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This article proposes a novel positive nonparametric estimator of the conditional variance function without
reliance on logarithmic or other transformations. The estimator is based on an empirical likelihood mod-
ification of conventional local-level nonparametric regression applied to squared residuals of the mean
regression. The estimator is shown to be asymptotically equivalent to the local linear estimator in the
case of unbounded support but, unlike that estimator, is restricted to be nonnegative in finite samples. It is
fully adaptive to the unknown conditional mean function. Simulations are conducted to evaluate the finite-
sample performance of the estimator. Two empirical applications are reported. One uses cross-sectional
data and studies the relationship between occupational prestige and income, and the other uses time series
data on Treasury bill rates to fit the total volatility function in a continuous-time jump diffusion model.
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1. INTRODUCTION

Conditional variance estimation is important in many appli-
cations. It is crucial in inference for the parameters in the con-
ditional mean function. For example, to test for the causal treat-
ment effect in a regression discontinuity design (Hahn, Todd,
and Van der Klaauw 2001; Porter 2003; Imbens and Lemieux
2008), the conditional variances of the outcome variable on the
running variable at the threshold have to be estimated. In a
time series context, Hansen (1995) obtained generalized least
squares-type efficient estimators of parameters in the mean
function by incorporating nonparametric conditional variance
estimates (see also Xu and Phillips 2008). Conditional variance
estimation is also a key intermediate step in estimating some
economic or financial quantities of practical importance. In a
recent study, Martins-Filho and Yao (2007) proposed a non-
parametric method to estimate a production frontier function
starting from estimation of the conditional variance of the out-
put given the input. Shang (2008) provided a two-stage value-
at-risk forecasting procedure in a nonparametric ARCH frame-
work based on preliminary estimation of the volatility function
(viz. the conditional standard deviation) and then quantile esti-
mation using the devolatized residuals.

When the conditional variance is modeled nonparametrically,
as in the applications mentioned earlier, the estimation methods
that are commonly recommended are based on local polyno-
mial estimation, among which local linear estimation is espe-
cially popular because of its attractive properties. The theoreti-
cal foundation for this approach has been developed by Ruppert
et al. (1997) and Fan and Yao (1998), among others. However,
one drawback of the local linear variance estimator, which does
not apply to the local linear mean function estimator, is that it

may give negative values in finite samples, which makes volatil-
ity estimation impossible. Negative variance estimates may oc-
cur for large or small smoothing bandwidths and are frequently
observed at design points around which observations are rela-
tively sparse. Consequently, it is commonly recommended in
applications to use the theoretically less satisfactory local con-
stant estimator (also known as the Nadaraya—Watson estimator)
when fitting the variance function (Chen and Qin 2002; Porter
2003).

In this article we propose a new volatility function estimator
that is almost asymptotically equivalent to the local linear es-
timator but is guaranteed to be nonnegative. Our estimator has
the same asymptotic bias and variance as the local linear esti-
mator when the explanatory variable has unbounded support.
Such equivalence is important, because it allows extension of
efficiency arguments along the lines of those of Fan (1992) for
the local linear estimator to our new procedure. It also is conve-
nient in that the mean squared error (MSE) or integrated MSE-
based selection criteria for a global or local variable smoothing
bandwidth for the local linear estimator continue to apply. The
new volatility function estimator is based on the idea of adjust-
ing the conventional local constant estimator by minimally tilt-
ing the empirical distribution subject to a discrete bias-reducing
moment condition satisfied by the local linear estimator (Hall
and Presnell 1999). The resultant reweighted local constant es-
timator, or tilted estimator, inherits the nonnegativity restriction
of the variance function from the usual local constant estima-
tor while preserving the superior bias, boundary correction, and
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minimax efficiency properties of the local linear estimator. We
also show the adaptiveness of this procedure to the unknown
mean function; that is, it estimates the volatility function as ef-
ficiently as if the true mean function were known.

Ziegelmann (2002) recently obtained a nonnegative nonpara-
metric volatility estimator by fitting an exponential function lo-
cally (rather than a linear function as in the local linear estima-
tor) within the general locally parametric nonparametric frame-
work of Hjort and Jones (1996) (see also Yu and Jones 2004)
in a Gaussian iid setting. This estimator is not equivalent to the
local linear estimator, and it essentially estimates the logarithm
of the variance rather than the variance itself, thereby leading
to an additional bias term.

The remainder of the article is organized as follows. Sec-
tion 2.1 describes the nonparametric heteroscedastic regres-
sion model, the framework within which the reweighted local
constant volatility estimator is introduced in Section 2.2. Sec-
tion 2.3 presents the asymptotic distributional theory for sta-
tionary and mixing time series for both interior and boundary
points, and suggests a consistent estimator of the asymptotic
variance. Section 3 evaluates the finite-sample performance of
the proposed estimator via simulations. Section 4 reports two
empirical applications, a study of the volatility of the relation-
ship between income and occupational prestige in Canada using
cross-sectional data and an estimation of the total volatility of
90-day Treasury bill yields in the context of a continuous-time
jump diffusion model. Section 5 concludes and presents some
extensions. Proofs are collected in the Appendix.

