 ξ

2
1i. The first derivatives are

f ′

an(θ) = 2


1

√
n

n
i=1

ξ2i −
1
n

n
i=1

Ṽ2iθ


,

f ′

bn(θ) =
2
√
n

(2 − n−1/2θ)2


2 − n−1/2θ

2
−

1
n

n
i=1

ξ 21i


. (14)

Proof of Theorem 3. (i) This a special case of Theorem 4 with
n = 1.

(ii) As n = 1, we omit the i and n subscripts. Let ξ1 = V0 − 2V1

and ξ2 = W̃ + V 2
1 . From (13), we have f (θ) = fa(θ)+ fb(θ), where

fa(θ) = ξ 21 + 2ξ2θ − Ṽ2θ
2 and fb(θ) = ln 2

2−θ −
2

2−θ ξ
2
1 . Fix θ0. Let

θ̃ be the global maximizer of f (θ). Almost surely, we have
θ̃ > θ0


⇐


sup

θ0<θ<2
f (θ) > sup

θ≤θ0

f (θ)


⇐


sup

θ0<θ<2
f (θ) > sup

θ≤θ0

fa(θ)+ sup
θ≤θ0

fb(θ)


⇐


inf

θ0<θ<2
fa(θ)+ sup

θ0<θ<2
fb(θ)

> sup
θ≤θ0

fa(θ)+ sup
θ≤θ0

fb(θ)


⇐


sup

θ0<θ<2
fb(θ)− sup

θ≤θ0

fb(θ) > sup
θ≤θ0

fa(θ)

− inf
θ0<θ<2

fa(θ) =: η


,

where η ≥ 0 because fa(θ) is unimodal and continuous. Because
fa(θ) is unimodal and is globallymaximized at θ = Ṽ−1

2 ξ2, we have
η = 0 if Ṽ−1

2 ξ2 ≥ 2 (i.e., if 2Ṽ2 ≤ ξ2). Thus, we have θ̃ > θ0

if (i) 2Ṽ2 ≤ ξ2 and (ii) supθ0<θ<2 fb(θ) > supθ≤θ0 fb(θ). But (ii)
happens only if (iii) f ′

b(θ0) > 0 (otherwise the left hand side is
zero), i.e., 2

2−θ0
ξ 21 < 1, so (i) and (ii) are equivalent to (i)–(iii).

When (iii) is true, we have supθ0<θ<2 fb(θ) = − ln ξ 21 − 1 and
supθ≤θ0 fb(θ) = fb(θ0) = ln 2

2−θ0
−

2
2−θ0

ξ 21 . Under (iii), writing
(ii) as 2

2−θ0
ξ 21 − ln 2

2−θ0
ξ 21 > 1, we see that (ii) is implied by (iii)

almost surely. Thus, (i)–(iii) are almost surely equivalent to (i) and
(iii). Thus far, we have established that θ̃ > θ0 if 2Ṽ2 ≤ ξ2 and

2
2−θ0

ξ 21 < 1 almost surely, implying that

P(θ̃ > θ0) ≥ P(ξ 21 < ϵ0, 2Ṽ2 ≤ ξ2), ϵ0 = 1 − θ0/2.

But we have 2Ṽ2 ≤ ξ2 if and only if ξ 21 ≥ 4Ṽ2 − 2V0V1 + 2V 2
1 + 1

(which can be shown by using the fact thatW =
1
2 (V

2
0 −1) almost

surely), so the probability on the right hand side is

P(4Ṽ2 − 2V0V1 + 2V 2
1 + 1 ≤ ξ 21 < ϵ0),

which is greater than or equal to P(−
√
ϵ0 < ξ1 <

√
ϵ0, 4Ṽ2 −

2V0V1 + 2V 2
1 + 1 ≤ 0).

