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a b s t r a c t

We analyze the applicability of standard normal asymptotic theory for linear process models near
the boundary of stationarity. Limit results are given for estimation of the mean, autocovariance and
autocorrelation functionswithin the broad region of stationarity that includes near boundary caseswhich
varywith the sample size. The rate of consistency and the validity of the normal asymptotic approximation
for the corresponding estimators is determined both by the sample size n and a parameter measuring the
proximity of the model to the unit root boundary.
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1. Introduction

The idea of developing asymptotics in near unit root situations
is due at various levels of generality to Bobkoski (1983), Cavanagh
(1985), Phillips (1987) and Chan and Wei (1987). These studies
considermodels inwhich the dominant autoregressive root is local
to unity in the specific sense of O


n−1


departures from unity,

thereby making the value of the root sample size dependent. The
work has proved useful in studying near integrated processes, in
establishing the local asymptotic properties of tests, and in the
construction of confidence intervals.

Recentwork has shown that it is also useful to provide a broader
characterization of the locality of unity, the region of stationarity
and the explosive region. In particular, the concept of moderate
deviations from unity was suggested and pursued by Phillips and
Magdalinos (2007a) and Giraitis and Phillips (2006), which leads
to certain new possibilities such as mildly explosive behavior and
gives rise to a new limit theory. This broader approach tomodeling
the region around unity conceptualizes the important practical
notion that in finite samples a unit root may be treated as an
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interval around unity, whose size is determined by the sample
length n and measured according to units of 1/n. Outside such
intervals we have regions that involve certain classifiable types of
stationary and explosive behavior, nowmeasured in units of more
general functions of 1/n.

The idea is well illustrated in the simple AR(1) model

Xt = ρXt−1 + εt , t = 1, . . . , n (1.1)

where εt is i.i.d. (0, 1) noise and X0 is some fixed or Op(1)
random initialization. In this model, the unit root ρ = 1 is
conventionally taken to prescribe the boundary case between
stationarity and explosive behavior. Accordingly, a model with
|ρ| < 1 is stable or stationary, whereas a model with |ρ| > 1
is (non-stationary) explosive. However, from both a practical and
theoretical standpoint it has become increasingly clear that in
finite samples of data a unit root is effectively an interval of the
form

ρ ∈ [1 − an, 1 + an], an = o(1/n),

which shrinks to the singular point at unity as n → ∞. Within
such intervals the limit theory and statistical tests that rely on that
theory cannot distinguish different values of ρ.

Broadening the interval to include roots that are local to unity
in the sense that 1 − ρ = c/n, for some constant c , gives rise to
the class of near integrated processes (Phillips, 1987) with ρ taking
values in the region

ρ ∈ [1 − an, 1 + an], an ∼ c/n.

http://dx.doi.org/10.1016/j.jeconom.2012.01.020
http://www.elsevier.com/locate/jeconom
http://www.elsevier.com/locate/jeconom
mailto:l.giraitis@qmul.ac.uk
http://dx.doi.org/10.1016/j.jeconom.2012.01.020
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This class is particularly useful in studying asymptotic local power
functions of unit root tests and in constructing confidence intervals
for ρ that allow for limit processes within the diffusion class
corresponding to the limits of n−1/2X[n·] for various values of c .

Based on this classification of unit roots and roots local to unity,
the region of stationarity may be described by intervals of the type

ρ ∈ [−1 + an, 1 − an], ann → ∞.

These intervals of stationarity include moderate deviations from
unity of the form ρ = 1 − c/kn and ρ = −1 + c/kn where kn =

o(n) and c > 0, as considered in Phillips andMagdalinos (2007a,b).
Likewise the region of explosive behavior may be characterized as

ρ ∈ (−∞,−1 − an] ∪ [1 + an,∞), ann → ∞.

In samples of size nwe therefore have the following categories:

(i) the unit root region, described by pairs (n, ρ) for which n(1−

ρ) = o(1) is very small;
(ii) the near unit root region, described by pairs (n, ρ) for which

n(1 − ρ) = O(1)may take moderate values;
(iii) the region of stationarity, described by pairs (n, ρ) for which

n(1 − ρ) → ∞ takes large values.

In each of these cases we may consider ρ (and hence v = 1 − ρ)
to be functionally dependent on n, as has often been done in the
previous literature, therebymaking the process Xt in (1.1) an array.
However, one may consider the formulation from a more general
perspective in which the parameter ρ is confined to an interval
that depends on n and certain limit results may be established that
remain valid within the entire region as n → ∞. This set-specific
formulationwill be understood throughout the paper and it will be
made more explicit as it is needed for the limit theory.

The region of stationarity and unit root region are separated by
a local to unity region in which the least squares estimator ρ̂n of
ρ in (1.1) has a non-Gaussian limit distribution. The size of the
stationarity region is determined by the sample size n and ρ, and
when n(1 − ρ) is large, ρ̂n has the same asymptotic properties as
in the (fixed ρ) stationary case. That is,

n
1 − ρ2

(ρ̂n − ρ)→d N(0, 1), (1.2)

as shown in Phillips and Magdalinos (2007a,b) and Giraitis and
Phillips (2006). The convergence rate behaves as


n/

1 − ρ2

1/2
∼ {n/2(1 − ρ)}1/2 when 1 − ρ is small. As the sample size n
increases, the stationarity region approaches the boundaries of the
interval (−1, 1). Further, the convergence rate {n/2(1 − ρ)}1/2 is
determined by both n and ρ and may increase from

√
n towards

the unit root rate n for small 1−ρ. Thus, (1.2) is a set valued result
which holds for all ρ in a region whose width ultimately depends
on the sample size n.

It follows from (1.2) that standard asymptotic estimation and
inferential theory applies over the whole region of ρ for which
(1.2) holds. Similarly, in more general autoregressions than (1.1)
and linear regressions where moderate deviations from a unit
root occur, asymptotic normality will prevail although the rate
of convergence may increase or slow down depending on the
value of ρ and bias effects may emerge because of endogeneity
in the regressors (Phillips andMagdalinos, 2007b; Magdalinos and
Phillips, 2008).

The present paper seeks to explore generalizations of (1.2) for
sample mean, autocovariance and autocorrelation functions near
the boundary of stationarity and under awider class ofmodels that
allow for linear process errors. Consistency and limit distribution
results are given, aswell as conditions for the consistent estimation
of the parameter v = 1 − ρ which measures nearness to the
unit root boundary. The practical implication of these set-based
limit results is that the limit theory given here is applicable within
certain well defined regions for ρ, thereby extending the range of
conventional theory to a parametric zone that is close to unity as
n → ∞. These regions clarify the extent to which conventional
tests and confidence intervals are applicable. For instance, in the
context of estimating the mean µ = EXt , the usual normal
approximation for the sample mean X̄ is applicable provided the
parameter ρ = 1 − v is such that nv is large. The quantity
nv becomes the effective sample size in validating the normal
approximation. The actual rate of convergence to the limiting
normal depends on the value of v (see (2.11)) and therefore varies
over an interval, as shown in Theorem 2.1 and (2.12). As we will
show, related results hold in the case of autocorrelation estimation.

The paper is organized as follows. Section 2 considers a general
class of linear process models, where allowance is made for the
presence of roots that deviate moderately from unity. Our main
results focus on the sample mean, sample correlation and sample
autocovariance function and we establish the rate of consistency
and the validity of normal approximations for these sample
functions. Section 3 contains asymptotic theory for integrated
periodograms (and hence quadratic forms) where the weighting
functionmay depend on n. These results are discussed in Section 4.
Appendix A contains proofs of the supporting asymptotic theory
of Section 3. Proofs of the main results of Section 2 are given in
Appendix B.

In addition to standard asymptotic notation, it is convenient,
given sequences an, bn ≥ 0, to use the notation an ≍ bn to signify
that C1bn ≤ an ≤ C2bn, holds for n ≥ 1 and for some C1, C2 > 0.

2. Main results

2.1. Model

We consider the model

(1 − ρL)Xt = Yt , Yt =

∞
j=0

bjεt−j, t = 1, 2, . . . , n, (2.1)

where 0 < ρ < 1 (the closeness of ρ to unity is later made
explicit and depends on n) and Yt is a linear MA(∞) process with
coefficients bj, where (εt) is a sequence of i.i.d. random variables
with

Eεt = 0, Eε2t = 1 (2.2)

and L is the back-shift operator. Our attention will focus on the
impact of the closeness of ρ to 1 (i.e., the smallness of v = 1 −

ρ) on the validity of the asymptotic normal approximations for
the distributions of the sample mean, sample autocovariance and
sample autocorrelation.

