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a b s t r a c t

A limit theory is established for autoregressive time series that smooths the transition between local
and moderate deviations from unity and provides a transitional form that links conventional unit root
distributions and the standard normal. Edgeworth expansions of the limit theory are given. These
expansions show that the limit theory that holds for values of the autoregressive coefficient that are closer
to stationarity than local (i.e. deviations of the form ρ = 1 + c

n , where n is the sample size and c < 0)
holds up to the second order. Similar expansions around the limiting Cauchy density are provided for the
mildly explosive case.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Earlier work by the authors (Phillips and Magdalinos, 2007,
hereafter PM; Giraitis and Phillips, 2006, hereafter GP) provided a
limit theory for autoregressive time series that allows formoderate
deviations from unity in the autoregressive coefficient. This theory
includes autoregressive roots of the form ρn = 1+c/nα , where the
exponent α lies in the interval (0, 1). Such roots belong to larger
neighborhoods of unity than conventional local to unity roots
(ρn = 1 + c/n), the radial width of the neighborhood measured
by the parameter α. The boundary value as α → 1 includes
the conventional local to unity case, whereas the boundary value
as α → 0 includes the stationary or explosive AR(1) process,
depending on the value of c .
The limit theory developed in PM and GP was successful

in establishing a continuous bridge for the rate of convergence
between stationary, unit root and explosive asymptotics, as well
as a continuous transition of the asymptotic distribution between

I The authors thank the Co-Editor and referees for helpful comments on the
original version, which was circulated in November 2006. Phillips thanks the NSF
for partial research support under Grant Nos. SES 042254 and 06-47086. Giraitis
gratefully acknowledges the financial support from ESRC grant RES062230790.
∗ Corresponding address: Yale University, 06520 New Haven, United States. Tel.:
+1 203 432 3695.
E-mail address: peter.phillips@yale.edu (P.C.B. Phillips).
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moderately integrated time series and stationary or explosive
AR(1) processes. However, the bridge provided in those papers
is incomplete because there is still discontinuity in the form of
the limit distributions betweenmoderately integrated and local to
unity processes.
The present paper contributes to this literature by showing how

the local to unity limit distribution may be smoothly transitioned
into a normal distribution on the stationary side of unity and
a Cauchy distribution (corresponding to the invariance principle
established in PM) on the explosive side of unity. By partitioning
the sample size n = mK into m blocks containing K observations,
we consider roots representing ‘‘local-to-moderate deviations’’
from unity of the form ρn,m = 1 + cm

n , which approximate local
to unity roots as n→∞ andm is kept fixed. This procedure yields
the well-known local to unity limit distribution of Phillips (1987)
(see (5) below). The innovation of this paper consists of deriving
a second-order expansion of the above local to unity distribution
as m → ∞. The results reveal that the continuous bridging
between moderately integrated and stationary/explosive AR(1)
processes continues to hold for a second-order expansion of the
limiting distribution function. More importantly, the asymptotic
expansions of Theorems 1 and 2 provide insight into the transition
of the local to unity limiting distribution to a Gaussian (Cauchy)
variate as the autoregressive root approaches the boundary with
the stationary (explosive) region. Further illustration of this
transition in finite samples is given by means of Monte Carlo
experiments.

http://www.elsevier.com/locate/jeconom
http://www.elsevier.com/locate/jeconom
mailto:peter.phillips@yale.edu
http://dx.doi.org/10.1016/j.jeconom.2010.01.009
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2. A limit theory for local-to-moderate deviations from unity

Consider an autoregressive process with local-to-moderate
deviations from unity root of the form ρn = 1 + c

K , where K
passes to infinity with the sample size n and ρn approaches unity
from the stationary or the explosive side according to the sign of
c. It is convenient to think of such a time series as constituting
m blocks of K observations with total sample size n = mK .
Partitioning the chronological sequence {t = 1, . . . , n} by setting
t = bKjc + k for k ∈ {1, . . . , K} and j ∈ {0, . . . ,m− 1}, it
is possible to study the asymptotic behavior of the time series
{Xt : t = 1, . . . , n} via the asymptotic properties of the time
series {XbKjc+k : j = 0, . . . ,m − 1, k = 1, . . . , K}. The latter
representation is particularly useful for revealing the transition
from non-stationary to stationary autoregression as the number of
blocksm increases.
Formally, a process with the above characteristics may be

written in the form

Xt = ρn,mXt−1 + ut , ut ∼ iid
(
0, σ 2

)
, (1)

