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54
Exploring the mysteries of trends and 
bubbles
Peter C. B. Phillips1 

It is a pleasure to visit the University of Adelaide and an honour to present the 
Joseph Fisher Lecture. This lecture series has a long list of eminent economists as 
past speakers. It is a particularly welcome opportunity therefore to present what 
appears to be the first lecture in this series on econometrics. 

Econometrics is a statistical tool that forces economic ideas to face the 
reality of observations. As Milton Friedman once remarked about economics, 
simple theories are the most powerful, like the power of rational decision making 
that underlies most economic models. What makes the subject of econometrics 
difficult is that simple theories of human behaviour like rationality are never right. 
Econometrics must simultaneously confront the reality that economic theories are 
inevitably wrong yet in many cases contain a powerful kernel of truth. Measuring 
these kernels of truth in the presence of near universal model misspecification is 
one of the challenges that make econometrics an exciting and relevant subject. 

Trends and bubbles in modern econometrics

My subject in this lecture is trends and bubble phenomena. The primary focus 
is on economic activity. But as we all recognize, trends and bubbles occur in the 
natural and physical world. So their relevance extends well beyond economics and 
other matters of human affairs. To broaden its coverage this lecture draws upon 
examples of such phenomena in areas like climate change that are of pressing 
global concern in the modern world with their own concomitant economic 

1 This paper is a revised version of the fifty-fourth Joseph Fisher Lecture presented at the University of 
Adelaide, 18 February 2010. The author thanks the School of Economics at the University of Adelaide 
for their hospitality and Jiti Gao for arranging this visit.



54 Exploring the mysteries of trends and bubbles

600

implications. Happily, one of the big export industries of econometrics is the 
novel and rapidly changing econometric technology of stochastic trends which 
has opened up many new areas of application in other disciplines over the last 
two decades

With the advent of the recent sub-prime financial crisis, we all know 
something about bubbles. The Asian financial crisis, the dot com bubble in 
the 1990s, and the latest global financial crisis have reawakened interest in 
this important and little explored field. It has alerted the new generation of 
economists as well as the public at large to the reality that bubbles intermittently 
occur in financial markets, that they have consequences on the real economy, 
and that we need methods to assist us in identifying them to avoid some of these 
consequences. Econometrics helps deliver such methods. 

Trends are phenomena we like to think we know a great deal more about 
than bubbles, partly because they are omnipresent and have been studied so 
extensively. Macroeconomics, for instance, has had a long-time focus on modelling 
and explaining economic growth. Time series econometrics has produced a 
massive volume of research on nonstationarity and trends over the past three 
decades. And microeconometrics frequently focuses on changing behaviour over 
time. Yet in spite of the enormous attention, trends are phenomena about which 
we really know very little. 

Trends and bubbles are mysteries. Trends are compelling mysteries to 
econometricians because they are a major characteristic of virtually all time series 
in economics and finance and they must be addressed in modelling. Bubbles are 
fascinating mysteries to economists because they are so difficult to anticipate, so 
difficult to model in terms of rational behaviour, and potentially tumultuous in 
their effects on human economic conditions and the course of human progress. 

Trend is a simple five letter word whose modern dictionary meaning is ‘a 
general direction or tendency, particularly over time’. The definition has appealing 
econometric implications and gives an astonishingly simple way of thinking 
about data – trending data go up, down, or stay constant. Public discussion and 
media commentary repeatedly rely on these simple characterisations in describing 
the world around us. We talk of trends in education, in health, in sociological 
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characteristics such as crime, suicide and divorce, and in human characteristics 
such as body mass indices, obesity, senility, longevity, and sports performance. All 
these topics are discussed and analysed in terms of their trends. The discussion 
captivates interest because trends point to the future – where the data are going – 
and this inevitably rivets public attention.

Professional economic commentary has the same preoccupation. Prominent 
economists such as the Chairman of the Federal Reserve or Governors of Reserve 
Banks regularly pronounce on trends in economic phenomena. We hear comments 
like “if current trends continue then we will be out of recession by the end of 
the year”, or “a newly emerging trend is the recovery in house prices”, or “long 
term trends in performance show that stocks outmatch other financial assets”. 
These pronouncements give the impression of scientific authority, especially 
when they appear in scientific presentations or as congressional testimony by a 
respected central bank authority. After all, central banks collect and publish data, 
have teams of economists on hand to analyse it, have public mandates to ensure 
price stability and economic growth, provide regular forecasts of key economic 
indicators, and their spokespeople are highly qualified professional economists. 
So the authenticity of central bank commentary on economic affairs often goes 
unquestioned. 