The spectral density function f (λ), |λ| ≤ π , of {Xt} can be
written as

f (λ) = (2π)−1f ∗(λ)g(λ), |λ| ≤ π (2.3)

where

f ∗(λ) = |1 − ρeiλ|−2
=

1
v2 + 2ρ(1 − cos(λ))

,

g(λ) =

 ∞
s=0

bse−iλs


2

and |ρ| < 1. Then

f (0) = (2π)−1v−2g0, g0 = g(0), (2.4)

f ∗(λ) ≤ (v2 + ρλ2/3)−1, |λ| ≤ π, |ρ| < 1, (2.5)

using 2(1 − cos(λ)) ≥ λ2/3 for |λ| ≤ π . To check this bound,
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use the fact that 2 (1 − cos (λ)) = 4 sin2(λ/2) ≥ 4
 2
π
λ
2

2
=

(4/π2)λ2 > (1/3)λ2 over [−π, π ].
We shall assume that g0 > 0, and

∞
s=j

|bs| ≤ Cj−1−α, j ≥ 1 (2.6)

for some α > 2. Then, since g is an even function,

|g(λ)− g(0)| ≤ Cλ2, |λ| ≤ π. (2.7)
This summability condition (2.6) on the coefficients is easy to
interpret and implies the smoothness condition (2.7).

It is natural to raise the question of how the closeness of
the parameter ρ to 1 impacts the validity of the usual normal
approximation of the distribution of the sample mean and second
moments. Moreover, if ρ is close to one and may depend on the
sample size n as discussed in the introduction, it is of interest to
determine the set of pairs (n, ρ) for which the asymptotic theory
corresponding to a stationary model with fixed ρ continues to
apply.

We also examine the effect of the closeness of ρ to 1 on
the estimation error, the rate of convergence and the length of
confidence intervals.

2.2. Estimation of the mean

Define the sample mean:

X̄ =
1
n

n
t=1

Xt .

It is well known that for any fixed ρ with |ρ| < 1 as n → ∞,
n

2π f (0)
(X̄ − µ)→d N(0, 1) (2.8)

where µ = E[Xt ] = 0 in case of (2.1). Since f (0) = (2π)−1v−2g0,
this implies

nv2

g0
(X̄ − µ)→d N(0, 1). (2.9)

On the other hand, the convergence (2.8)–(2.9) fails to extend
smoothly for a unit root model, with ρ = 1, nor does the model
(2.1) itself exist, unless suitable assumptions are made concerning
the initialization X0 to ensure that it is well defined.

The critical question we address is under which restrictions
on ρ and n does the approximation implied by the limit theory
(2.8)–(2.9) continue to hold? We shall show that, for given (ρ, n),
the normal approximation (2.9) holds if nv is large. As discussed
earlier, we allow for an array formulation of the model in which
ρ = ρn and v = vn may change with n.

Theorem 2.1. Assume that {Xt} follows the model (2.1), satisfy-
ing (2.6) and

vnn → ∞, as n → ∞. (2.10)

Then the convergence
nv2n
g0
(X̄ − µ)→d N(0, 1) (2.11)

holds.

The proof of Theorem 2.1 is given in Appendix B.
We conclude that if the parameter ρ = 1 − v and sample size

n are such that nv is large, then the normal approximation (2.9) is
applicable. The rate of convergence of the normal approximation
(2.11) depends on the value of v and varies in the interval

n−1/2
≪

√

nv2 ≤
√
n. (2.12)
The convergence (2.9) shows that the rate
√
nv2 does not

exceed
√
n. It becomes slow when v is close to n−1/2 and even

tends to 0, when v approaches n−1. The value of v has a strong
impact on the length of confidence intervals for µ, and estimation
of µ dramatically worsens in quality as the unit root model is
approached. The sample mean X̄ is a consistent estimator of µ
only if v ≫ n−1/2, and µ cannot be consistently estimated when
n−1

≪ v ≪ n−1/2, although the normal approximation (2.11)with
µ = 0 still holds. Observe, that the lower bound n−1/2 of the rate
(2.9) is in line with results in the unit root case ρ = 1, for which
under the initial condition X0 = 0, we have Xt =

t
j=1 Yj and

n−1/2X̄ = n−3/2
n

k=1

k
j=1

Yj →d ωY

 1

0
W (u)du,

where Wu is the standard Wiener process and ω2
Y is the long run

variance of a stationary sequence Yj.
This example demonstrates that the closeness of the model

to unit root non-stationarity not only affects the properties of
semiparametric estimation but can also have a strong impact on
the quality of simple parametric estimation such as the sample
mean.

2.3. Autocovariance and autocorrelation function estimation

We now consider estimation of the autocovariances

γk = Cov(Xk, X0) =

 π

−π

cos(λk)f (λ)dλ, k ≥ 0

and the autocorrelation function ρk = γk/γ0, k = 0, 1, 2, . . . using
the sample analogues

γ̂k = n−1
n−k
t=1

Xt+kXt , ρ̂k =
γ̂k

γ̂0
, k ≥ 0.

The next lemma describes the asymptotic behavior of γk and ρk as
ρ → 1. Set

Γk = (2π)−1
 π

−π

1 − cos(kλ)
2(1 − cos(λ))

g(λ)dλ, k = 1, 2, . . .

and

Γ0 = (2π)−1
 π

−π

g(λ)− g0
2(1 − cos(λ))

dλ.

The asymptotic distributions of the sample mean, autocovari-
ances, and autocorrelations for short (and long) memory time se-
ries were studied in Hosking (1996). We focus here on stationary
short memory time series which approach the unit root region.
First, we discuss some asymptotic properties of γk andρk as v → 0.

Lemma 2.1. For fixed k = 0, 1, 2, . . . , as v → 0,

γ0 =
g0
2v

+
g0
4

+ Γ0 + o(1), (2.13)

γk = γ0 − Γk + o(1)

=
g0
2v

+
g0
4

+ Γ0 − Γk + o(1), k = 1, 2, . . . (2.14)

and

ρk = 1 − 2vΓk + o(v), k = 1, 2, . . . . (2.15)

Our next theorem deals with asymptotic properties of the
estimators γ̂k and ρ̂k.

Theorem 2.2. Assume that (X1, . . . , Xn) is a sample generated
by (2.1)which satisfies (2.6)withρ = ρn andwhere vn = 1−ρn > 0
has property (2.10).
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(i) If Eε4t < ∞, then

E|γ̂k − γk| ≤ C
1
nv3n

, γ̂k = γk


1 + OP


1

√
nvn


, (2.16)

where C does not depend on n and vn.
(ii) If Eε2+δt < ∞, for some δ > 0, and vn → 0, then

2nv3n
g2
0
(γ̂k − γk)→d N(0, 1). (2.17)

(iii) If Eε2t < ∞ then

|ρ̂k − ρk| = OP


1

nvn
+


vn

n


. (2.18)

Moreover, if

n v3n → ∞, vn → 0, n → ∞ (2.19)

then
nvn

2(1 − ρk)2
(ρ̂k − ρk)→d N(0, 1),

nvn
2(1 − ρk)2

∼
1

2Γk


n

2vn
.

(2.20)

The following theorem considers estimation of the quantity
√
v

in the neighborhood of 0. Denote the periodogram by In(λ) =

(2πn)−1
|
n

j=1 e
ijλXj|

2, and define


v̂n =

 π
−π

|λ/2|1/2 In(λ)dλ π
−π

In(λ)dλ
. (2.21)

Theorem 2.3. Assume that (X1, . . . , Xn) is a sample generated
from (2.1)which satisfies (2.6)withρ = ρn andwhere vn = 1−ρn >
0 has property (2.10). If Eε4t < ∞, then
v̂n =

√
vn + OP


vn +

1
nvn

+
1

√
n


. (2.22)

The proofs of Lemma 2.1 and Theorems 2.2–2.3 are given in
Appendix B.