2. MAIN RESULTS

2.1 The Heteroscedastic Regression Model

We focus on the following nonparametric heteroscedastic re-
gression model:

Y =m(Xy) + o0 (Xp)e;, (D

where {X;, Y;,t =1, ..., n} are two stationary random processes
and {¢;} are innovations satisfying E(¢;|X;) = 0, Var(g|X;) = 1.
The conditional mean function, m(x) = E(Y;|X; = x), and the
conditional variance function, o2(x) = Var(¥;|X; = x) > 0, are
left unspecified and are the focus of statistical investigation.
The reader should keep in mind that our proposed volatility
estimator applies straightforwardly to the mean-0 case, for ex-
ample, the nonparametric ARCH model when X; = Y;_; (Pa-
gan and Schwert 1990; Pagan and Hong 1991). Many non-
parametric economic models can be cast within the frame-
work (1). Martins-Filho and Yao (2007) presented a recent
application in stochastic frontier analysis, and Hahn, Todd,
and Van der Klaauw (2001), Porter (2003), and Imbens and
Lemieux (2008) addressed the analysis of causal treatment ef-
fects. The model (1) is also of fundamental importance in finan-
cial econometrics because of its ability to allow for nonlinearity
and conditional heteroscedasticity in financial time series mod-
eling. It also can be considered the discretized version of the
nonparametric continuous-time diffusion model that is com-
monly used in financial derivative pricing (Ait-Sahalia 1996;
Stanton 1997; Bandi and Phillips 2003).
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2.2 The Conditional Variance Estimator

Our nonparametric estimator of the conditional variance
function o2(-) is residual-based, which relies on first-stage non-
parametric estimation of the conditional mean function m(-).
Let W(-) and K(-) be kernel functions and &' = KW' (n),h =
h(n) > 0 be smoothing bandwidths that determine model com-
plexity. Following recommendations in the theoretical and em-
pirical literature, we can fit m(-) using the local linear method
that solves

1, 72)

= arg min Y =y — & —)PWX —x)/H) (@)
1,72 =1

leading to the estimate n1(x) = 3 of m(x) at the spatial point x.
Application of different bandwidths in mean and variance es-
timation has been stressed by several authors (Ruppert et al.
1997; Yu and Jones 2004). In what follows, we use /4’ for mean
regression estimation and / for variance estimation.

To estimate the conditional variance function o2(x), instead
of fitting the squared residuals'?,2 =[Y; — m(X,)]? to X; using a
second-stage local linear smoother, as was done by Ruppert et
al. (1997) and Fan and Yao (1998), we consider the following
reweighted local constant estimator:

S WK (X, —x) /W7
S WK (X —x)/h)

where w;(x) solves the constrained optimization problem

W), ..., W0}

:a_rg

52 (x) =

3)

min
w10, wn (0}

Liwi(x), ..., wa (@),  (4)

with L,(w1(x), ..., w,(x)) = =231 log(nw;(x)), subject to
the following restrictions:

W) =0, Y w=1, (5)
=1
and
> wi@ X, — 0K (X, —x) =0, 6)

=1

where Kj,(-) = K(-/h)/h. The discrete moment condition (6)
is satisfied by the local linear weights thL(x) =Ty — X —
01 with Tpj= Y0 (X — xYKp(X; — x), j= 1,2, and
is considered the key condition for local linear estimation to
achieve bias reduction (see Fan and Gijbels 1996). Without (6),
the optimization problem (4)—(5) is solved by the uniform
weights W}JNIF(x) = 1/n for all ¢, which reduces (3) to the
usual local constant estimator (or the Nadaraya—Watson esti-
mator). Thus the reweighted local constant estimator (3) ef-
fectively minimizes the distance to the local constant estimator
while preserving the bias-reducing condition of the local linear
estimator. The distance used here is Kullback-Leibler diver-
gence, although other distance measures can be used (Cressie
and Read 1984) and has an important connection to the empiri-
cal likelihood approach of Owen (2001).
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Computationally, the reweighted estimator is very easy to use
in practice, because (4) can be solved by any empirical likeli-
hood maximization program. To be specific, the weights w;(x)
in (3) can be obtained via the Lagrange multiplier method, that
is,

Wi (0) = (nl1 4+ A — 0K, (X, —0)]1) ", %

where the Lagrange multiplier A satisfies

n

3 I+ A — KX — 017 (X — DK (X —x) = 0. (8)

=1

The reweighting idea is due to the intentionally biased boot-
strap of Hall and Presnell (1999). It is especially powerful for
conditional variance estimation, because the associated esti-
mates always fall within the range [min| <<, 77, maxj <<, 721,
thereby ensuring nonnegative results. The restriction in (6) is
used, so that the original estimator (i.e., the local constant es-
timator) is modified to the smallest extent necessary to main-
tain the attractive properties of the local linear estimator. We
can expand (6) so that the resulting variance estimator satis-
fies other desirable properties. For example, we can also impose
the constraint d[52(x)]/dx > 0 or d?[62(x)]/dx? > O to ensure
monotonicity (Hall and Huang 2001) or convexity of the esti-
mated variance function as may be needed.

The reweighting idea has been used fruitfully in other con-
texts, for example, by Hall, Wolff, and Yao (1999) for monotone
estimation of the conditional distribution function that is within
the range [0, 1], by Cai (2002) for monotone conditional quan-
tile estimation, and by Xu (2010) for nonnegative diffusion
functional estimation in a continuous-time nonstationary dif-
fusion model.

2.3 Limit Theory

The asymptotic distribution of the reweighted local con-
stant estimator of the conditional variance function is given
in the following theorem for both interior and boundary spa-
tial points. Let f(-) be the stationary density function of X; and
52(z) = d*[0%(z)]/dz?. Assume that the kernel functions W(-)
and K(-) are symmetric density functions each with bounded
support [—1, 1].

Theorem 1. (a) Suppose that x is such that x &+ 4 is in the
support of f(x). Under the assumptions stated in the Appendix,
as n— 0o,

Vnh[62(x) — 02 (x) — K152 (x) /2]
L NO, Ko @@ /), 9)

where Ki = [' K@y du, K» = [' K*u)du, £2(x) =
E[(e? — 1)?|X = x] with &, = o "L (X)[Y; — m(X))].