Let θ0 ≥ 0 so ϵ0 ≤ 1. In the event that ξ1 > −
√
ϵ0, i.e., when

V0 > 2V1 −
√
ϵ0, we have −2V0V1 < −4V 2

1 + 2V1
√
ϵ0 ≤ −4V 2

1
+ 2V1, so the above displayed probability is at least as large as
P(−

√
ϵ0 < V0 −2V1 <

√
ϵ0, 4Ṽ2 −2V 2

1 +2V1 +1 ≤ 0), where we
used ξ1 = V0 − 2V1. Conditional on V1 and Ṽ2, the density of V0 is
almost surely positive at 2V1, and P(4Ṽ2−2V 2

1 +2V1+1 ≤ 0) > 0,
so the last probability is of order

√
ϵ0. �
When we generalize the previous result to n > 1, the uniform
probability bound

P(χ2
n ≤ x) ≤ (ex/n)n/2 (15)

is useful. This holds because

P(χ2
n ≤ x) =

1
Γ (n/2)

 x/2

0
zn/2−1e−zdz ≤

1
Γ (n/2)

 x/2

0
zn/2−1dz

=
(x/2)n/2

(n/2)Γ (n/2)
=

(n/2)n/2

(n/2)Γ (n/2)en/2
·
(ex/2)n/2

(n/2)n/2

≤

 ex
n

n/2
,

where Γ (s) =


∞

0 xs−1e−xdx, and (n/2)n/2/[(n/2)Γ (n/2)en/2] ≤

1. (A proof of the latter inequality is provided in Han and Phillips,
2010).

Proof of Theorem 4. Let ϵ ≤ 2/(3e) be given. Let c = 2
√
n− ϵ so

ϵ = 2
√
n − c =

√
n(2 − n−1/2c). Let θ̃ denote the global max-

imizer of fn(θ) again. We have θ̃ > c ⇔ supc<θ<2
√
n fn(θ) >

supθ≤c fn(θ) ⇒ supc<θ<2
√
n fn(θ) > fn(c). Let An = {supc<θ<2

√
n

fn(θ) > fn(c)} and Bn = {f ′

bn(c) < 0}, where fbn(θ) is defined below
(13). Because of (14), Bn = {

n
i=1 ξ

2
1i >

1
2

√
nϵ}, where ξ1i =

V0i − 2V1i ∼ N(0, 1
3 ). Clearly

P(An) = P(An ∩ Bc
n)+ P(An ∩ Bn) ≤ P(Bc

n)+ P(An ∩ Bn). (16)

For P(Bc
n), because 3

n
i=1 ξ

2
1i ∼ χ2

n , we have

P(Bc
n) = P


3

n
i=1

ξ 21i ≤
3
2

√
nϵ


≤


3eϵ
2
√
n

n/2

, (17)

for all n by (15). Next, in the event Bn, because fbn(θ) is unimodal,
we have not only f ′

bn(c) < 0 but also f ′

bn(θ) < 0 for all θ ∈

(c, 2
√
n). But from (14), we have

f ′′

bn(θ) =
4n−1/2

(2 − n−1/2θ)3


√
n −

θ

2
−

1
√
n

n
i=1

ξ 21i



−
1

(2 − n−1/2θ)2

=
2

(2 − n−1/2θ)2


2n−1/2

2 − n−1/2θ
· f ′

bn(θ)−
1
2


,

which is strictly negative on Bn for all θ ∈ (c, 2
√
n) because f ′

bn(θ)

< 0. Also f ′′
an(θ) < 0 globally and thus for θ ∈ (c, 2

√
n) as well.

Hence, f ′′
n (θ) < 0 for all θ ∈ (c, 2

√
n) in the event of Bn. Thus,

on Bn, fn(θ) − f (c) ≤ (θ − c)f ′
n(c) for all θ ≥ c , implying that

supc<θ<2
√
n fn(θ)− f (c) ≤ (2

√
n− c)f ′

n(c). But on An, the left hand
side is positive, so, on An ∩ Bn, the right hand side is also positive,
i.e., f ′

n(c) > 0, where

f ′

n(c) = 2


1

√
n

n
i=1

ξ2i −
1
n

n
i=1

Ṽ2ic


+

n
ϵ

−
2
√
n

ϵ2

n
i=1

ξ 21i,

ϵ = 2
√
n − c.