Remarks.
(i) Estimation of γ̂k and ρ̂k is based on approximation of these

statistics by quadratic forms of the form
n

t,s=1 bn(t − s)εtεs
with suitable weights bn(t − s). In case of ρ̂k, the diagonal
elements bn(t − s) become 0, whereas in case of γ̂k, the
contribution of the diagonal

n
t=s=1 bn(t − s)ε2t , as vn → 0,

is asymptotically negligible. This representation leads to the
requirement of finite 2 + δ moments of εt in (ii), and second
moments in (iii). In the casewhere vn is fixed, the convergence
(2.17) requires finite fourth moments of εt .

(ii) It follows from (2.16) that γ̂k is a consistent estimate of γk.
The CLT (2.17) is valid with the convergence rate


nv3n which

depends on the value of vn and varies in the interval

n−1
≪


nv3n ≪

√
n.

(iii) As vn decreases, confidence intervals for γk will increase.
When nv3n → 0 then (2.17) can be written in the form

γ̂k ∼ γk


1 +

g0
γk

2nv3n

Z


∼ γk


1 +


2

nvn
Z

,

Z ∼ N(0, 1).
lags

True ACF of AR(2) model: (1-rL)(1-0.4L)Xt=  tε
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1 6 11 16 21 26 31 36 41 46

Fig. 1. ACF ρk of AR(2) model with r = 0.5, 0.7, 0.85, 0.95, n = 125.

Sample ACF of AR(2) model: (1-rL)(1-0.4L)Xt=  tε
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Fig. 2. Example of realizations of Sample ACF ρ̂k of AR(2) model with
r = 0.5, 0.7, 0.85, 0.95, n = 125.

(iv) Theorem 2.2 shows that the sample autocorrelation ρ̂k is a
consistent estimator of ρk as long as nv → ∞, and Eε2t < ∞.
The proof indicates that ρ̂k − ρk can be decomposed into a
bias term of order OP((nvn)−1) and the stochastic CLT term
vn
n N(0, 1) which dominates the bias under the condition

nv3n → ∞.
(v) To apply these results in samples of size n we set vn = v =

1−ρ where ρ is the parameter of the data generating process.
The parameter v can be consistently estimated as shown in
Theorem 2.3.

The proof of Theorem 2.2 is based on central limit theory
for certain quadratic forms and this theory is developed in the
following section.

Fig. 1 shows theACFρk of theAR(2)model (1−rL)(1−0.4L)Xt =

εt for the parameter values r = 0.5, 0.7, 0.85 and 0.95. Fig. 2
shows a realization of the sample ACF, ρ̂k, computed from a sample
of n = 125 observations. Figs. 3 and 4 show the bias ρ̂k − ρk and
the relative bias (ρ̂k − ρk)/ρk corresponding to these realizations.
The figures confirm the theory based on (2.20) that the rate of
convergence

√
n/v of the sample ACF in the near unit root region

improves when v → 0, and nv3 remains large. That condition is
not well satisfied when r = 0.95, partly explaining the large bias
in this case.1

Figs. 5–6 indicate the adequacy of the standard normal
approximation (2.20) to the probability density function of the
standardized sample ACFs t̂n(k) =


nv̂

2(1−ρ̂k)2
(ρ̂k − ρk) for lags

k = 5, 25, 45 in the same AR(2) model and with n = 2000. The
probability density of t̂n(5)was estimated using a kernel estimator
based on 50,000 replications. The figures indicate that the density
is generally well fitted by the standard normal for r = 0.8, 0.95,

1 We thank Violetta Dalla for preparing Figs. 1–4.
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lags

Bias of sample  ACF of AR(2) model: (1-rL)(1-0.4L)Xt=  tε
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Fig. 3. Bias of Sample ACF of AR(2) model with r = 0.5, 0.7, 0.85, 0.95, n = 125.

lags

Relative bias of sample ACF of AR(2) model: (1-rL)(1-0.4L)Xt=  tε
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Fig. 4. Relative bias (ρ̂k − ρk)/ρk of Sample ACF of AR(2) model with
r = 0.5, 0.7, 0.85, 0.95, n = 125.
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Fig. 5. Densities of t̂n(k) : k = 5, 25, 45 versus the standard normal for r = 0.8
and n = 2000.

corresponding to the near unit root case with v = 0.2 and
0.05, respectively, although we note that the departure from the
standard normal is greater for larger lag values.

3. Asymptotic theory for quadratic forms

This section provides some supportive asymptotic theory for
quadratic forms and their approximations by quadratic forms in
i.i.d. variables. Themethodology developed in Bhansali et al. (2007)
that we follow cannot be applied directly since the bounds for
remainder terms in case of a near unit root parameter ρn have to
be derived uniformly in ρ = ρn, corresponding to the closeness of
the model to a unit root model—see Assumption 3.1. The results
of this Section are applied to the sample autocovariances and
autocorrelations of Section 2.

We assume that

Xt =

 ∞
s=0

asLs

Yt =

∞
s=0

asYt−s, t = 0, 1, 2, . . . (3.1)
d
en

si
ty
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Fig. 6. Densities of t̂n(k) : k = 5, 25, 45 versus the standard normal for r = 0.95
and n = 2000.

is a linear process where

Yt =

 ∞
s=0

bsLs

εt =

∞
s=0

bsεt−s,

(εt) is a sequence of i.i.d. random variables with Eεt = 0, Eε2t = 1,
and the real coefficients as, bs are absolutely summable. We can
write Xt as

Xt =

 ∞
j=0

ajLj
 ∞

s=0

bsLs

εt =

∞
u=0

ψuεt−u, t = 0, 1, 2, . . .

with

ψu =

u
k=0

akbu−k, u = 0, 1, 2, . . . .

The spectral density function f (λ), |λ| ≤ π , of {Xt} can be written
as

f (λ) = (2π)−1
|Ψ (λ)|2, Ψ (λ) = Ψa(λ)Ψb(λ) (3.2)

where

Ψa(λ) =

∞
s=0

ase−iλs, Ψb(λ) =

∞
s=0

bse−iλs.

We impose the following restrictions on as and bs.

Assumption 3.1. (i) The coefficients aj satisfy

|aj| ≤ Cρ j, j = 1, 2, 3, . . . (3.3)

for some 0 ≤ ρ < 1, where ρ = ρn may depend on n.
(ii) The coefficients bs are such that

∞
s=j

|bs| ≤ Cj−1−α, j = 1, 2, 3, . . . (3.4)

for some α > 1/2, and the bs do not vary when n changes.

C here and below denotes a generic positive constant which
may change from line to line but does not depend on n and ρ. The
parameter ρ in Assumption 3.1 characterizes the closeness of the
process Xt to a unit root process and plays the same role as the
AR(1) parameter ρ in model (2.1). We keep the same notation, to
relate the results to the applications of Section 2. As before, we let

v = 1 − ρ. (3.5)

Under Assumption 3.1, the spectral density

f (λ) ≤ C

 ∞
j=0

ρ j


2

≤ Cv−2 (3.6)

is bounded by a constant times v−2 which increases to ∞ as ρ
tends to 1. For example, the model
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Xt = (1 − ρL)−1Yt =


∞
j=0

ρ jLj

Yt =

∞
j=0

ρ jYt−j,

where 0 < ρ < 1 and Yt is an ARMA(p, q) model that has
properties (3.3) and (3.4).

In effect, we consider data that takes the form of a triangular
array

(X1, . . . , Xn) = (X (n)1 , . . . , X (n)n ), n = 1, 2, . . .

generated by model (3.1) where, as n increases, the coefficient
ρ = ρn in (3.3) may change with n, e.g. they may approach unity,
whereas the coefficients bj remain the same and satisfy condition
(3.4) with the same C and ρ for all n.

Denote by

In(λ) =
1

2πn

 n
j=1

Xjeiλj

2

, In,ε(λ) =
1

2πn

 n
j=1

εjeiλj

2

the periodograms of the observed variableXt and the noise variable
εt . A number of useful statistics can be written in the form of
functionals of the integrated periodogram

Tn,X =

 π

−π

ηn(λ)In(λ)dλ,

whereηn(λ) is a real even function. Thewell-knownBartlett (1955)
decomposition

In(λ) = 2π f (λ)In,ε(λ)+ Ln(λ) (3.7)

divides the periodogram In(λ) into the weighted periodogram
2π f (λ)In,ε(λ) of the noise and the remainder Ln(λ). The expression
suggests that Tn,X can be similarly decomposed as

Tn,X = Tn,ε + ‘‘small term’’

where

Tn,ε = 2π
 π

−π

ηn(λ)f (λ)In,ε(λ)dλ,

is a quadratic form of the i.i.d. variables εj. If the remainder above
is dominated by Tn,ε , then one can analyze Tn,X via Tn,ε . Our
objective is to derive a precise upper bound for the remainder term.
Then, using asymptotic theory for the quadratic forms Tn,ε in i.i.d.
variables, we derive the asymptotic distribution of Tn,X . We shall
assume that the functions ηn have the following property.