(b) Suppose that f(x) has bounded support [a, b] and that ¢
is a constant such that 0 < ¢ < 1. Under the assumptions stated
in the Appendix, as n — oo,

Vnh(G%(a+ ch) — o*(a+ ch) — h*K152(a + ch) /[2Ko))

4 N0, Koo @E2 @)/ [Kof @), (10)
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where Ko = [,[1 — AcuK )] ' K@) du, K1 = [,[1 — X¢ x
uK@)] '’ Kw)du, K» = [ [Kw)/(1 — XuK(u))]*du and
e satisfies L. (A.) = 0 with

L.\ = /C uK(u)/[1 — AuK(u)] du,
1

and
Vnh(62(b — ch) — o (b — ch) — *K,5* (b — ch) /[2K,))

L N(0, Koot (0)E2(B) /LK (D)),
where K, = f]

= K@) K@) du, Ky = [1[1 = 2, x

uK )] u? K () du, Ky = [ K )/ (1 = kouK (u))]? du and i,
satisfies L.(A.) = 0 with

1
L) = / uK () /11 — AuK (u)] du.

Remark 1. In Theorem 1, part (a) is concerned with inte-
rior points when f has bounded support or the case where f
has unbounded support, and part (b) is concerned with bound-
ary points. The theorem shows that the reweighted local con-
stant variance estimator is asymptotically equivalent to the lo-
cal linear variance estimator (cf. Ruppert et al. 1997; Fan and
Yao 1998), except for different scale constants for the bias and
the variance at boundary points. The condition (6) is effec-
tive in removing a bias term of order OP(hz) in the interior
and a bias term of order O,(h) on the boundary of the local
constant estimator. Thus no additional boundary correction is
needed. The following heuristic argument helps elucidate this
feature. The bias of 52 (x) is approximately accounted for by the
term (nh)~' 30 pi(OK((X; — x) /) [0?(X;) — 02(x)], where
i) = D1 Wi ()K((X; — x)/h) 1~ 'W;(x); see the proof of
Theorem 1 in the Appendix. By a second-order Taylor expan-
sion of 02(X;) at x and the discrete moment condition (6),

()™ " prK (X, — x)/W)[0* (X)) — 02 (x)]

t=1

= ()™ Y piOK((X: = x) /W6 () (X, — 0% /2]

=1

+ smaller order terms
RfW)K15%()/2 + 0p(h?),

if x is in the interior
Rf(@K162(a+ ch) /2 + 0,(h?),

if x is on the left boundary
Wf (0K, 52 (b — ch) /2 + 0p(h?),

if X is on the right boundary.

The bias term of order O, (h) is removed by the condition (6) for
any n both at interior and boundary points just as for the local
linear smoother. It is essentially different from the conventional
local constant estimator, for which the bias term of order O, (h)
is eliminated in the limit via symmetry of the kernel function
for interior points but does not vanish for boundary points.

Remark 2. The constants A, and . decrease with ¢ and ap-
proach 0 when ¢ — 1. Theorem 1(ii) also holds for an inte-
rior point x by noting that Ko = K, = 1, K; = K, = K; and
K> =K, =K, whencell, (b—a)/2h].
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Remark 3. When the true mean function m(-) is known, the
reweighted local constant conditional variance estimator fol-
lows from Cai (2001) with the outcome variable [Y; — m(Xt)]z,
because o2(x) = E[(Y; — m(X,))?|X; = x]. Theorem 1 shows
that the residual-based estimator 52(-), which does not require
m(-) to be known, is asymptotically as efficient as the oracle es-
timator, which assumes knowledge of m(-). This adaptiveness
property to the unknown conditional mean function is shared
by other residual-based variance estimators (see Fan and Yao
1998; Ziegelmann 2002).

Remark 4. Implementation of the reweighted volatility esti-
mator involves determination of the amount of smoothing, that
is, selection of the smoothing bandwidth 4. Theorem 1 shows
that minimization of the asymptotic mean squared error (MSE)
or integrated MSE (IMSE) leads to an optimal local bandwidth
or global bandwidth of the form 2 = ¢n~!/3, where ¢ involves
nuisance parameters f(x), o2(x), 62(x), £2(x), and constants
related to the kernel function. A feasible bandwidth is usually
obtained by estimating ¢ by, for example, parametric fitting
(the rule of thumb), iterations (the plug-in method) or cross-
validation. An attractive feature of the reweighted estimator is
that given its asymptotic equivalence to the local linear estima-
tor, as implied by Theorem 1, the asymptotic MSE- or IMSE-
based bandwidth selection criteria for the local linear estimator
(see Fan and Yao 1996) generally apply to the reweighted esti-
mator as well.

Remark 5. Hirdle and Tsybakov (1997) studied a volatil-
ity estimator for the model (1) assuming that X; = ¥;_| based
on differencing the local polynomial estimators of the second
conditional moment and the squared first conditional moment.
Their estimator is not nonnegative and, as noted by Fan and Yao
(1998), is not fully adaptive to the mean function. Ziegelmann’s
(2002) nonnegative residual- based local exponentlal (LE) vari-
ance estimator is obtained as O’LE = exp(1/f1) where (lﬂl , wz) =
arg min(y,,yy) Yy [77 —exp(1 +¥2(X; =) PK (X, —x) /h).
It belongs to a large class of local nonlinear estimators (Hjort
and Jones 1996; Gozalo and Linton 2000). To ensure nonneg-
ativity of the resultant variance estimator, the procedure effec-
tively approximates the logarithm of the variance (instead of the
variance itself) locally by a linear function, thereby introducing
an extra bias term.