But commonly used phrases such as “if current trends continue” do not 
stand up to the simplest scrutiny. What is meant by the word “current” – the 
last five days, five months or five quarters of data? How is the concept “trend” 
formalized and measured – a straight line through the data, a curve or some 
random drift? How are we expected to interpret and use quantities that are not 
properly defined? Once these questions are raised, the apparent precision of the 
statement vaporizes. In place of a clear message, we see something impressionistic 
– a hazy signal whose interpretation relies on some implicit understanding of 
the concept of a trend. The concept is so loosely defined and elusive that trend 
takes on a mysterious character. Like the inscrutable Hamlet, the protagonist in 
Shakespeare’s most famous play, you never really know what it is going to do next. 
In short, no one really understands trends but everyone sees trends in data.2

2 This ‘law’ of econometrics was suggested in Phillips (2003). The analogy with Hamlet was given in 
Phillips (2010), on which some of the discussion in this paper draws.
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Yet there is a basic human instinct that drives us all to look for trends in 
data. This instinct is a desire to bring order to disorder. Learning to understand 
the world around us (the seasons, the environment, topography and climate) is 
a basic human survival instinct. Bringing order to disorder is like creating a map 
to describe aspects of the territory which holds our interest. Maps can be very 
useful. But the territory is always more complex, just as living organisms are 
always more complex than the stylized diagrams of their component parts that 
we see in medical texts. 

The same is true with data. The human instinct is to bring order to the 
disorder of data. When we see a cloud of points on a chart, we have an irrepressible 
urge to put a line through it – to show where it has been and where it is going. 
This human urge turns the observer into an eyeball statistician – a fellow who 
draws a line through a set of point based on unwarranted assumptions with a 
foregone conclusion. 

One important characteristic of this human statistical instinct is that 
drawing a line through a set of points produces a smooth curve which has 
direction. That is how we usually see things and how we draw them. We don’t 
take the pencil off the page. We draw a smooth curve or one with a kink if we 
really need to turn a sharp corner. Smooth curves are differentiable and curves 
with kinks are (one-sided) differentiable. A curve that is differentiable tells you 
where it’s going at every observation. It’s predictable. That is the outcome of this 
instinctive thinking – it reveals a direction vector for the future from a cloud of 
points. It is this characteristic, this limiting characteristic of the human statistical 
instinct, that is implicit in media and public scientific commentary about trends. 
It explains why public pronouncements about trends are so frequently accepted 
– people are by nature sympathetic to this form of trend analysis and they like to 
think they know what these pronouncements mean. 

Modern econometrics has challenged this simplistic view. The biggest 
change in econometrics over the last three decades is the recognition in empirical 
research that trends are stochastic. Trends involve inherently random elements – 
like Hamlet we never know what to expect next – and yet the trend process may 
explore the whole sample space in a recurrent non-differentiable manner like a 
Brownian motion. With non-differentiability we lose the direction vector and no 
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longer have the forecasting capability at any point in time that is delivered by a 
smooth curve. The modern dictionary definition of trend is no longer relevant. 
A more fitting characterisation is given by the middle English (circa 1590) verb 
“trenden”, from which the word trend is derived and whose meaning is “to turn or 
roll about” like the wandering course of a coastline or a river. The recent usage of 
trend as a general direction or tendency originates from 1884 and that usage soon 
became dominant and was popularized in reporting economic statistics. By the 
1960s the usage in statistical time series analysis and econometrics had narrowed 
further and trend had come to mean a simple deterministic function like a time 
polynomial or sinusoidal time polynomial. It is this perspective on trend that 
is presented in classic time series treatments such as the texts of Grenander and 
Rosenblatt (1957) and Anderson (1971). 