Assumption 3.2. ηn is a real even function such that

|ηn(λ)| ≤ kn, λ ∈ [−π, π], n ≥ 1. (3.8)

Thus, the functions ηn are bounded but their upper bound kn might
vary with n, for example, ηn may be a kernel function.

Let

hn(λ) = ηn(λ)f (λ). (3.9)

Then Tn,ε = 2π
 π
−π

hn(λ)In,ε(λ)dλ. We shall assume that hn(u) is
periodically extended to the real line R. Set

∥hn∥
2

:=

 π

−π

h2
n(λ)dλ. (3.10)

Theorem 3.1. Suppose that Assumptions 3.1 and 3.2 hold and the
noise {εt} has finite second moment.

Then, for n ≥ 1,

E|Tn,X − Tn,ε| ≤ C
kn
nv2

, (3.11)

and
Tn,X =

 π

−π

ηn(λ)f (λ)dλ+ (Tn,ε − E[Tn,ε])+ rn,

E|rn| ≤ C
kn
nv2

.

(3.12)

If ε4t < ∞, then

E
Tn,X −

 π

−π

ηn(λ)f (λ)dλ
 ≤ C


kn
nv2

+


∥hn∥

2

n


≤ C


kn
nv2

+
kn

√
nv3


(3.13)

where C does not depend on n and v = 1 − ρ .

Theorem 3.1 provides sharp upper bounds for the remainder
termwhich reflects the interplay of n and ρ, with no restrictions on
ρ imposed. The bounds (3.11)–(3.13) hold uniformly in 0 ≤ ρ < 1,
but they show that the remainder is negligible, only if nv2 is large.
The constants kn play a secondary role. If the functions ηn(λ) do not
depend on n, we can set kn = 1. The proof of Theorem 3.1 is given
in the Appendix.

Next we derive the CLT for the term Tn,ε − E[Tn,ε] in (3.12) and
describe conditions under which it dominates the remainder rn.

First, to evaluate Var(Tn,ε), we introduce the matrix En =

(en(t − k))t,k=1,...,n with the entries

en(t) = 2π
 π

−π

hn(λ)eiλtdλ, (3.14)

and denote by ∥En∥ = (
n

t,k=1 e
2
n(t − k))1/2 its Euclidean norm.

Observe that

(2πn)2Var(Tn,ε) = 2
n

t,k=1:t≠k

e2n(t − k)+ Var(ε20)e
2
n(0)n. (3.15)

Then

Var(Tn,ε) ≍
1
n2

∥En∥2. (3.16)

If e2n(0) = 0, then En has zero diagonal, and

Var(Tn,ε) =
2

(2πn)2
∥En∥2. (3.17)

To derive the asymptotic behavior of ∥En∥2 we introduce the
following L2 continuity assumption.

Assumption 3.3. For any K > 0,

sup
|u|≤K/n

 π

−π

|hn(u − x)− hn(x)|2dx/∥hn∥
2

→ 0, n → ∞. (3.18)

Assumption (3.18) means that, for u = O(n−1), the normalized
function hn(u − ·) is close to hn(·) in the L2 norm. It is satisfied
for example, if hn ≡ h does not depend on n and ∥h∥ < ∞. In
Lemma A.2 in Appendix A we show that under Assumption 3.3,

∥En∥2
∼ (2π)3n∥hn∥

2.

Lemma 3.1 provides the central limit theorem for the quadratic
form Tn,ε in i.i.d. variables, and is a direct consequence of
Theorems 4.1 and 4.2 in Bhansali et al. (2007) and Lemma A.2
below. It takes into account the fact that the upper bound k∗

n in
|ηn(λ)|f (λ) ≤ k∗

n might be smaller than the product Ckn × v−2 of
the upper bounds |ηn(λ)| ≤ kn and f (λ) ≤ Cv−2.

We shall distinguish two cases, (c1) and (c2), when the CLT does
not require finite fourth moment of the noise εt .
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Case (c1):

Eε2t < ∞, and
 π

−π

hn(λ)dλ = 0. (3.19)

Case (c2):

Eε2+δt < ∞ for some δ > 0, and π

−π

hn(λ)dλ = o

 π

−π

hn(λ)
2dλ

1/2

.

(3.20)

Case (c1) corresponds to the case where En has zero diagonal,
whereas case (c2) corresponds to the case of an asymptotically
vanishing diagonal, a situation that often occurs, for instance, in
the case of quadratic forms in kernel estimation.

Lemma 3.1. Suppose that hn satisfies Assumption 3.3,

|hn(λ)| ≤ k∗

n, n ≥ 1,

and

k∗
n

n ∥hn∥
2

→ 0, n → ∞. (3.21)

(i) If Eε4t < ∞, then

[Var(Tn,ε)]−1/2

Tn,ε −

 π

−π

hn(λ)dλ


d
−→ N(0, 1),

Var(Tn,ε) ≍
∥hn∥

2

n
.

(3.22)

(ii) If (c1) or (c2) hold, then
n

4π∥hn∥
2


Tn,ε −

 π

−π

hn(λ)dλ


d
−→ N(0, 1). (3.23)

Lemma 3.1 remains valid also for any sequence of real even
functions hn(λ)without assuming (3.9).

Applying Lemma 3.1 to the asymptotic expansion (3.12) in
Theorem 3.1, we obtain the CLT for Tn,X . Condition (3.24) assures
that the main term Tn,ε − E[Tn,ε] satisfies the CLT and dominates
the remainder term rn.

Theorem 3.2. Suppose that Assumptions 3.1–3.3 are satisfied and, as
n → ∞,

kn/v2
n ∥hn∥

2
→ 0. (3.24)

(i) If Eε4t < ∞ then

[Var(Tn,X )]−1/2

Tn,X −

 π

−π

ηn(λ)f (λ)dλ


d
−→ N(0, 1) (3.25)

and

Var(Tn,X ) ∼ Var(Tn,ε) ≍
∥hn∥

2

n
. (3.26)

(ii) If (c2) or (c3) hold, then
n

4π∥hn∥
2


Tn,X −

 π

−π

ηn(λ)f (λ)dλ


d
−→ N(0, 1). (3.27)

4. Discussion

The idea of approximation results similar to those in Theo-
rem 3.1 goes back to the work of Hannan (1973) and Hannan and
Heyde (1972). Classical results in the time series literature cover
the case where the function ηn(λ) = η(λ) is continuous and does
not depend on n, and {Xt} is a stationary ARMA process. Brockwell
and Davis (1991), Proposition 10.8.5, showed that

E|Tn,X − Tn,ε| = o(n−1/2). (4.1)

Bhansali et al. (2007) extended this type of approximation to the
class of linear processes {Xt} allowing for both weak and strong
dependence as well as antipersistence, and allowing ηn(λ) to
depend on n. The bound (4.1) was improved to the sharper bound

E|Tn,X − Tn,ε| = O(n−1).

In the present paper, Theorem 3.1 provides the approximating
bounds

E|Tn,X − Tn,ε| = O((nv2)−1),

E
Tn,X −

 π

−π

ηn(λ)f (λ)dλ
 ≤ C


kn
nv2

+
kn

√
nv3


,

that hold uniformly over n and the parameter v = 1 − ρ
characterizing closeness of the model to the boundary of the
stationary region.

The conditions of the CLT of Theorem 3.2 are easy to check.
This theorem simplifies the derivation of asymptotics for statistics
which can be written in the form of functionals of the integrated
periodogram Tn,X . For instance, these approximations can be used
to derive the asymptotic distributions of sample autocovariances
and spectral density estimates based on kernel methods.