ρn,m = 1+
c
K
= 1+

cm
n
. (2)

The usual local to unity model (Phillips, 1987) applies whenm = 1
and themoderate deviation theory of PM and GP holds whenm→
∞.
Let W be a standard Brownian motion and Jc (t) =∫ t

0 e
c(t−s)dW (s) be a corresponding Ornstein–Uhlenbeck process.

For eachm, letting

W̃ (t) =
√
mW

(
t
m

)
,

we observe that W̃ is also a standard Brownian motion and
we denote by J̃c (t) =

∫ t
0 e
c(t−s)dW̃ (s) the associated Orn-

stein–Uhlenbeck process. For given m ≥ 1, we may derive a limit
theory for the least squares estimate ρ̂n,m of ρn,m in (1) as n→∞
using earlier results from standard local to unity asymptotics. Us-
ing the identities (see the Appendix for a proof)∫ 1

0
Jcm (s) dW (s) =

1
m

∫ m

0
J̃c (s) dW̃ (s) , (3)∫ 1

0
Jcm (s)2 ds =

1
m2

∫ m

0
J̃c (s)2 ds, (4)

the results in Phillips (1987) imply that, for fixed m and n → ∞,
the asymptotic distribution of the least squares estimator takes the
form

n
(
ρ̂n − ρn,m

)
⇒

∫ 1
0 Jcm (s) dW (s)∫ 1
0 J
2
cm (s) ds

= m

∫ m
0 J̃c (s) dW̃ (s)∫ m
0 J̃c (s)

2 ds
. (5)

When c < 0, sequential limits with n → ∞ followed by
m → ∞ lead to the normal asymptotic theory given in PM and
GP:

n
√
m

(
ρ̂n − ρn,m

)
⇒

1
√
m

∫ m
0 J̃c (s) dW̃ (s)

1
m

∫ m
0 J̃c (s)

2 ds
for fixedm (6)

=

1
√
m

m∑
j=1

∫ j
j−1 J̃c (s) dW̃ (s)

1
m

m∑
j=1

∫ j
j−1 J̃c (s)

2 ds

⇒
N
(
0, 1
−2c

)
1
−2c

≡ N (0,−2c) asm→∞ (7)
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Fig. 1. Local limit densities of
√

m
−2c

∫ m
0 JcdV∫ m
0 J
2
c ds
for variousm.

by a standard martingale CLT (e.g. Pollard, 1984, Theorem VIII.1)
on the numerator and an ergodic theorem on the denominator (J̃c
is a Gaussian diffusion with a stationary version for all c < 0).
Fig. 1 shows the limit distribution (6) for various values ofm and

c = −5. The graphs reveal a smooth transition from the local to
unity limit distribution of

√
m/ (−2c)

∫ m
0 J̃cdW̃/

∫ m
0 J̃

2
c ds through

to the standard normal.
In summary, the sequential limit theory as (n,m)→∞ on the

stationary side is given by

Zn,m =

√
n
(
ρ̂n − ρn,m

)√
2
(
1− ρn,m

) = n
√
m

(
ρ̂n − ρn,m

)
√
−2c

⇒ N (0, 1) . (8)

On the explosive side, c > 0, the martingale convergence the-
orem ensures that

∫
∞

0 e
−csdW̃ (s) and J̃−c (∞) := limm→∞ J̃−c (m)

both exist almost surely and consequently follow a N
(
0, 12c

)
dis-

tribution. Moreover,
∫
∞

0 e
−csdW̃ (s) and J̃−c (∞) can be seen to be

independent by an elementary property of the stochastic integrals.
Thus, in view of (5), taking sequential limits with n→∞ followed
bym→∞ yields

1
2c
n
m
ecm

(
ρ̂n − ρn,m

)
⇒n→∞

e−cm
∫ m
0 J̃c (s) dW̃ (s)

2ce−2cm
∫ m
0 J̃c (s)

2 ds
for fixedm

=
J̃−c (m)

∫ m
0 e
−csdW̃ (s)(∫ m

0 e
−csdW̃ (s)

)2 + Op (m1/2e−cm)

⇒
J̃−c (∞)

∫
∞

0 e
−csdW̃ (s)(∫

∞

0 e
−csdW̃ (s)

)2 asm→∞

=
J̃−c (∞)∫
∞

0 e
−csdW̃ (s)

=d C

where C denotes a standard Cauchy variate.