Analysing trends that are inherently stochastic is a far more challenging 
task for the econometrician than drawing a line through a set of points, which 
partly explains why so much has been written on this subject over the past 30 
years. A Google search (October, 2012) on “unit roots”, which we often take as 
the simplest embodiment of a stochastic trend, produces 252,000 thousand hits, 
which exceeds “microeconometrics” (150,000 hits), “time series econometrics” 
(144,000 hits), and “ARCH models” (118,000 hits).3 A vast amount of empirical 
evidence now supports the presence of unit autoregressive roots or near unit roots 
in economic and financial data. Theories of efficient markets and martingale-like 
phenomena in capitalist economies are consonant with this econometric notion 
of a unit root and the shock persistence that comes from temporal aggregation. 
The best predictor of tomorrow’s price is typically still today’s price. 

Bubbles differ from trends because the general tendency during an upswing 
contrasts with the general tendency during collapse. During an upswing we 
have sub-martingale behaviour where the conditional expectation is a price rise 
tomorrow whereas, during a collapse, the conditional expectation is a price fall, 
giving super-martingale behaviour. The silent elephant in the room, of course, is 
that we don’t know when the behavioural mechanism will shift from martingale 
to sub-martingale or sub-martingale to super-martingale. With financial asset 
prices, the upswing uncertainty stems from doubts over the continuation of a 

3 “Cointegration” – the sister subject of “unit roots” – records 901,000 hits.
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rally and whether or when a correction or collapse will begin. During the 1990s 
Nasdaq bubble, the Federal Reserve Chairman Alan Greenspan articulated this 
type of uncertainty as a loaded question in his famous 1996 dinner speech with:

“How do we know when irrational exuberance has unduly escalated 
asset values?’’

Greenspan’s remark underscores the fact that we usually don’t know when 
an asset price bubble begins and, even after a collapse, academic disputes arise 
over whether a bubble has actually occurred. Such disputes are often ridiculed in 
the press and popular writing.4 These are some of the many issues that modern 
econometric methodology can address and clarify. 

In view of the ubiquity of trends across the business, social and natural 
sciences, methodology for analysing and interpreting trend behaviour has wide 
applicability. In consequence, the rapidly developing technology of stochastic 
trend analysis in econometrics has been imported by other disciplines and many 
new applications have emerged. Two areas that bear particularly on the present 
discussion are planetary climate change and biodiversity (the number of different 
species or genera of life forms). Data sets for these phenomena are the longest to 
which econometric methods have ever been employed. The time frames involve 
hundreds of millions of years in the case of fossil records in counting genera 
and hundreds of thousands of years in the case of climate change based on ice 
core samples and sea sediment data. These long range data embody planet-wide 
trends that call out for analysis which can help us understand the course of Earth’s 
climate and life forms over time. 

Long term trends in climate

To illustrate, we look at climatological data based on ice core samples that extend 
over geologic time frames and are measured in thousand year (kyr) or million 
year (myr) units. Against this time frame economic time series are extremely 

4 See the article by Pástor and Veronesi (2006) and the biting critique in Cooper (2008, p. 9): “People 
outside the world of economics may be amazed to know that a significant body of researchers are still 
engaged in the task of proving that the pricing of the Nasdaq stock market correctly reflected the 
market’s true value throughout the period commonly known as the Nasdaq bubble. … The intellectual 
contortions required to rationalize all of these prices beggars belief.”
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short, especially when it comes to studying trend behaviour. Yet many of the 
same problems (such as the inherent random elements in trend, shortfalls in 
theory guidance, and ambiguities between trend and cycle) continue to manifest 
themselves. Having more data, in effect, does not always lead to an improvement 
in analysis or understanding. Sometimes, especially with trending time series, the 
advent of more data simply means that the investigator has more to explain. In 
this event, trends appear endogenous to the sample. Then, as in economics, it is 
the synergy of good theory, data, and statistical methodological that is most likely 
to enhance understanding. 

The graphs shown in Figure 54.1 are based on (linearly interpolated) data 
constructed from ice core samples at the Vostok station in Antarctica (Petit et al. 
1999). These data cover the past 420kyrs with time measured from right (past) to 
left (present) on the horizontal axis. The figure contains four (slightly overlapping) 
panels that show the time paths of different variables over this historical period, 
each series having its own axis: (i) temperature measured in oC deviations from 
mid-twentieth century levels; (ii) methane gas (CH₄) levels in parts per billion 

Figure 54.1: Vostok ice core data from Antartica over 420kyr for temperature   
 (deviations from mid twentieth century levels), CO₂, CH₄ and dust
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volume (ppbv); (iii) CO₂ levels in parts per million volume (ppmv); and (iv) 
dust levels in ppm. The temperature graph reveals many well-known features: 
(i) the (relative) stability of temperatures over the holocene (the last 12kyrs), 
considered to be decisive in the neolithic revolution and the emergence of human 
civilization; (ii) the long but variable cycle (with periods between 80–120kyrs) 
between major glacial epochs; (iii) the relatively short inter-glacial periods; (iv) 
some less dominant subcycles, also of variable period; and (v) evidence of random 
wandering behavior between episodes of deglaciation. 