Appendix A

Proof of Theorem 3.1. Set

vk =


2π

n−k
j=1−k

ψ2
j , for k ≤ 0,

2π
n

j=n−k+1

ψ2
j , for 1 ≤ k ≤ n

and

dn = 2π
∞

j=n+1

ψ2
j , n = 0, 1, 2, . . . .

Let Vn =
n

k=−∞
vk and R =


∞

j=0 |ψj|. First we prove the
following technical result.

Lemma A.1. Assume that ηn(λ) satisfies Assumption 3.2. Then

E|Tn − Tn,ε| ≤ Cn−1kn


Vn + ndn + V 1/2

n R + d1/20

n
k=0

v
1/2
k

+ n1/2d1/2n R + nd1/2n d1/20


(A.1)

where C does not depend on n and ρ .

Proof of Lemma A.1. Define

dk(λ) =



n−k
j=1−k

ψje−iλj, for k ≤ 0,

−

n
j=n−k+1

ψje−iλj, for 1 ≤ k ≤ n

and

cn(λ) =

∞
j=n+1

ψje−iλj, n = 0, 1, 2, . . . .
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For integers k and t , we introduce the coefficients:

νn(k, t) :=

 π

−π

ei(t−k)λdk(λ)dt(λ)|ηn(λ)|dλ,

βn(k, t) :=

 π

−π

ei(t−k)λdk(λ)Ψ (λ)ηn(λ)dλ,

µn(k, t) :=

 π

−π

ei(t−k)λ
|cn(λ)|2 |ηn(λ)|dλ,

ζn(k, t) :=

 π

−π

ei(t−k)λcn(λ)Ψ (λ)ηn(λ)dλ.

Observe that

vk :=

 π

−π

|dk(λ)|2dλ, dn :=

 π

−π

|cn(λ)|2dλ,

d0 :=

 π

−π

|Ψ (λ)|2dλ,

vk := C
n−k

j=1−k

ψ2
j for k ≤ 0,

vk := C
n

j=n−k+1

ψ2
j for 1 ≤ k ≤ n,

dn := C
∞

j=n+1

ψ2
j .

To derive the bound (A.1), we shall use the estimate (5.31) of
Bhansali et al. (2007)

E|Tn − Tn,ε| ≤ Cn−1(E|Yn| + E|Vn,1| + E|Vn,2|) (A.2)

where it was shown that

E|Yn| ≤ C
 n

k=−∞

νn(k, k)+

n
k=1

µn(k, k)


=: C[sn,1 + sn,2],

E|Vn,1| ≤ C
 n

k=−∞

n
t=1:t≠k

|βn(k, t)|2
1/2

+

n
k=1

|βn(k, k)|


=: C[s1/2n,3 + sn,4],

E|Vn,2| ≤ C
 n

k=1

n
t=1:t≠k

|ζn(k, t)|2
1/2

+

n
k=1

|ζn(k, k)|


=: C[s1/2n,5 + sn,6].

Recall that |ηn(λ)| ≤ kn. Hence, by (A.2),

|sn,1| ≤ Ckn
n

k=−∞

 π

−π

|dk(λ)|2dλ = Ckn
n

k=−∞

vk = CknVn,

|sn,2| ≤ Cknn
 π

−π

|cn(λ)|2dλ = Cknndn,

|sn,4| ≤ Ckn
n

k=1

 π

−π

|dk(λ)| |Ψ (λ)|dλ,

≤ Ckn
n

k=1

 π

−π

|dk(λ)|2dλ
1/2 π

−π

|Ψ (λ)|2dλ
1/2

≤ Ckn
n

k=1

v
1/2
k d1/20 ,

|sn,6| ≤ Cknn
 π

−π

|cn(λ)| |Ψ (λ)|dλ ≤ knnd1/2n d1/20 .
The estimates (5.26)–(5.27) and (5.28)–(5.29) of Bhansali et al.
(2007) imply that

sn,3 ≤ C
n

k=−∞

 π

−π

|dk(λ)Ψ (λ)ηn(λ)|2dλ,

sn,5 ≤ Cn
 π

−π

|cn(λ)Ψ (λ)ηn(λ)|2dλ.

Since |ηn(λ)| ≤ kn and

|Ψ (λ)| ≤ C
∞
j=0

|ψj| ≤ CR,

it follows that

sn,3 ≤ Ck2nR
2

n
k=−∞

 π

−π

|dk(λ)|2dλ = Ck2nR
2

n
k=−∞

vk = Ck2nR
2Vn,

sn,5 ≤ Ck2nnR
2
 π

−π

|cn(λ)|2dλ = Ck2nnR
2dn.

Hence

s1/2n,3 ≤ CknV 1/2
n R, s1/2n,5 ≤ Cknn1/2d1/2n R.

The above bounds for sn,j, j = 1, . . . , 6 prove (A.1). �

Now, using Assumption 3.1 we estimated quantities Vn, dn, d0
and R. We have

ψj =

j
s=0

asbj−s, j ≥ 0.

Recall that |aj| ≤ Cρj, j = 1, 2, . . . and


∞

j=k |bj| ≤ C |k|−1−α, k ≥

1, where α > 1/2.
First we show that

|ψj| ≤ C(j−1−α
+ ρ j/2), (A.3)

where C does not depend on ρ and j = 1, 2, 3, . . . . Write ψj =

ψ−

j + ψ+

j where

ψ−

j = (2π)−1
j/2
t=0

atbj−t , ψ+

j = (2π)−1
j

t=j/2+1

atbj−t .

In the sum in ψ−

j we have j − t ≥ j/2. Therefore

|ψ−

j | ≤ C
j/2
t=0

|bj−t | ≤ C
∞

v=j/2

|bv| ≤ C |j|−1−α, j = 1, 2, . . .

|ψ+

j | ≤ C
j

t=j/2+1

ρtbj−t ≤ Cρ j/2
∞
v=0

|bv| ≤ Cρ j/2.

Applying (A.3), it follows that for k ≥ 1,

∞
j=k

ψ2
j ≤ C

∞
j=k

(j−2−2α
+ ρ j)

≤ C


k−1−2α

+ ρk
∞
j=0

ρ j


≤ C(k−1−2α

+ ρkv−1).

Using this bound, it follows that

vk ≤ C

|k − 1|−1−2α

+ ρ−kv−1, for k ≤ 0,
(n − k + 1)−1−2α

+ ρn−k+1v−1, for 1 ≤ k ≤ n
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and

d0 ≤ Cv−1, dn ≤ C(n−1−2α
+ ρnv−1), n = 1, 2, . . . , π

−π

f (λ)dλ = C
∞
j=0

ψ2
j = Cd0 ≤ Cv−1. (A.4)

Then

Vn =

n
k=−∞

vk ≤ C

k≤0


(−k + 1)−1−2α

+ ρ−kv−1


+

n
k=1


(n − k + 1)−1−2α

+ ρn−k+1v−1


≤ C
 ∞

k=0

(k + 1)−1−2α
+

∞
k=0

ρkv−1


≤ Cv−2,

and

R ≤

∞
k=0

|ψk| ≤ C
∞
k=0

((k + 1)−1−α
+ ρk/2) ≤ Cv−1.

Moreover, since for k = 1, . . . , n

v
1/2
k ≤ C


(n − k + 1)−1−2α

+ ρn−k+1v−1
1/2

≤ C

(n − k + 1)−1/2−α

+ ρ(n−k+1)/2v−1/2


and α > 1/2, then
n

k=1

v
1/2
k ≤ C

n
k=1


(n − k + 1)−1/2−α

+ ρ(n−k+1)/2v−1/2


≤ Cv−3/2.

Note that log ρ ≤ −(1 − ρ) for 0 < ρ < 1 implies

nρn
= n exp(n log ρ) ≤ n exp(−n(1 − ρ)) ≤ 1/(1 − ρ) = 1/v,

nρn/2
≤ 1/(1 −

√
ρ) ≤ C/v.