Remark 6. The asymptotic variance of 52(x) can be consis-
tently estimated both at interior and boundary points, thereby
allowing construction of consistent pointwise confidence inter-
vals. Let Q(x) = f 2(x) V(x) where V(x) = nh™! x
Yo K2 (X, —x) /)7 =52 ()] and f(x) =
x)/h).

Theorem 2. (a) Under the conditions of Theorem 1(a), as
n— 00, Q00 5 Koo (02 (0 ();

(b) Under the conditions of Theorem 1(b), as n — oo, Q(a—i—
oy B Kao*@E2()/[Kof (@)] Qb — ch) 5
Kot (0)§*(b)/[K5f (D).

The following two sections provide several numerical exam-
ples illustrating the use of the new volatility estimator with
simulated and real data. In all applications, the Epanechnikov
function K(u) = 0.75(1 — uz)l(_l,l) is used for both kernels W
and K, and the bandwidth parameter in mean estimation /' is
selected by least squares cross-validation.

and

WY K (X =
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Figure 1. The means, 10% quantiles and 90% quantiles of the LC,
LL, RLC, and LE estimates of the volatility function az(x) =1+0.4x2
in the AR-ARCH model (11) when ¢ = 0 over 1000 replications, using
the smoothing bandwidth 7 = 0.7.

3. SIMULATIONS

The finite-sample performance of the proposed estimator is
assessed in the following simple time series setting. We gener-
ate n 4 201 observations from the AR-ARCH model:

Y, =¢Y1 +\/ PO+P1Y 1€t

with (pg, p1) = (1,0.4), Y1 =0, ¢ € {0,0.4},and &, 11~d/\/'(0, 1).
The first 200 observations are dropped to eliminate initializa-
tion effects, so the sample size is n. The heteroscedastic regres-
sion model (1) is then estimated with the generated data. Note
that (11) is different from the ARCH(1) model regardless of
the true value of ¢ , because it allows for uncertainty in the
mean function. Figures 1 and 2 focus on the case where ¢ = 0.

Y

h=1.0

\ LC 2!

2.5F

1.51

Figure 2. The means, 10% quantiles and 90% quantiles of the LC,
LL, RLC, and LE estimates of the volatility function az(x) =1+0.4x2
in the AR-ARCH model (11) when ¢ = 0 over 1000 replications, using
the smoothing bandwidth 4 = 1.0.
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Table 1. Frequencies of negative local linear conditional variance
estimates in the AR-ARCH model (11) when ¢ = 0 over 1000
replications (zeros for blank cells)

Bandwidth h=0.7 h=06 h=05 h=04 h=03 h=02

x=138 3 4 6 13 19 61
x=1.6 2 3 3 16 39
x=14 1 4 18
x=12 6
x=1.1 1 8
x=1.0 8
x=09 6
x=0.8 2

We plot the averages, 10% quantiles, and 90% quantiles (over
1000 replications) of the reweighted local constant (RLC) con-
ditional variance estimates (when n = 100) at 37 equally spaced
spatial points from x = —1.8 to x = 1.8, a range that is wide
enough to cover most spatial points the time series visits. For
comparison, we also plot the corresponding results for the local
constant (LC), local linear (LL) and Ziegelmann’s (2002) lo-
cal exponential (LE) estimators along with the true conditional
variance function. In the two figures, the smoothing bandwidths
h =0.7 and 1.0 are chosen to illustrate the bandwidth effects.
The common bandwidth effects are observed; a larger band-
width generally reduces the variability but increases the bias of
the estimate.

A striking finding is that the RLC estimator has an overall
performance very close to that of the LL estimator for all spatial
points considered in terms of both bias and variability. This is
not surprising, given the asymptotic similarity (and equivalence
for unbounded support) of the two methods. But in particular
samples, negative LL variance estimates are found (with fre-
quencies listed in Table 1) mainly at spatial points with sparse
neighborhoods or when a small bandwidth is used, in which
case the estimates fluctuate widely. In such cases, of course, the
volatility estimates are effectively useless. On the other hand,
the LC and LE estimators generally suffer from large biases,
especially at spatial points with relatively fewer observations in
their neighborhoods, for example, x with |x| > 1.

Journal of Business & Economic Statistics, October 2011

We also consider the case with serial correlation in Y;, (i.e.,
¢ = 0.4), and we find that the results reported earlier are quite
robust to weak serial correlation. Table 2 reports the MSEs of
the RLC volatility estimates when the data-dependent band-
widths are used, that is, & = asn—'/, where 5 is the standard
deviation of the sample and « € {1, 2, 3}. The MSEs decrease
when the sample size increases, and they are larger for the de-
sign point x = 1.5, where the process visits sparingly, than for
x =0, where the process visits more frequently. The bandwidth
with « = 2 appears to work best in this setting and generally
gives the smallest MSEs compared with the other two band-
widths. The distribution of the values of the data-dependent
bandwidths is described in Table 2; for example, the median
of the bandwidths (over 1000 replications) when n = 100 and
a =215 0.559 x 2 =1.118. Table 2 also reports the deviation
of the MSE of the RLC volatility estimate from that of the esti-
mate based on the true mean function m(x) = 0.4x. As the sam-
ple size increases, the deviation approaches 0, and the effects of
estimating the unknown mean function on volatility estimation
disappear asymptotically, thereby confirming the adaptiveness
property suggested by the limit theory.

4. EMPIRICAL APPLICATIONS

This section provides two empirical examples to illustrate the
usefulness of our proposed methodology. The first is a cross-
sectional data application, and the second involves financial
time series.