Recall that ξ2i = W̃i + V 2
1i. We have

P(An ∩ Bn) ≤ P


2


1

√
n

n
i=1

ξ2i −
1
n

n
i=1

Ṽ2ic


+

n
ϵ

−
2
√
n

ϵ2

n
i=1

ξ 21i > 0


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= P


n

i=1

ξ 21i <
ϵ

2

√
n

+ ϵ2


1
n

n
i=1

ξ2i −
1

n3/2

n
i=1

Ṽ2ic



≤ P


n

i=1

ξ 21i <
ϵ

2

√
n + ϵ2ξ̄2


, ξ̄2 :=

1
n

n
i=1

ξ2i,

where the last inequality holds because Ṽ2i ≥ 0 and c > 0. But

P(An ∩ Bn) = P(An ∩ Bn ∩ {ξ̄2 ≤ r})+ P(An ∩ Bn ∩ {ξ̄2 > r})

≤ P


n

i=1

ξ 21i <
ϵ

2

√
n + ϵ2r


+ P(ξ̄2 > r),

for any r . In particular, for r =
√
n/(2ϵ), we have

P(An ∩ Bn) ≤ P


n

i=1

ξ 21i <
√
nϵ


+ P


ξ̄ 22 >

n
4ϵ2


≤


3eϵ
√
n

n/2

+


4ϵ2

n2


E(ξ 22i), (18)

where the first termof the right hand side is due to (15) and the sec-
ond term by Chebyshev’s inequality. The result now follows from
(16) to (18). �

Now we prove that T1(ρ̂ − 1) is consistent when n → ∞ re-
gardless of the T sequence, i.e., that limn→∞ supT P{T1|ρ̂−1| ≥ ϵ}
= 0 for every ϵ > 0.

Reparameterize ρ to φ = T1(ρ − 1) by letting ρT = 1 +
1
T1
φ

for given φ. Then JT (ρT ) = 2 − φ. Let ℓ̂nT (φ) :=
2T1
nT [ln L∗(ρT ) −

ln L∗(1)]. Let σ̃ 2
=

1
nT

n
i=1
T

t=1 ε
2
it , ânT (ρ) =

1
nT σ̃ 2

n
i=1
T

t=1

uit(ρ)
2 and b̂nT (ρ) =

1
nT σ̃ 2

n
i=1[

T
t=1 uit(ρ)]

2. Then

ℓ̂nT (φ) = −T1 ln[ânT (ρT )+
φ

T1(2 − φ)
b̂nT (ρT )] −

T1
T

ln(2 − φ)

+
T1
T

ln(1 + ρT ). (19)

The parameter space is (−2T1, 2), and the strict positivity of
ânT (ρT ) +

φ

T1(2−φ)
b̂nT (ρT ) is verified by the fact that ânT (ρT ) +

φ

T1(2−φ)
b̂nT (ρT ) = [ânT (ρT )− 1

T b̂nT (ρT )]+
2T1−φ

TT1(2−φ)
b̂nT (ρT ) and that

2T1−φ
TT1(2−φ)

> 0 on the parameter space. The maximizer of ℓ̂nT (φ) is

φ̂ = T1(ρ̂ − 1), where ρ̂ is the FDMLE. As uit(ρT ) = εit −
φ

T1
zit−1,

we have

ânT (ρT ) = 1 −
2φ

nT1σ̃ 2

n
i=1

1
T

T
t=1

zit−1εit

+
φ2

nT1σ̃ 2

n
i=1

1
TT1

T
t=1

z2it−1 →p 1 +
φ2

2T1
=: aT (ρT )

uniformly on every compact set of φ as n → ∞ when ρ0 = 1.
Similarly,

b̂nT (ρT ) = 1 +
2

nσ̃ 2

n
i=1

1
T

T−1
s=1

T
t=s+1

εisεit

−
2φ
nσ̃ 2

n
i=1


ziT
√
T


1
T1

T
t=1

zit−1
√
T



+
φ2

nσ̃ 2

n
i=1


1
T1

T
t=1

zit−1
√
T

2

→p 1 − φ +
2T1 + 1
6T1

φ2
=: bT (ρT )
as n → ∞ at the same mode. Also, after some further algebra, we
have