Now we use these bound to estimate the terms on the right hand
side of (A.1):

Vn ≤ Cv−2, ndn ≤ C(n−2α
+ nρnv−1) ≤ Cv−2,

V 1/2
n R ≤ Cv−2, d1/20

n
k=1

v
1/2
k ≤ Cv−2,

n1/2d1/2n R ≤ Cn1/2(n−1/2−α
+ ρn/2v−1/2)v−1

≤ Cv−2,

nd1/2n d1/20 ≤ Cn(n−1/2−α
+ ρn/2v−1/2)v−1/2

≤ Cv−2,

we obtain

E|Tn − Tn,ε| ≤ Cn−1knv−2

which proves (3.11).
It remains to show (3.13). We have Tn,ε = 2π

 π
−π

hn(λ)In,ε(λ).
By (3.16),

Var(Tn,ε) ≤ Cn−2
∥En∥2

≤ Cn−2
n

t,s=1

e2n(t − s)

≤ Cn−1
∞

v=−∞

e2n(v) = Cn−1
 π

−π

|ηn(λ)f (λ)|2dλ

≤ Ck2nn
−1v−2

 π

−π

f (λ)dλ ≤ Cn−1k2nv
−3

by (3.6) and (A.4), which together with (3.11) prove (3.13). �
Lemma A.2. If function hn satisfies Assumption 3.3 then, as n → ∞,

∥En∥2
∼ (2π)3n∥hn∥

2. (A.5)

Proof of Lemma A.2. By definition,

∥En∥2
=

n
t,s=1

en(t − s)2

= (2π)2
 π

−π

 π

−π

n
t,s=1

ei(t−s)(x+y)hn(x)hn(y)dxdy

= (2π)2
 π

−π

|Dn(u)|2sn(u)du

where Dn(u) =
n

t=1 e
itu and sn(u) =

 π
−π

hn(u − x)hn(x)dx, |u| ≤

π . Write π

−π

|Dn(u)|2sn(u)du = sn(0)
 π

−π

|Dn(u)|2du + In

where In =
 π
−π

|Dn(u)|2(sn(u)− s(0))du. Since sn(0) = ∥hn∥
2 and π

−π
|Dn(u)|2du = 2πn, it suffices to show that

|In| = o(n ∥hn∥
2). (A.6)

For K > 0, write In = In,1 + In,2 where

In,1 =


K/n≤|u|≤π

|Dn(u)|2(sn(u)− sn(0))du,

In,2 =


|u|≤K/n

|Dn(u)|2(sn(u)− sn(0))du.

By the Cauchy inequality

|sn(u)| ≤

 π

−π

h2
n(u − x)dx

1/2  π

−π

h2
n(x)dx

1/2

= ∥hn∥
2

since hn is periodically extended to R. Moreover, for n ≥ 1,

|Dn(u)| ≤ C
n

1 + n|u|
, |u| ≤ π. (A.7)

So, for any fixed K > 0,

In,1 ≤ C∥hn∥
2

K/n≤|u|≤π

n2

(1 + n|u|)2
du ≤ C∥hn∥

2n δK ,

δK :=


|u|>K

1
(1 + |u|)2

du → 0, K → ∞.

To estimate In,2, note that

sup
|u|≤K/n

|sn(u)− sn(0)| ≤ sup
|u|≤K/n

 π

−π

|hn(u − x)− hn(x)|2dx
1/2

×

 π

−π

h2
n(x)dx

1/2

= o(∥hn∥
2)

by Assumption 3.3. Then for fixed K > 0,

In,2 ≤ sup
|u|≤K/n

|sn(u)− sn(0)|


|u|≤π
|Dn(u)|2du = o(∥hn∥

2 n)

which completes proof of (A.6). �
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Appendix B

Proof of Theorem 2.1. The general idea of the proof is similar to
that of Theorem 18.6.5 in Ibragimov and Linnik (1971).We provide
a detailed proof. Start by writing the linear process Xt , given in
(2.1), in the form Xt =

t
s=−∞

ψt−sεs. Then

Sn :=

n
t=1

Xt =

n
s=−∞

cn,sεs, cn,s =

n
t=max(1,s)

ψt−s.

Write, Sn = Sn,1 + Sn,2 where Sn,1 :=
n

s=1 cn,s, Sn,2 :=0
s=−∞

cn,sεs. We shall show that as n → ∞,

σ 2
n ≡ Var(Sn) ∼ ng0v−2, (B.1)

σ−1
n Sn,1 →d N(0, 1), (B.2)

σ−1
n Sn,2 →P 0, (B.3)

which proves (2.11). Observe that

σ 2
n = Var(Sn) =

 π

−π

f (λ)|Dn(λ)|
2dλ

where

|Dn(λ)|
2

=

 n
t=1

eitλ

2

=

 sin(nλ/2)sin(λ/2)

2 .
Since by (2.4) f (0) = (2π)−1v−2g0, then π

−π

f (0)|Dn(λ)|
2dλ = nv−2g0.

Then (B.1) follows if π

−π

|f (λ)− f (0)| |Dn(λ)|
2dλ = o(nv−2). (B.4)

By (2.3)

|f (λ)− f (0)| = (2π)−1
|f ∗(λ)g(λ)− v−2g0|

≤ C

|f ∗(λ)− f ∗(0)|g(λ)+ f ∗(0)|g(λ)− g(0)|


≤ C


λ2f ∗(λ)v−2

+ v−2λ2

,

since f ∗(0) ≤ Cv−2 and

|f ∗(λ)− f ∗(0)| = |v2 + 2ρ(1 − cos(λ))−1
− v−2

|

≤ Cλ2f ∗(λ)v−2,

and, by (2.7), |g(λ) − g(0)| ≤ Cλ2. Since |Dn(λ)|
2λ2 ≤ C , the left

hand side of (B.4) is bounded by

C
 π

−π

v−2(λ2f ∗(λ)+ λ2)|Dn(λ)|
2dλ ≤ C

 π

−π

v−2(f ∗(λ)+ 1)dλ

≤ C
 π

−π

v−2
[(v2 + ρλ2/3)−1

+ 1]dλ

≤ Cv−3
= o(nv−2),

because nv → ∞ by (2.10), and using the bound (2.5) for f ∗.
Since the εt are i.i.d. variableswith zeromean and unit variance,

to prove (B.2) it suffices to check validity of Lindeberg condition,
i.e. to show that for any δ > 0,

in := σ−2
n

n
s=1

E[c2n,sε
2
s 1|cn,sεs|≥σnδ] → 0, n → ∞.

First we show that,

max
s=1,...,n

|cn,s| = o(σn). (B.5)
Using the notationΨ from (3.2), we canwriteψs = (2π)−1
 π
−π

eisx

Ψ (x)dx, s = 0,±1, . . . . Then, for 1 ≤ s ≤ n,

cn,s =

n
t=max(1,s)

ψt−s = (2π)−1
 π

−π

n
t=s

ei(t−s)xΨ (x)dx. (B.6)

Using the bound |Ψ (x)| ≤ Cf (x)1/2 ≤ Cf ∗(x)1/2 ≤ Cv−1 which
follows from (3.2), (2.3) and (2.4), we obtain

|cn,s| ≤ Cv−1
 π

−π

 n
t=s

ei(t−s)x

 dx
≤ Cv−1

 π

−π

|Dn−s(x)|dx ≤ Cv−1 log n

for all s = 1, . . . , n using (A.7). Since σn ∼ Cn1/2v−1, this proves
(B.5).

Fix K > 0. Then θK := E[ε2s 1|εs|>K ] → 0, as K → ∞. Therefore,
in view of (B.5),

E[c2n,sε
2
s 1|cn,sεs|≥δσn ] ≤ (δσn)

−2E[c4n,sε
4
s 1|εs|≤K ] + c2n,sE[ε2s 1|εs|>K ]

= c2n,s(o(1)+ θK ).

Then, using σ 2
n =

n
s=−∞

c2n,s,

in ≤ σ−2
n

n
s=1

c2n,s(o(1)+ θK )

= o(1)+ θK → 0, n → ∞, K → ∞,

which completes proof of (B.2).
To show (B.3), note that

ES2n,2 =

0
s=−∞

c2n,s. (B.7)

Note that for s ≤ 0, by (B.6),

cn,s = (2π)−1
 π

−π

e−isx
n

t=1

eitxΨ (x)dx

= (2π)−1
 π

−π

e−isx
n

t=1

eitx(Ψ (x)− Ψ (0))dx

since |Ψ (0)| < ∞ and
 π
−π

e−isxn
t=1 e

itxΨ (0)dx = 0 for s ≤ 0.
Then by Parseval’s identity,

ES2n,2 ≤ C
 π

−π

 n
t=1

eitx

2

|Ψ (x)− Ψ (0)|2dx.