Spectral analysis of these series reported in Petit et al. (1999) shows spectral 
peaks around 100kyr, 41kyr, and 19–23kyr periods. These peaks are thought to be 
partly associated with certain orbital forcing mechanisms (orbital eccentricities, 
obliquities and precession), although the links are by no means unequivocal and 
there is considerable variation in the empirical periods compared with the orbital 
mechanisms. An alternative astronomical theory involving three dimensional 
orbital inclination to the invariable plane (the plane of the solar system) leading 
to 100kyr cycles arising from dust accretion within that plane has been advanced 
by Muller and MacDonald (1997). Unit root tests that I have conducted confirm 
evidence of random wandering behaviour in the series between these various 
glacial epochs, so there is strong evidence of stochastic trends in the data.

No present climatological (or planetary) simulation models are capable of 
generating time paths of this type over long geologic periods. Frequency domain 
methods, while informative about dominant periodicities, struggle to deal with 
the many separate components in these trajectories, particularly the unit root 
nonstationarity, the irregularity in cyclical behaviour, the abrupt terminations, 
and the prolonged holocene period which is a singular event in the record. 
Causal analysis among the series is complicated by the intermittent, irregular 
and non-concurrent sampling of the different series. Co-movement analysis does 
not fit within the usual cointegrating model framework of econometrics, yet 
co-movement is clearly apparent and of great importance, not only in terms of 
ongoing discussions on anthropogenic driving forces of climate change5 – measured 
by recent increases in greenhouse gas emissions (carbon dioxide, methane, and 
5 The Intergovernmental Panel on Climate Change (IPCC) Fourth Report released in 2007 confirmed 

that atmospheric CO₂ concentrations rose from 280ppm in 1750 to 379 ppm in 2005 (see http://www.
ipcc.ch/). As is apparent from Figure 54.1, the level 379 ppm exceeds by around 100 ppm all previously 
recorded levels of atmospheric CO₂ over the last 400,000 years.
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nitrous oxide) – but also in terms of the possibly causative relationship between 
atmospheric dust particulates and temperature.6

Another option for modelling these series might be the use of breaking 
trend functions, such as those that have been popular in econometrics over the 
last two decades. Structural break models offer flexibility to capture differences 
as well as commonalities across epochs and could be used to fit trigger point 
thresholds for the initiation and termination of glacial periods. However, 
these models have typically been developed in a univariate context and would 
need to be extended to multiple, sequenced, alternating breaks with common 
thresholds and feedbacks among the series and to allow for random wandering 
behaviour and cyclical features associated with orbital forcing in order to achieve 
congruence with these data. All of these requirements, combined with break 
point and threshold determination and the singularity of the holocene era, 
push the envelope of present econometric capability and reveal the fragility and 
arbitrariness of structural break modelling when it is carried to excess.

Finally, direct nonparametric fitting and data smoothing offer alternate 
modelling methods. Neither approach deals well with abrupt terminations, 
threshold triggering or random wandering behaviour within epochs. Neither 
do these methods allow for the use of astronomical forcing variables or other 
causal effects known to be important from climate theory, such as greenhouse gas 
amplification or ocean current influences. Nor do they allow easily for multivariate 
treatment that permits interaction between the series.

In short, none of the models or econometric methods for studying trends 
seem to measure up to the task of modelling these series. To take the problem 
to the next level, these series can be viewed in the context of even longer climate 
trajectories. Paleoclimate records from various sources are now available over very 
long time frames extending to hundreds of millions of years. The data are partially 
based on deep sea sediment cores extracted at a large number of oceanic sites, as 
described in Muller and MacDonald (1997) and Lisiecki and Raymo (2005a, b).