4.1 Occupational Prestige versus Income

Fox (2002) studied the relationship between occupational
prestige and the average income of Canadian occupations. The
dataset is available in the car package of R (R Development
Core Team 2010) designated Prestige. It consists of cross-
sectional observations for 102 occupations. Prestige for each
occupation is measured by the Pineo—Porter prestige score from
a social survey. Figure 3(a) shows a scatterplot and a local lin-
ear mean fit with the bandwidth %' = 5809 chosen via cross-
validation (Li and Racine 2004; see also Li and Racine 2007,
p. 93). It also might be useful to provide variance estimates, for

Table 2. MSEs of the RLC volatility estimates and the adaptiveness to the unknown mean function in the AR-ARCH model (11) when ¢ = 0.4
(Dev. represents the deviation of the MSE of the RLC volatility estimate from that of the estimate based on the true mean function)

x=0 x=1.5
a\n 50 100 200 400 800 50 100 200 400 800

RLC a=1 0.375 0.279 0.208 0.141 0.118 1.129 0.815 0.648 0.419 0.319
Dev. 0.039 0.012 0.005 0.002 0.001 0.122 0.102 0.017 0.021 0.001
RLC a=2 0.317 0.230 0.172 0.133 0.093 1.020 0.758 0.563 0.369 0.254
Dev. 0.066 0.032 0.020 0.010 0.005 0.181 0.112 0.036 0.021 0.012
RLC a=3 0.355 0.277 0.212 0.158 0.125 1.054 0.787 0.546 0.385 0.269
Dev. 0.119 0.059 0.031 0.017 0.009 0.379 0.286 0.164 0.045 0.021
Value of data-dependent 4 (when o = 1)

Mean 0.661 0.587 0.514 0.449 0.394

Std. 0.162 0.142 0.080 0.052 0.037

Median 0.630 0.559 0.501 0.441 0.389
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(a) Estimates of m(x) (h’=5809)
90 . : .

Prestige

10 . . .
0 .

Income 4
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(b) Estimates of 6%(x) (h=5000)

o

—LL
1000} i RLCL
o ===LC
o 2
8001
52}
g o°
2 600f
& o
O
o
g
2 400}
(2]
&
o o

200f 5 Py o 0

Figure 3. Prestige versus income. (a) Local linear estimation of the conditional mean function using the bandwidth 4’ = 5809; (b) Estimates
of the conditional variance function based on the squared residuals using the LL, RLC, and conventional LC methods with the bandwidth

h = 5000.

example, for the construction of pointwise confidence intervals
for the mean function or some automatic bandwidth selection
criteria.

Figure 3(b) plots the squared mean regression residuals
against the explanatory variable (average income) and the fit-
ted curves that give the functional conditional variance esti-
mates by the LC, LL, and RLC methods. The fitted curves are
calculated over 186 levels of average incomes equally spaced
from x =711 to 19,211. For illustration, we use the bandwidth
h = 5000. Clearly the LL variance estimates are negative at
small values of average incomes, and the conventional LC esti-
mates are always positive but suffer from large biases. Our pro-
posed RLC estimates appear to provide a good compromise be-
tween those two estimates, and evidently capture the declining
variances in a reasonable way (being always positive) when the
level of average income is low. At moderate and high levels of
average income, for which the data are relatively rich, the RLC
variance estimates are very close to the local linear estimates,
not surprising given their first-order asymptotic similarity.

This example demonstrates the need to carefully select the
bandwidth to avoid the negativity problem when the LL esti-
mator is used to estimate variance. We also consider the esti-
mated IMSE-based optimal bandwidth via rule of thumb (Fan
and Gijbels 1996, p. 111) for the LL and RLC variance esti-
mators. This has value h,, = 1871. We find that this bandwidth
is too small and it gives wiggly estimated curves, necessitating
intervention for bandwidth selection. Figure 4 shows the esti-
mated curves when h = 2h,,. This poses no problem for the LL
estimator, because the estimated curve is still above the zero
line. Our empirical results indicate that further increasing the
bandwidth would induce negative variance estimates.

To study the sensitivity of various functional variance esti-
mates to the smoothing parameter, we estimate the conditional
variance o2(x) at two levels of average incomes, x = 1000
and 6000, using 91 bandwidths equally spaced from # = 1000
to 10,000. The results are shown in Figure 5. At the bound-
ary point x = 1000, negative estimates arising from the local

linear fit occur within the bandwidth range of approximately
(4000, 6000), which might reasonably be chosen by empirical
researchers. The RLC estimates generally lie between the LL
and the conventional LC estimates and apparently are quite sta-
ble over various bandwidths. At the interior point x = 6000, the
three fitted values are much closer to one another, and the RLC
and LL curves are almost indistinguishable.

4.2 Jump Diffusion Volatilities

The reweighting idea developed in this article also can be
used for functional estimation of continuous-time jump diffu-

Estimates of 6%(x) (h=2"h_=3742)
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Figure 4. Prestige versus income. Estimates of the conditional vari-
ance function based on the squared residuals using the LL. and RLC
methods with the bandwidth / = 2k, = 3742.
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(a) Estimates of 62(x), x=1000
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(b) Estimates of 63(x), x=6000
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Figure 5. Prestige versus income. Estimates of the conditional variance function over 91 bandwidths using LL, RLC and LC methods with

design points (a) x = 1000 and (b) x = 6000.

sions. Jump diffusion models are widely used in finance to ac-
count for discontinuities in the sample path. They are more flex-
ible than single-factor or multifactor pure diffusion models in
generating higher moments that match those typically observed
in financial time series (see, e.g., Bakshi, Cao, and Chen 1997;
Pan 2002; Johannes 2004).