Observe that

Ψ (x) =

 ∞
t=0

ρte−itx
 ∞

s=0

bse−isx


=: Ψρ(x)Ψb(x).

We have that

|Ψρ(x)− Ψρ(0)| ≤ |(1 − ρe−ix)−1
− (1 − ρ)−1

|

≤ 2|x|v−1
|Ψρ(x)|,

whereas by (2.6), |Ψb(x)− Ψb(0)| ≤ C |x|. Then

|Ψ (x)− Ψ (0)| ≤ |Ψρ(x)− Ψρ(0)| |Ψb(x)|
+ |Ψρ(0)| |Ψb(x)− Ψb(0)|

≤ C(|x|v−1
|Ψρ(x)| + |x|v−1).
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So,

σ−2
n ES2n,2 ≤ Cσ−2

n

 π

−π

|Dn(x)|2(|x|v−1
|Ψρ(x)| + |x|v−1)2dx

≤ Cσ−2
n

 π

−π

(v−2
|Ψρ(x)|2 + v−2)dx ≤ Cσ−2

n v−3

≤ C
v2

nv3
=

1
nv

→ 0

by assumption (2.10), which proves (B.3). �

Proof of Lemma 2.1. Using f (λ) = (2π)−1f ∗(λ)g(λ), write

γ0 =

 π

−π

f (λ)dλ = s1 + s2

where

s1 = (2π)−1
 π

−π

f ∗(λ)g0dλ,

s2 = (2π)−1
 π

−π

f ∗(λ)(g(λ)− g0)dλ.

Then

s1 = g0(1 − ρ2)−1
=

g0
v(2 − v)

=
g0
2v

+
g0
4

+ o(1).

By (2.7) and (2.5),

f ∗(λ)|g(λ)− g0| ≤ Cλ2f ∗(λ) ≤ C

for any v. Since for each λ, f ∗(λ) → 2(1 − cos(λ))−1 as v → 0,
then by the dominated convergence theorem,

s2 = (2π)−1
 π

−π

g(λ)− g0
2(1 − cos(λ))

dλ, v → 0 (B.8)

which completes the proof of (2.13).
To prove (2.14), write

γk =

 π

−π

cos(kλ)f (λ)dλ =

 π

−π

f (λ)dλ

+

 π

−π

(cos(kλ)− 1)f (λ)dλ =: γ0 + Rk.

Since γ0 satisfies (2.13), and | cos(kλ)−1| ≤ Cλ2, then by the same
argument as used in (B.8), it follows

Rk → −Γk, v → 0,

to prove (2.14).
Finally, by (2.14) and (2.13),

ρk =
γk

γ0
=
γ0 − Γk + o(1)

γ0
= 1 −

Γk + o(1)
γ0

= 1 −
Γk + o(1)

(2v)−1(1 + o(1))
= 1 − 2vΓk + o(1). �

Proof of Theorem 2.2.

Proof of (2.16)–(2.17). Write

γ̂k ≡ Tn,X :=

 π

π

cos(kλ)I(λ)dλ. (B.9)

Applying (3.13) of Theorem 3.1 with ηn(λ) = cos(kλ) and kn = 1,
it follows that

|γ̂k − γk| ≤ C


1

nv2n
+

1
nv3n


≤ C

1
nv3n

,

since 1/(nv2n) ≤ C/

nv3n under (2.10). Next, by (2.14), 1/γk ≤ Cvn,

and therefore

γ̂k = γk


1 + OP


1

γk

nv3n


= γk


1 + OP


1

√
nvn


,

proving (2.16).
To prove (2.17), we shall show that assumptions of (ii) imply

that (c2) of Theorem 3.2 is satisfied. Set hn(λ) = cos(kλ)f (λ). Let
v = vn and

∥hn∥
2

=

 π

−π

h2
n(λ)dλ,

Jn(u) =

 π

−π

|hn(x + u)− hn(x)|2dx.
(B.10)

By Lemma B.1(ii) below,

∥hn∥
2

∼
1
8π

g2
0v

−3 (B.11)

and Jn(u) ≤ Cu2v−5. Therefore, for any fixed K > 0,

sup
|u|≤K/n

Jn(u) ≤ C(nv)−2v−3
= o(∥hn∥

2)

in view of (B.11), since vn → ∞. Next π

−π

|hn(λ)|dλ ≤ C
 π

−π

f ∗(λ)dλ ≤ Cv−1
= o(∥hn∥

2),

because of (B.11). Finally, since kn = 1

kn/v2
n ∥hn∥

2
∼ C

1/v2
√
nv−3

= C
1

√
nv

→ 0

showing that condition (3.24) of Theorem 3.2 is satisfied.
Therefore, by (3.27),

n
4π ∥hn∥

2


γ̂k − γk


d
−→ N(0, 1),

where n/(4π∥hn∥
2) ∼ 2nv3/g2

0 , proving (2.17). �

Proof of (2.18). We have

ρ̂k − ρk =

 π
−π

cos(kλ)In(λ)dλ π
−π

In(λ)dλ
−
γk

γ0
=

Tn,X
γ̂0

where

Tn,X :=

 π

−π

ηn(λ)In(λ), ηn(λ) = cos(kλ)− ρk.

Observe that
 π
−π
ηn(λ)f (λ)dλ = 0 and

|ηn(λ)| ≤ C | cos(kλ)− 1| + |1 − ρk| ≤ C(λ2 + v) ≤ C (B.12)

by (2.15). Then by (3.11) of Theorem 3.1,

Tn,X = Tn,ε − E[Tn,ε] + rk, E|rk| ≤ C(nv2)−1 (B.13)

where

Tn,ε = 2π
 π

π

hn(λ)In,εdλ, hn(λ) = (cos(kλ)− ρk)f (λ).

Since
 π
−π

hn(λ)dλ = 0, from (3.17) and Lemma A.2 it follows that

Var(Tn,ε) = 2(2πn)−2
∥En∥2

≤ C∥hn∥
2/n,

∥hn∥
2

≡

 π

−π

η2n(λ)f
2(λ)dλ.
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This implies

|ETn,X | ≤ C


1
nv2

+


∥hn∥

2

n


.

Estimatingηn(λ) by (B.12), and noting that for small v, (2.5) implies
f (λ) ≤ C(v2 + λ2)−1, we obtain

∥hn∥
2

≤ C
 π

−π

(λ2 + v)2

(λ2 + v2)2
dλ ≤ C + C

 1

−1

(|λ| + v)2

(λ2 + v2)2
dλ

≤ C + Cv−1


∞

−∞

(|λ| + 1)2

(λ2 + 1)2
dλ ≤ Cv−1.

Thus

|ETn,X | ≤ C


1
nv2

+
1

√
nv


, Tn,X = OP


1

nv2
+

1
√
nv


.

We show below that

γ̂0 =
g0
2v


1 + O(v)+ oP(1)


(B.14)

as v → 0, which implies ρ̂k − ρk = OP(
1
nv +


v
n ), to prove (2.18).

In addition we show
2nv3

(1 − ρk)2g2
0
(Tn,ε − E[Tn,ε])→d N(0, 1) (B.15)

which together with (B.14) and (B.13) implies (2.20), since
(nv2n)

−1
= o(1/

√
nvn)when nv3n → ∞. �

Proof of (B.14). Write γ̂0 =
 π
−π

In(λ)dλ. By (3.12) of Theorem 3.1,

γ̂0 = γ0 + Qn + OP((nv2)−1), Qn = Tn,ε − E[Tn,ε].

Note that γ0 =
g0
2v (1 + O(v)) by (2.13) of Lemma 2.1. Using the

matrix En with entries defined as in (3.14), we can write

Qn = n−1
n

t,s=1:t≠s

en(t − s)εtεs + en(0)n−1
n

t=1

(ε2t − Eε2t )

= Qn,1 + Qn,2.

Under assumption Eε2t < ∞,

Var(Qn,1) ≤ Cn−2
∥En∥2

≤ Cn−1
 π

−π

f 2(x)dx

≤ C(nv3)−1
= o(v−2)

by Lemma A.2 and (B.18), using assumption nv → ∞. Hence
Qn,1 = oP(v−1). On the other hand, by ergodicity, n−1n

t=1(ε
2
t −

Eε2t ) = oP(1), and

en(0) = (2π)−1
 π

−π

f (λ)dλ ≤ C
 π

−π

f ∗(λ)dλ ≤ Cv−1.