6 Some alternate planetary evidence of climatic causative forces arising from dust storms is available from 
astronomical observation. Ten planetary dust storms have been observed on the planet Mars since 1877. 
Over the last decade two major planetary dust storms (2001 and 2007) have been closely monitored by 
the Hubble telescope and Mars rovers. It was observed that the 2001 dust storm led to a temperature rise 
of some 30˚C, affirming a strong planetary link between dust and temperature.
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These extremely long series raise the difficulties of trend modeling to an 
entirely different level. Sediment core data reveal a steady downward drift in 
temperature over the last 5myr period, leading to a growing incidence of glaciation 
accompanied by an increase in the amplitude of the glacial/deglacial fluctuations 
(appearing like nonstationary volatility on this time scale). The 41 kyr cycle is 
a dominant characteristic 3 to 1 million years ago, whereas the ∼100kyr cycle 
appears dominant over the last million years.7

The picture is further complicated over the far longer 65myr period 
following the Cretaceous-Tertiary (or so-called KT) boundary event to the 
present. While the drift in temperature over this period has generally been in a 
downward direction, it is by no means linear or monotonic and there have been 
substantial periods of warming, associated with an Antarctic thawing 25myr ago, 
prior to reglaciation some 12myr ago. Finally, the estimated climate record over 
the last half billion years has a pronounced cyclical pattern embodying much of 
the variation that over shorter geologic periods is reasonably perceived as upward 
or downward trend.

These long span paleoclimate data highlight that trend is a complex 
phenomenon with features that are random and endogenous to the sample size. 
As we lengthen the time span of observation, what first appears as a pattern of 
drift later becomes absorbed into a cycle with a longer period or even manifests as 
volatility. The pattern continues to repeat itself over different time scales.

Is trend itself then a phenomenon that is relative to time scale? If so, when 
we model trend how do we take account of the wider picture presented by a longer 
time frame when that data is not available to us? And what form of asymptotic 
theory is appropriate in a finite sample where the trend form is random and 
endogenous to the sample size? These are hard questions that push the limits 
of present understanding and methodology. In the absence of data, the answers 
must lie in good theory, better econometric technique, and fast algorithms for 
adapting models that are inevitably misspecified.

7 The orbital inclination theory of Muller and MacDonald (1997) offers an explanation of this major 
change in climate trend. Changes in orbital inclination take the Earth periodically (around 100kyr) into 
a dust belt. Dust accretion is affected by random astronomical events such as asteroid collisions which 
periodically replenish dust in this belt around the sun, thereby disturbing the glacial cycle.



Peter C. B. Phillips

 609

To capture the random forces of change that drive a trending process, we 
need sound theory, appropriate methods, and relevant data. In practice, we have 
to manage under shortcomings in all of them. It is at least some comfort for the 
econometrician to know that these manifold difficulties of modelling trend are 
not confined to economics.

Detecting financial bubbles

In his book The Adventure of English the famous author and broadcaster Melvyn 
Bragg (2003) wrote that “hindsight is the easy way to mop up the mess we call 
history.” While directed towards the study of history, this profoundly perceptive 
remark exposes some of the limitations in ex post econometric research. It is 
always easy, and can be misleading, to characterize past data – mop up the sample 
variation – by adding lags, covariates or using structural breaks to dummy out 
individually awkward observations. Far more challenging is to develop a truly 
anticipative ex ante econometric methodology that might be used as a warning 
alert system of changes in behaviour or system responses. 

Some economists believe that the creation of such methodology may be 
altogether too challenging, especially with regard to financial markets and asset 
price bubbles – witness the statement of this commonly held position in The 
Economist newspaper (15 June 2005) that “bubbles can be identified only in 
hindsight after a market correction”. Only when the full cycle of exuberance and 
collapse is complete, it is suggested, can a financial bubble be identified.8

Displayed in Figure 54.2 is the dot com bubble in the 1990s which is said 
to have created and destroyed about 8 trillion dollars of shareholder wealth over 
a period of 6 or 7 years. The data are given in real terms, including fundamentals 
– dividends – which behave very differently from prices. From this descriptive 
characterisation, the market fell first to 36 percent of its peak value and then to 
24 percent of its peak value.