η̂a(ρT ) :=
√
nT1[ânT (ρT )− aT (ρT )] = φOp(1)+ φ2Op(1), (20)

η̂b(ρT ) :=
√
n[b̂nT (ρT )− bT (ρT )] = Op(1)+ φOp(1)+ φ2Op(1),

(21)

where the Op(1) terms are stochastically bounded as n → ∞ for
all T sequences whether fixed or diverging.

Let ℓT (φ) be obtained by replacing ãnT (·) and b̂nT (·) in (19)
with ãT (·) and bT (·) respectively. The n-limit ℓT (φ) is maximized
at φ0 = 0 for all T by the usual information inequality (e.g., Newey
and McFadden, 1994, Lemma 2.2) even though ℓ̂nT (φ) is not a cor-
rect profile log-likelihood for φ > 0, i.e., for ρT > 1 (which is
verified later). This identifiability of φ0 = 0 is uniform in T as the
following lemma shows.

Lemma 7. If ρ0 = 1, then infT [supφ:|φ|≥δ ℓT (φ)−ℓT (0)] < 0 for all
δ > 0.

Proof. We have,

ℓT (φ) = −T1 ln

(2 − φ)aT (ρT )+

φ

T1
bT (ρT )


+

T 2
1

T
ln(2 − φ)

+
T1
T

ln(2 +
1
T1
φ) = −T1 ln


2 −

T2
T1
φ −

T2
6T 2

1
φ3


+
T 2
1

T
ln(2 − φ)+

T1
T

ln

2 +

1
T1
φ


.

Some lengthy algebra gives

ℓ′

T (φ) = −
φ(T2φ3

+ 2T 2
2φ

2
− 6T1T2φ + 6T 2

1 )

3T 2
1


2 −

T2
T1
φ −

T2
6T21
φ3

(2 − φ)


2 +

1
T1
φ
 ,

where the T2φ3
+ 2T 2

2φ
2
− 6T1T2φ+ 6T 2

1 term of the numerator is
strictly positive by Lemma 8. Thus, for all T ≥ 2, ℓT (φ) is unimodal
and attains its mode at 0 because ℓ′

T (φ) > 0 for φ < 0, ℓ′

T (0) = 0
and ℓ′

T (φ) < 0 for φ > 0. Further algebra gives ℓ′′

T (0) = −
1
4 for

all T . The stated result follows from this fact and the local uniform
continuous differentiability of ℓ′′

T (φ). �

Lemma 8. Let ψT (φ) = T2φ3
+ 2T 2

2φ
2

− 6T1T2φ + 6T 2
1 . Then

min−2T1≤φ≤2 ψT (φ) ≥ min{4T 3
1 + 2T 2

1 ,
1
27 (15T

2
1 + 115T1 + 32)}

for all T .

Proof. The first derivative is ψ ′

T (φ) = 3T2φ2
+ 4T 2

2φ − 6T1T2. We
have ψ ′

T (−2T1) = 4T 3
2 + 10T 2

2 + 6 > 0, ψ ′

T (
4
3 ) = −

2
3T2T1 < 0,

andψ ′

T (
3
2 ) =

3
4T2 > 0. Thus,ψT (φ) can be minimal either at −2T1

or in the interval ( 43 ,
3
2 ). But ψT (−2T1) = 4T 3

1 + 2T 2
1 , and for all

φ ∈ ( 43 ,
3
2 ), ψT (φ) ≥ ( 43 )