Our empirical application uses T = 54 years of daily sec-
ondary market quotes for 3-month Treasury bills from Janu-
ary 4, 1954, to March 13, 2008, containing n = 13,538 ob-
servations, plotted in Figure 6(a). The dataset is available
from the Board of Governors of the Federal Reserve System
(http://research.stlouisfed.org/fred2). The spot rate, ry, is as-
sumed to follow the jump diffusion process,

I;
dlog(ry) = p(ry)dt + 0 (1) AW, + d(Z z,~> ,

i=1

-
o

T-bill Rate Level (Percent)

o
T —.

A

2000 2008

1980 1990

Year

ol .
1955 1970

where r,_ = limgy; 75, W; is a standard Brownian motion, /; is a
doubly stochastic point process with stochastic intensity A(ry),

and Z; lflg./\/ (O, 012). We assume that the mean jump size is 0
without loss of generality. The four values of interest in estima-
tion [i.e., the drift function w(r), the diffusion function a(r),
the jump intensity A(r), for interest rate level r, and the jump
variance O’zz] can be identified for a sufficiently small sampling
interval, A, by the moments M;(r) = E(og(rra/rY|ri=71)/A
forj =1, 2, 4, 6 using the following approximate moment con-
ditions:

Mi(r) = pu(),  Ma(r) =a*(r) +r(r)o2,

Ma(r) =340, Me(r) =~ 150(r)of.

We use local linear fitting to estimate M;(r), and apply
our proposed reweighted local constant method to estimate
the even-order moments M, (r), My(r), and Mg(r), to avoid
the occasional but unreasonable negative estimates that result

x10°° ()
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) |1

(
- - -h{
(

S

IHHHh1
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Figure 6. (a) The time series of daily 3-month Treasury bill rates (secondary market rates) from January 4, 1954, to March 13, 2008. (b) Local
linear estimators of the drift function using three bandwidths, 3.5%, 4.2%, and 5.0%.
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from local linear fitting. The estimates are denoted as A//\Ij(r),
j=1,2,4,6. Based on the daily data, {ripn, i=1,...,n}, fol-
lowing Johannes (2004), we obtain the estimates step by step:

G2 =n""y Mo(rin) /[5Ma(rin)],
i=1

) =Mau(r)/ (35,
(r) =M (r).

The jump variance crzz is first estimated by integrating the ratio
of sixth moments to fourth moments over the stationary den-
sity with the same bandwidth for the fourth and sixth moments
ha = 1.75T~1/5 = 2.1%, where 5 is the standard deviation of
the sample. The estimate 312 is 2.39 x 1073. Then, to estimate
A(r), we consider bandwidths A = 1.2 - hy (j=0,1,2) in
A714(r). To estimate o2(r), we use the bandwidth h4 in com-
puting 1\74(;’) [and thus X(r)] and bandwidths hg) = 1.2%n,
(j=0,1,2) in My(r), where hy = 1.35T'/3 = 1.7%. Finally,
w(r) is estimated by Ml(r) using the bandwidth h%’) =1.2%h,
j=0,1,2, where h; =2.85T~ /> =3.5%. We characterize the
bandwidths used in terms of the time span T (instead of the
sample size n), because the convergence rates of the ]l//\lj(r) de-
pend on T (or, more generally, on the local time process), as
shown by Bandi and Nguyen (2003). The scale constants that
we chose are such that the resulting bandwidths are close to
those reported in empirical studies of US short rate dynamics.
The estimated curves Z(r), A(r), G2(r) are plotted in Fig-
ure 6(b) and Figure 7(a) and (b). They are expected to have
smaller biases than the estimates of Johannes (2004) and Bandi
and Nguyen (2003), which are based on local constant estima-
tion of the four moments. Figure 7(b) also presents the esti-
mates (given in the top three lines) of the total volatility func-
tion, o2(r) + A(r)o2. The implication is that for most short rate
levels, the diffusion components explain approximately two-
thirds of the total volatility and the jump components account
for the remaining one-third. This can be compared with the

G2(r) = Ma(r) — A(r)G2,
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work of Johannes (2004), who used a subset of our data and
found that jumps typically generate more than half the volatil-
ity of interest rate changes, and Eraker, Johannes, and Polson
(2003) who found that jumps in equity indices explain 10-15
percent of return volatility.

It is noteworthy that limit theories for the local linear and
the reweighted local constant estimators of the four moments
in the jump diffusion model have not yet become available in
the literature. We conjecture that these theories can be studied
along the lines of the approach of Bandi and Nguyen (2003).
For the pure diffusion models (where azz = (), the asymptotic
theories for these two methods have been studied by Moloche
(2001), Fan and Zhang (2003), and Xu (2010).

5. CONCLUDING REMARKS

This article provides a new nonparametric approach to esti-
mating the conditional variance function based on maximizing
the empirical likelihood subject to a bias-reducing moment re-
striction. The method is fully adaptive for the unknown mean
function. The construction of the estimator does not depend on
the error distribution, and the estimator is applicable in quite
general time series and cross-sectional settings. The estimator
preserves the appealing design adaptive, bias, and automatic
boundary correction properties of the local linear estimator and
is guaranteed to be nonnegative in finite samples. Numerical
examples suggest that the new estimator performs well in finite
samples and is a promising competitor in estimating conditional
variance functions.