Therefore Qn,2 = oP(v−1)which proves (B.14). �

Proof of (B.15). The proof of this fact is based on part (ii) of
Lemma 3.1, noting that Tn,ε satisfies assumption (c1). For that we
need to evaluate quantities ∥hn∥

2 and Jn(u) in (B.10).
Note that

hn(x) = (cos(kx)− ρk)f (x)
= (cos(kx)− 1)f (x)+ (1 − ρk)f (x)
= O(1)+ (1 − ρk)f (x) (B.16)

since |(cos(kx) − 1)f (x)| ≤ Cx2f ∗(x) ≤ C, |x| ≤ π . By (2.15),
1 − ρk ∼ 2vΓk, v → 0. Hence

h2
n(x) = (O(1)+ (1 − ρk)f (x))2

= O(1)+ O(v)f (x)+ (1 − ρk)
2f 2(x)

and
∥hn∥
2

=

 π

−π

h2
n(x)dx = O(1)+ (1 − ρk)

2
 π

−π

f (x)2dx.

By (B.11),
 π
−π

f 2(x)dx ∼ g2
0v

−3/(8π)which implies

∥hn∥
2

∼ (1 − ρk)
2 1
8π

g2
0v

−3. (B.17)

To estimate Jn(u), note that by (B.16)

|(h(x + u)− h(x))| = |O(1)+ (1 − ρk)(f (x + u)− f (x))|

Hence

Jn(u) ≤ C

1 + (1 − ρk)

2
 π

−π

|f (x + u)− f (x)|2dx


= C + (1 − ρk)
2O(u2v−5)

in view of (B.19). So for |u| ≤ K/n, where K is a fixed constant,

|Jn(u)| ≤ C + (1 − ρk)
2O((nv)−2v−3) = o(∥hn∥

2)

because of (B.17) as nv → ∞. Hence hn satisfies Assumption 3.3.
It remains to show validity of assumption (3.21) of Lemma 3.1.

By (B.12) and (2.5),

|hn(x)| = |ηn(x)f (x)| ≤ C(x2 + v)/(v2 + x2) ≤ Cv−1
= k∗

n.

Then

k∗

n/

n ∥hn∥

2 ≤ C(1/v)/
√

nv−1 = C/
√
nv → 0.

Therefore, by (3.23),
n/(4π ∥hn∥

2)

Tn,ε − E[Tn,ε]


d
−→ N(0, 1),

where n/(4π ∥hn∥
2) ∼ (2nv3)/((1− ρk)

2g2
0 ) ∼ cnv which proves

(B.15). �

Lemma B.1. (i) Let f be as in (2.3) and (2.6) holds. Then, as v → 0, π

−π

f 2(x)dx ∼
1
8π

g2
0v

−3 (B.18)

and

J(u) :=

 π

−π

|f (x + u)− f (x)|2dx ≤ Cu2v−5 (B.19)

where C does not depend on u and v.
(ii) Estimates (B.18) and (B.19) remain valid when f (x) is replaced by

cos(kx)f (x).

Proof of Lemma B.1. First we show (B.18). Note that f =

(2π)−1f ∗g where |g(x)− g0| ≤ Cx2, and x2f ∗(x) ≤ C . Hence,

f (x) = (2π)−1f ∗(x)g(x) = (2π)−1f ∗(x)g0 + O(1),
f 2(x) = (2π)−2g2

0 f
∗(x)2 + O(1)f ∗(x)+ O(1)

= (2π)−2g2
0 f

∗(x)2 + O(v−2).

Observe that, as v → 0, π

−π

f ∗2(x)dx =

 π

−π

v2 + 2ρ(1 − cos(x))−2dx

∼ v−3


∞

−∞

(1 + x2)−2dx ∼
π

2
v−3,

since


∞

−∞
(1+x2)−2dx = π/2, see Jeffrey (1995, 15.1.1(16)). Hence π

−π

f 2(x)dx = (2π)−2g2
0

 π

−π

(f ∗(x)2 + O(v−2))dx

=
1
8π

g2
0v

−3(1 + o(1)),

to prove (B.18)
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To show (B.19), note that

|f ∗(x + u)− f ∗(x)| ≤ 2| cos(x + u)− cos(x)|f ∗(x + u)f ∗(x)
≤ Cu(|x| + |x + u|)f ∗(x + u)f ∗(x)

since

| cos(x + u)− cos(x)| ≤ |u| sup
ξ∈[x,x+u]

| sin(ξ)| ≤ |u|(|x| + |x + u|).

Since f ∗(x) ≤ Cv−2 and |x|
√
f ∗(x) ≤ C , then |x|f ∗(x) ≤ Cv−1, and

|f ∗(x + u)− f ∗(x)| ≤ C |u|v−1(f ∗(x)+ f ∗(x + u)).

Under assumption (2.6), |g(x + u)− g(x)| ≤ C |u|. Therefore

|f (x + u)− f (x)| = |f ∗(x + u)g(x + u)− f ∗(x)g(x)|
≤ C |f ∗(x + u)− f ∗(x)|

+ f ∗(x)|g(x)− g(x + u)|
≤ C |u|v−1(f ∗(x)+ f ∗(x + u)).

Hence

J(u) ≤ Cu2v−2
 π

−π

(f ∗(x)+ f ∗(x + u))2dx

≤ Cu2v−2
 π

−π

f ∗(x)2dx ≤ Cu2v−5

by (B.18), which proves (B.19).
In case (ii), the estimates (B.18)–(B.19) follow using the same

argument. �

Proof of Theorem 2.3. By (B.14), we have that

2vγ̂0 = g0 + O(v)+ oP(1).

We shall show that

tn ≡

 π

−π

|x|1/2In(x)dx =
g0

√
2v

+ OP


1 +

1
nv2

+
1
v
√
n


(B.20)

which implies (2.22). By (3.13) of Theorem 3.1,

tn =

 π

−π

|x|1/2f (x)dx + OP


1

nv2
+


∥hn∥

2

n


where, using (2.5),

∥hn∥
2

=

 π

−π

|x|f 2(x)dx ≤ C
 π

−π

|x|(v2 + x2)−2dx ≤ Cv−2.

To prove (B.20) it remains to show that

in :=

 π

−π

|x|1/2f (x)dx = (2v)−1/2g0 + O(1). (B.21)

Write

in := (2π)−1
 π

−π

|x|1/2f ∗(x)g0dx

+ (2π)−1
 π

−π

|x|1/2f ∗(x)(g(x)− g0)dx

= in,1 + in,2.

Since |f ∗(x)(g(x)−g0)| ≤ Cf ∗(x)x2 ≤ C , then in,2 ≤ C . To estimate
in,1, write in,1 = jn,1 + jn,2, where

jn,1 = g0(2π)−1
 π

−π

|x|1/2(v2 + x2)−1dx,

jn,2 = (2π)−1
 π

−π

|x|1/2(f ∗(x)− (v2 + x2)−1)dx.
Observe that

|f ∗(x)− (v2 + x2)−1
| ≤ |x2 − 2ρ(1 − cos(x))|f ∗(x)(v2 + x2)−1

≤ C(vx2 + x4)(v2 + x2)−2

≤ C(v(v2 + x2)−1
+ 1)

since

|x2 − 2ρ(1 − cos(x))| = |x2 − ρ(x2 + O((x)4))| = x2v + O(x4)

and f (x) ≤ C(v2 + x2)−1 by (2.5), as v → 0. So,

|jn,2| ≤ C
 π

−π

|x|1/2(v(v2 + x2)−1
+ 1)dx ≤ C .

Next, observe that

A :=


∞

−∞

|x|1/2(1 + x2)−1dx =


∞

0
|y|−1/4(1 + y)−1dy

=
π

sin(3π/4)
=

√
2π,

using formula 15.1.1(2) from Jeffrey (1995):
∞

0

yp−1

1 + y
dy =

π

sin(pπ)
, 0 < p < 1.

Therefore, changing variables we obtain,

jn,1 = g0v−1/2(2π)−1
 π/v

−π/v

|x|1/2(1 + x2)−1dx

= g0v−1/2(2π)−1A + O(1) = g0(2v)−1/2
+ O(1)

which together with estimates above implies (B.21). �
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