3T2 + 2( 43 )
2T 2

2 − 6( 32 )T1T2 + 6T 2
1 =

1
27 (15T

2
1 + 115T1 + 32). �

The remaining argument for proving consistency is to show that
the variability of ℓ̂nT (φ)− ℓT (φ) diminishes as n → ∞ at a proper
mode. We have ℓ̂nT (φ)− ℓT (φ) = −T1 ln[1 + ξ̂ (φ)], where

√
nT1ξ̂ (φ) =

(2 − φ)η̂a(ρT )+ φη̂b(ρT )

(2 − φ)aT (ρT )+
φ

T1
bT (ρT )

, (22)

and η̂a(ρT ) and η̂b(ρT ) are defined in (20) and (21), respectively,
and are quadratic functions of φ with stochastically bounded co-
efficients. For fixed T , the denominator of (22) is strictly positive
for all φ ∈ [−2T1, 2], and the numerator is uniformly stochasti-
cally bounded. Thus, ξ̂ (φ) ⇒ 0, and ℓ̂nT (φ) − ℓT (φ) = −T1Op
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(n−1/2T−1
1 ) = Op(n−1/2) uniformly in φ. Hence, the case with fixed

T is easily seen to satisfy the stated requirement.
However, if T → ∞, then for φ ≃ 2, limφ→2

√
nT1ξ̂ (φ) =

T1η̂b(1+
2
T1
)/bT (1+

2
T1
), which diverges as T → ∞. Thus, as T →

∞, for some n/T ratio, the sampling variability of ℓ̂nT (φ) − ℓT (φ)
may explode for φ values sufficiently close to 2 (or approaching 2
as T → ∞). However, the variability of ℓ̂nT (φ) − ℓT (φ) near 2 or
−2T1 is minor in comparison to the value of ℓT (φ), as shown in the
proof below. Thus the probability of φ̂ (the maximizer of ℓ̂nT (φ))
being far away from the maximizer of ℓT (φ) diminishes to zero.

Proof of Theorem 5. (i) Fixed T : We have ℓ̂nT (φ) − ℓT (φ) =

−T1 ln[1 + ξ̂ (φ)], where
√
nT1ξ̂ (φ) is stochastically bounded uni-

formly in φ ∈ [−2T1, 2]. Thus, supφ |ℓ̂nT (φ)− ℓT (φ)| = Op(n−1/2)
by the linear approximation of the logarithm. Consistency follows
from this uniform convergence of ℓ̂nT (φ) to ℓT (φ) and the identifi-
cation by Lemma 7.

(ii) T → ∞: For any given c1 and c2 with −∞ < c1 < 0 <
c2 < 2, we have

√
nT1ξ̂ (φ) = Op(1) as n → ∞ uniformly over

φ ∈ [c1, c2] regardless of T . Thus on [c1, c2], ℓ̂nT (φ) − ℓT (φ)→p 0
uniformly in φ regardless of T . For φ outside the interval [c1, c2],
we have

ℓ̂nT (φ)− ℓT (φ)

ℓT (φ)

=

ln[(2 − φ)ânT (ρT )+
φ

T1
b̂nT (ρT )] − ln[(2 − φ)aT (ρT )+

φ

T1
bT (ρT )]

ln[(2 − φ)aT (ρT )+
φ

T1
bT (ρT )] −

T1
T ln(2 − φ)−

1
T ln(2 +

1
T1
φ)

.

The numerator converges in probability to zero uniformly in φ
(over thewhole domain) regardless of T , and the denominator is far
from zero outside [c1, c2]. Thus, given Lemma 7, the probability of
ℓ̂nT (φ) beingmaximized by a parameter outside [c1, c2] disappears
as n → ∞ regardless of T . It thus suffices to consider only the
domain [c1, c2], and consistency follows straightforwardly. �

Proof of Theorem 6. Consistency (Theorem 5) leads to the con-
vergence rate. As plimn→∞φ̂ = 0, where φ̂ = T1(ρ̂ − 1), we have
|φ̂| ≤ c with arbitrarily high probability eventually as n → ∞ for
any c > 0. We can thus limit the parameter space for φ to [−1, 1].
With the parameter space restricted to this region, standard theory
applies. �
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