Our proposed method can be extended to the case where X is
multivariate, for example, in the nonparametric AR-ARCH(p)
model, Y; = m(Y;—1,.... Y, p) + o(¥Y;—1,..., Y, p)& with
X, = Y—1,..., Y,_p)/. In such cases, the constrained op-
timization (4) is conducted under multiple restrictions. To
be specific, suppose that we have p covariates, and X; =
Xi,..., Xp), X=(x1,...,xp) are p x 1 vectors. The RLC
variance estimator is defined as 52(x) = [Y__; w,(x)Ky(X; —
)] W (x0)KR(X; — x)72 where 7; are residuals of a p-
dimensional nonparametric mean fit (e.g., a local linear fit)

(b)

Diffusion Coefficient

Interest Rate Level (percent)

Figure 7. (a) Reweighted local constant estimators of the jump intensity using three bandwidths. (b) Reweighted local constant estimators of
the second moment M» (r) (the top three lines) and the diffusion coefficient over three bandwidths, respectively.
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and K;,(X; —x) = h P []_, K((Xi,s — x;) /h) are product kernel
weights. Different bandwidths and kernels could be used for
each covariate, but here we assume that they are the same for
expositional simplicity. The weights w,(x) are such that (4) is
solved subject to (5) and the p-dimensional restrictions,

ZW:(X)(Xz — XK (X; —x) =0. 12)

=1
The local linear weights satisfy (12) and take the form of, for
example, when p =2, wtt(x) = T =T (X1, —x1) +T3(X2,, —

Xx2) with
I :det(F(z’O) F“’”) T, :det(F(m) F(l,l))
F(O,Z) ’ F(O,l) ]_‘(0’2) ’

Fan
F@m)
Tan/’

Ty = det (EW

Ton
where det(A) denotes the determinant of the matrix A and
Tij = S0 X — xi1Y(Xoy — 22)FKp(X; — x) for jk =
0, 1, 2. Just as in the univariate case, the reweighted estimator
selects the weights such that the good bias properties of the
local linear estimator are preserved and the resulting variance
estimate is always nonnegative.

The foregoing fully nonparametric volatility estimators have
slow convergence rates when p is large, and also pose difficul-
ties in interpretation. A popular alternative that can achieve the
one-dimensional convergence rate and that imposes reasonably
weak assumptions on the specification of the volatility function
is the additive model, such as the additive ARCH model con-
sidered by Kim and Linton (2004), where o (Y;—1, ..., Y,—p) =

\/9+012(Yt_1)+~-~+0pz(Y,_,,). The functions o{(-),...,

and o*pz(-) can be estimated by, for example, marginal integra-
tion or backfitting, which essentially involves iterative univari-
ate smoothing. Again, the proposed reweighted local constant
method is expected to be a promising alternative to the local
linear estimator that is commonly recommended.

APPENDIX

This section provides proofs of Theorems 1 and 2. To derive
the asymptotic distribution of 52(x), we make the following
assumptions.

Assumptions.

(1) For a given design point x, the functions f(x) > 0,
o2(x) > 0, E(Y3|X = x) and E(Y*|X = x) are continuous at x,
and /m(x) = d®m(x)/dx? and 6%(x) = d?(02(x))/dx? are uni-
formly continuous on an open set containing x;

(i) E|Y|*319) < 0o for some § > 0;

(ii1) There exists a constant M < oo such that |g1 ;(y1, y2|x1,
x2)| <M forall t > 2, where g1 ;(y1, y21x1, x2) is the conditional
density of Y7 and Y; given X| = x1 and X; = xp;

(iv) The kernel functions W(-) and K(-) are symmetric den-
sity functions each with a bounded support [—1, 1]. A Lipschitz
condition is satisfied by each of functions f(-), W(-), and K(-);

(v) The process (X;, Yz) is strictly stationary and absolutely
regular (see, e.g., Davidson 1994, p. 209) with mixing coeffi-
cients B(j) satisfying Zjﬁ]fﬂs/(”s) (j) < oo, where § is the
same as in (ii);
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(vi) As n — oo, h,h' — 0 and liminf, .o nh* > 0,
liminf,_, oo nh'* > 0.

Proof of Theorem 1

Note that the weights W;(x) in the RLC estimator as in (3)
have a computationally convenient representation in (7). For
simplicity, we write w;(x) as w; in what follows. Note that
=Y, —mX,) = [mX,) —mX;)]+ o (X;)e,, and thus

77 =0 (X)el + 20 (X)em(X,) — m(Xy)]

+ [m(X;) —m(X)1>. (A1)
Thus, by (3),
4
52(x) — 02(x) = ZN-, (A.2)
j=1
where
N — S WK ((Xy — x)/h)o (X)) (e — 1)
1= n 5
2121 wiK((X; — x)/h)
Ny = izt WK (X, —x)/W)[o?(X;) — 0% (x)]
2= i .
S wiK((Xe — x)/h)
N3 = 2 Z?:] WtK((Xt - x)/h)U(Xt)St[m(Xt) - ﬁ(Xz)]
Z?:] wiK((X; —x)/h) ’
and

_ 2 wiK (X —x)/WmX) — X))
Z:l=1 wiK (X — x)/h)
(a) Suppose that x is such that x &£ % is in the support of

Ny

f(x). Because an absolutely regular time series is «-mixing,

lemma A2 of Cai (2001) holds under our assumptions, that is,

A= —’"‘52'{(;;‘) + O (%), where vy = [ u2K?(u)du, and

w,:n1<l
x (1+0p(1)),

First, consider the term N;. The denominator of N, times 1/A
is

hK\f' (x) -
— W(Xt — ) Ky (X; — x))

(A.3)

WY WK (X —x)/h) = (nh) ™Y " K((X: = x)/h) + 0p(1)