3. Edgeworth expansion on the stationary side

Recall that on the stationary side c < 0. The limit (7) may be
derived by direct means as follows. We proceed using the joint
moment-generating function (m.g.f.) of(
1
√
m

∫ m

0
J̃cdW̃ ,

1
m

∫ m

0
J̃2c ds

)
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=

(
√
m
∫ 1

0
JcmdW ,m

∫ 1

0
J2cmds

)
(9)

which, from Phillips (1987, equation (A1)), is

Lm (w, z) = Mcm
(√
mw,mz

)
,

whereMcm is defined in Proposition A.1. Setting

τm =
(
c2m2 + 2 cm3/2w − 2mz

)1/2
,

the m.g.f. of the random vector in (9) can be written as

Lm (w, z) =

{
ecm+

√
mw

2τm

[(
τm − cm−

√
mw

)
eτm

+

(
τm + cm+

√
mw

)
e−τm

]}−1/2
= e−

1
2 (τm+cm+

√
mw)

×

[
τm − cm−

√
mw

2τm
+

(
τm + cm+

√
mw

)
e−2τm

2τm

]−1/2

= e−
1
2 (τm+cm+

√
mw)

[
τm − cm−

√
mw

2τm
+ O

(
e−dm

)]−1/2
= e−

1
2 (τm+cm+

√
mw)

[
τm − cm−

√
mw

2τm

]−1/2
+ O

(
e−dm

)
, (10)

for some d > 0, since τm ∼ −cm and τm + cm +
√
mw →(

w2 + 2z
)
/2c as m→ ∞ by (22) and (23) in the Appendix. Next

we proceed to expand Lm (w, z) as m → ∞. Observe that the
asymptotic expansions (22) and (23) for τm and τ−1m respectively
give

1
2τm

(
τm − cm−

√
mw

)
=
1
2

[
2+

2w
cm1/2

−
2w
cm1/2

+ O
(
m−1

)]
= 1+ O

(
m−1

)
,

and

e−
1
2 (τm+cm+

√
mw)

= exp
{
−
1
2

[
w2 + 2z
2c

−
w3 + 2wz
2c2

m−1/2 + O
(
m−1

)]}
= exp

{
−
w2 + 2z
4c

}
exp

{
w3 + 2wz
4c2

m−1/2 + O
(
m−1

)}
= exp

{
−
w2 + 2z
4c

}[
1+

w3 + 2wz
4c2

m−1/2 + O
(
m−1

)]
.

Thus, (10) becomes, asm→∞,

Lm (w, z) = exp
{
−
w2 + 2z
4c

}
×

[
1+

w3 + 2wz
4c2

m−1/2 + O
(
m−1

)]
(11)

with leading term given by

Lm (w, z) = e−
z
2c−

1
4c w

2
[
1+ O

(
1
√
m

)]
.

Therefore, the numerator of (6) has anN
(
0, 1
−2c

)
limit distribution

and the denominator has constant probability limit 1
−2c , as in (7)

above. This establishes an alternative proof of (8).
The derivation of an Edgeworth expansion requires considering

the next term in the expansion of the joint moment-generating
function, i.e. including powers of m−1/2 in (11). We provide an
expansion of the distribution of the statistic

Qm =

√
−2c

(
1
√
m

∫ m
0 J̃cdW̃

)
(−2c)

(
1
m

∫ m
0 J̃

2
c ds
) = Am

Bm
,

which is the limit of Zn,m in (8) as n → ∞, for fixed m. Towards
this end, define Dm = Am − xBm and note that

P (Qm < x) = P (Am − xBm < 0) = P (Dm < 0) .