The warning cited earlier that Alan Greenspan made in his dinner speech 
about financial markets in the 1990s was cast as a question – how do we know when 

8 Even then, as we have discussed in footnote 4, academic disputes continue over whether a bubble has 
actually occurred.
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irrational exuberance is escalating asset values? How too might we distinguish 
between a long-term upward drift in stock prices and such exuberance? Such 
slow drifts are expected – they represent the long run return from investing in 
stocks as a risky asset – but they are usually imperceptible and undetectable over 
short periods of time because their magnitude is swamped by noisy volatility. 
Figure 54.2 shows that with the Nasdaq data something much more dramatic 
than a small drift was going on over a short time frame in the 1990s. Greenspan’s 
speech was given in December 1996, by which time the graphic shows that there 
had been some escalation in prices. The first econometric question is how to 
define irrational exuberance. The second is how to detect it when it is occurring 
and the third is whether it can be anticipated. In effect, in December 1996 was 
Greenspan speaking on the basis of empirical evidence? Did the data at that point 
in time support his concerns over market exuberance?

It is unclear from Greenspan’s speech whether the Fed had conducted 
any empirical research analysing the data and assessing evidence for exuberance. 
Given its substantial team of researchers, massive data archives, and expertise 
in empirics, it seems likely that some empirical analysis had been attempted. 
However, at that time (1996) there were no ex ante econometric tests for financial 
bubbles. In recent work Phillips, Wu and Yu (2011) show that by using recursive 
calculations of right sided unit root tests it is possible to distinguish submartingale 

Figure 54.2: Monthly real Nasdaq prices and dividends 1973:2 – 2005:6. Both   
 series are normalized to 100 at the beginning of the sample. (Adapted  
 from Phillips, Wu and Yu 2011).
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(exuberant or mildly explosive) behaviour from martingale behaviour soon after 
the change in behaviour occurs. These right sided unit root tests are econometric 
tests for the emergence of a bubble in the data. With this approach it is possible 
to date stamp the emergence of exuberance and the termination or collapse of the 
bubble. No methods are currently available to determine the peak of a bubble.  

Figure 54.3 shows the results of one of these recursive tests applied to the 
Nasdaq asset prices and dividends graphed in Figure 54.2. The test used here is 
a simple ADF unit root test with a 5 percent size. The direction of the test is not 
against stationarity on the left tail, as the ADF test is commonly used, but on 
the right tail against explosive (submartingale) alternatives. The test is conducted 
recursively, so that the calculated statistic provides an observation by observation 
measure of exuberance in the financial market. When the trajectory of the 
statistic hits the critical level (obtained from the limit theory of the test statistic 
under the null hypothesis of unit root or martingale behaviour), the crossing 
time determines the origination of the financial bubble. As seen in Figure 54.3, 
empirical application of this test dates the emergence of financial exuberance 
or mildly explosive market behaviour in Nasdaq prices to June 1995, some 
18 months prior to Greenspan’s statement about irrational exuberance. Thus, 
empirical evidence supports the view that Greenspan’s remark had evidential basis 

Figure 54.3: Time Series of the ADF t-statistic for the log real Nasdaq prices and  
 log real Nasdaq dividends from April 1976 to June 2005. (Adapted   
 from Phillips, Wu and Yu 2011)
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even though this type of anticipative test was unavailable at that time. Similarly, 
when the time series of recursive calculations falls below the critical value, the 
crossing time determines the termination of the bubble. Figure 54.3 shows the 
termination of the Nasdaq price bubble as September 2000, at which point there 
is a return to normal martingale-like behaviour. Throughout the period of the 
bubble in the 1990s there is, by contrast, no evidence of ballooning in dividend 
fundamentals, confirming that Nasdaq asset prices diverged from fundamentals 
over 1995–2000. 

The econometric methodology in this empirical exercise involves the simple 
reduced form autoregressive model 

where allowance is made for structural change in the autoregressive 
coefficient. The time series Xt follows a unit root autoregression with innovation 
εt over period t < τe, which transforms into a mildly explosive9 time series over 
the period τe ≤ t ≤ τf (with autoregressive coefficient δn = 1 + c/kn > 1 where kn 
tends to infinity slower than the sample size n), and then reverts to a unit root 
autoregression for t > τf  from some re-initialization X* that may be related to 
the level of Xt prior to the origination of the bubble. This simple model has 
two structural breaks that capture the transition to and from a mildly explosive 
process which characterise the emergence of a bubble and its subsequent collapse. 
This model is readily extended to accommodate further transitions that might 
occur during the sample period if multiple bubble episodes were present in the 
data. Methodology for detecting multiple bubbles is now available using a rolling 
window version of the recursive tests just described (see Phillips, Shi and Yu 
2012).