=1 =1

L rw),

by (A.3) and an application of Birkhoff’s ergodic theorem
(see, e.g., Shiryaev 1996), because E[h 1K (X, — x)/h)] =
! [K((u — x)/h)f (u)du — f(x) as h — 0O after a simple
change of variables. By a Taylor expansion of o>(X;) at x and
the discrete moment condition (6), the numerator of N, times
1/his

(A4)

WY wiK (X = x) /)0 (X)) — 0% (x)]

=1

=h' Y wiK (X, = x)/h)

t=1
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x [62(0)(X; — )% /2 + o((X; — )]

= R (K152 (x) /2 4 0p(h), (A.5)

by (A.3) and the ergodic theorem. Combining (A.4) and (A.S)
gives Ny = h?K15%(x)/2 + 0,(h?). Based on (A.3) and (A.4),
it follows from Fan and Yao [1998, proof of thm. 1(b)—(d)] that
VahNy 5 N (0, Kpo* (0> (@) f (). and N3, Ny = 0, +
1'?). Thus, by (A.2), part (a) holds.

(b) Suppose that f(x) has a bounded support [a, b] and x =
a—+ch (0 <c < 1). By lemma A.3 of Cai (2001),

1
T a0 = re(X; —a— ch)Kp(X; —a— ch))

First, consider the term N, in (A.2). Note that

Wy

(1 +o0,(1)).

h! Z wiK((X; — a — ch)/h)

=1

K((X; —a—ch)/h)

_ -1
= (nh) ; T X, —a— KX, —a—en M
L Rof (@), (A.6)
by the ergodic theorem, because
E(l K((Xy —a—ch)/h) )
hl—A(Xy —a—ch)Ky(X; —a—ch)
! K((z—a— ch)/h)
- /; hl— A(z—a—ch)Kp(z—a— ch)f(z) dz

_)/C K(u)du _F
T K AcuK(u)f(a) = Kof (@),

as h — 0 after a change of variables. By a Taylor expansion of
02(X,) at a + ch and the discrete moment condition (6),

WY wiK (X —a—ch)/D)[0*(X,) — 0% (a+ ch)]

t=1

=h"" > wK((X; — a—ch)/h)

=1
x [62(a+ch) (X, —a — ch)? /2 + o((X; — a — ch)®)]
= K 1f (@)G%(a+ ch) /2 4 0, (h?),

again by the ergodic theorem. Thus, by (A.6), N» = [2K(] ™! x
h?K15%(a + ch) + 0, (h?). Following the proof of theorem 1 of
Fan and Yao (1998), it can be shown that N3, N4y = op, (h2 + h’z)
and N is asymptotically normal with mean 0 and variance 1/nh
times [noting (A.6)],

2
TE<HW1K((Xt —a— Ch)/h)ﬁz(xt)(‘?t2 - 1))
hKf?(a)

1 1
= E
hEéﬂ(a) ((1 —Ae(X; —a—ch)K,(X; —a — ch))

2
x K((X; — a— ch)/h)o*(X,) (s} — 1)) +0p(1)

527
> % f C (ﬂ)zdu-o“(a)sz(a)f(a)
Kof2(a) J-1\ 1 = AcuK(u)
_ Kyt (@& ()
Kf@

Thus the desired result follows by (A.2). The case where x =
b — ch can be proved similarly. The proof of (b) is complete.

Proof of Theorem 2

(a) We write \7()5) =V ) + Vs x) + \73 (x), where

Vi) =h""n Y K*((X; — x)/h)7,

=1

Vax) = =2k~ 'n52 () Y K> ((X: — 0 /W7,

=1
V3(0) =h~"'n5*(x) Y KX, —x)/h).
=1
First, consider the term ‘71 (x). By (A.1), we have
7 =o' X)e! + 40 (Xnef m(X,) — m(X)]
+ [m(Xy) — mX)1* + 40> (X)ed m(X;) — m(X))]
+ 202 (X)) e m(X;) — m(X,)1?
+ 4o (X)edm(Xy) — mX)1,

and denote V; (x) = 21-6:1 Vi j, where

Vir=nh™" Y KX (X = x) /o’ (X)ey,

t=1

Vip=4nh™" Y " K*((X; — 0 /D)o’ (X)e; Im(X,) — X)),

=1

Vi =nh™" Y K*((X; —x)/B)Im(X;) — m(Xn)]*,

=1

Vig =4nh™" > " KX((X: — /0o (X)&] Im(X,) — m(X))],
=1

Vis=2nh"" Y " KX ((X: — 0 /o’ (X)e; Im(X,) — X)),

=1

and

Vig=4nh™" Y " K*((X; — x)/h)o Xem(X;) — X)) .

t=1

Similar to the analysis of the term N; in the proof of Theo-
rem 1(a), we have

/™2y KX — ) /ot (X (ef — (€2 () + 1)

=1

= Op(l)
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provided that

E[K*((X; — x)/)o* (X)) (ef — (E*(@) + )]
which holds by assumption. Thus V]] = Vn + 0p(1), where

248/2
< 00,

Vil = €@+ D' Y KA —x) /ot (X))

t=1

L ) + DKo * (0)f (0)

by the ergodic theorem. It follows from Fan and Yao (1998)
and the proof of Theorem 1(a) that Vy; = 0,(1) for j =
2,...,6. Thus, V;(x) L (E2(x) + DKro*(x)f (x). Similarly,
using (A.1), we can show that Vz(x) LS —2K>0*(x)f (x). Fi-
nally, V3(x) 5 Kyo*(x)f (x). Thus V(x) 5> £2(x)Kr0* (x)f (x),
and Theorem 2(a) follows from (A.4).

(b) This can be proved as in (a) using the arguments given in
the proof of Theorem 1(b).
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