A central advantage of the autoregressive structure in comparison with 
more complex time series models is that all of the energy in distinguishing the 
martingale and submartingale behaviour is concentrated in the autoregressive 
coefficient which produces a powerful statistical test. Unlike left sided unit root 
tests against stationary alternatives which are well known to lack power, right 

9 The concept of a mildly explosive time series and the associated asymptotics for this type of process were 
developed in Phillips and Magdalinos (2007a, b).
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sided tests are very sensitive to explosive departures from the null and this remains 
so for models with weakly dependent innovations. 

In order to ensure a consistent dating algorithm, we arrange for the size 
of the test to go to zero as the sample size tends to infinity. The critical value 
of the test then passes to infinity, ensuring that there are no false positives 
asymptotically and leading to consistent determination of the bubble origination 
and termination dates. Various modifications of this test procedure are possible 
to enhance its performance in detection and avoid unnecessary warning alerts 
when the statistic crosses the threshold for a very short period of time in relation 
to sample size.10

Figure 54.4 shows the results of a further application of this detection 
procedure by Phillips and Yu (2011) to US rental-adjusted real house prices 
10 Technically, this adjustment can be achieved by factoring into the critical value a slowly varying function 

of the sample size.

Figure 54.4: Time series plot of the US monthly real house price index over   
 January 1990 to January 2009 adjusted by the rental price. The   
 estimated bubble origination and collapse dates are shown,    
 together with the August 2007 commencement date of the subprime  
 crisis (Adapted from Phillips and Yu 2011)
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based on the Case – Shiller composite 10 index (sourced from Shiller’s website) 
standardized by the CPI. As shown in Figure 54.4, a significant bubble is found 
by the recursive test during the early part of the 2000s. The estimate of the bubble 
origination date is May 2002, which strongly supports the position taken by Baker 
(2002) who claimed that there was a housing bubble at that time, well before 
other commentators. The dating mechanism shows that the bubble collapsed in 
December 2007, soon after the subprime crisis erupted. The bubble is analysed 
by these methods in Phillips and Yu (2011) in the context of the broader timeline 
of the global financial crisis of 2007–2008 and its aftermath. This study also 
developed tests of the transmission of exuberance across markets that included 
housing, commodities (oil) and asset backed commercial paper, finding that there 
were contagion effects across these financial markets. 

Conclusion

One of the recent contributions of econometrics has been the development 
of tools for studying trends and bubbles. Both phenomena take us away from 
the regular world of stationary processes into the broad, complex universe of 
nonstationary time series. Important to the progress that has been made, this 
work acknowledges salient features of economic and financial reality – that trends 
have stochastic elements and that bubbles do occur. Accordingly research has 
fostered new techniques to evaluate trending mechanisms and distinguish among 
random wandering behaviour, trend stationarity, breaking trend behaviour, and 
the mildly explosive processes that underlie bubble phenomena. We now have 
the capability to evaluate nonstationarity in terms of the memory characteristics 
displayed by the time series and explore potential relationships between variables 
that embody long range dependence. Many of these elements are relevant in 
empirical work with trending data such as the climate data discussed in this lecture. 
In that context, it quickly becomes apparent that trends are poorly understood 
in relation to both underlying theory and econometric methodology. Without 
improvements in both theory and methodology, empirical work is simply little 
more than a glorified version of running a line though a set of points. 

Complex models are sometimes needed to provide sufficient detail for 
empirical research to be useful. But simple econometric models, like simple 
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economic theories, have powerful advantages of focusing attention on key features 
of interest. In studying bubble phenomena, this principle is well illustrated 
by a mildly explosive autoregression which captures the key distinguishing 
characteristic of exuberance and thereby enables powerful new methods of 
bubble detection. That technology provides a date stamping methodology for 
use in empirical research and gives policy makers an early warning diagnostic 
to alert them to changes in financial markets. While further research on theory 
models and econometric methodology is needed, the methods we have developed 
are now being used by central bank surveillance teams in many countries. One 
positive externality of the global financial crisis is that there is now intensive 
professional interest in this area and much ongoing research that covers theory, 
econometrics, and empirics of financial bubbles.
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