An expansion for the moment-generating function of Dm can be
obtained from (11) as follows:

E
(
eDms

)
= E

(
esAm−sxBm

)
= Lm

(
s
√
−2c,−sx (−2c)

)
= e−sx+

1
2 s
2
[
1+
−2s2x (−2c)3/2 + s3 (−2c)3/2

4c2
√
m

+ O
(
1
m

)]
= e−sx+

1
2 s
2
[
1+

s3 − 2s2x
√
−2c
√
m
+ O

(
1
m

)]
. (12)

Next, e−sx+
1
2 s
2
is the m.g.f. of the N (−x, 1) distribution so that, as

in Satchell (1984), we have

P (Dm < 0) =
∫ 0

−∞

e−
1
2 (t+x)

2

√
2π

dt =
∫ x

−∞

e−
u2
2

√
2π
du = 8 (x) , (13)

the standard normal c.d.f. Again, as in Satchell (1984), terms such
as spe−sx+

1
2 s
2
in the expansion of them.g.f. (12) correspond to terms

of the form−Hp−1 (x) ϕ (x) in the distributional expansion, where
ϕ (x) is the standard normal density and Hp (x) is the Hermite
polynomial of order p. From this correspondence and (13), we find
that the m.g.f. expansion leads to

P (Qm < x) = 8 (x)+
1
√
m
ϕ (x)

−H2 (x)+ 2H1 (x) x
√
−2c

+ O
(
1
m

)
= 8 (x)+

1
√
m
ϕ (x)

1− x2 + 2x2
√
−2c

+ O
(
1
m

)
= 8 (x)+

1
√
m
ϕ (x)

1+ x2
√
−2c
+ O

(
1
m

)
. (14)

Theorem 1. For each c < 0, the distribution of

Qm =

√
−2c

(
1
√
m

∫ m
0 J̃cdW̃

)
(−2c)

(
1
m

∫ m
0 J̃

2
c ds
)

admits the following Edgeworth expansion:

F (x) = 8 (x)+
1
√
m
ϕ (x)

1+ x2
√
−2c
+ O

(
1
m

)
.

Remark 1. We may compare (14) with the corresponding expan-
sion for the stationary (fixed ρ with |ρ| < 1) case where

Xt = ρXt−1 + ut , ut ∼ iid
(
0, σ 2

)
. (15)

In this case, the Edgeworth expansion of the distribution function
Fn of the standardized and centred estimator
√
n
(
ρ̂n − ρ

)√
1− ρ2
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was shown in Phillips (1977) to have the form

Fn (x) = 8 (x)+
ρ√
1− ρ2

1+ x2
√
n
ϕ (x)+ O

(
1
n

)
. (16)

The two resultsmay be related by settingρ = 1+ cK in (16), leading
to

Fn (x) = 8 (x)+
1+ O

(
K−1

)
√
−2c/K

1+ x2
√
n
ϕ (x)+ O

(
1
n

)
= 8 (x)+

1
√
−2c

1+ x2
√
m
ϕ (x)+ O

(
1
m
+

1
K 3/2m1/2

)
,

which is the same as (14). Therefore, the moderate deviation
limit theory is uniform to the second order in the sense that the
Edgeworth expansions of the distributions are the same to the first
correction term.

4. An expansion on the explosive side

In a relatedway, wemay develop an expansion on the explosive
side of unity with c > 0. Again, the m.g.f. method initiated
by White (1958) is employed and a second-order expansion is
obtained as in Satchell (1984). However, the point of expansion
in our approach is now the Cauchy distribution delivered by the
invariance principle in PM.
We are interested in expanding the moment-generating

function of(
2c
ecm

∫ m

0
J̃cdW̃ ,

4c2

e2 cm

∫ m

0
J̃2c ds

)
=

(
2cm
ecm

∫ 1

0
JcmdW ,

4c2m2

e2 cm

∫ 1

0
J2c ds

)
, (17)

which in view of Proposition A.1 takes the following form:

9m (u, v) = Mcm
(
2cme−cmu, 4c2m2e−2cmv

)
=

{
1
2λm

ecm+2cme
−cmu Λm (u, v)

}−1/2
, (18)

where

λm =
(
c2m2 + 4c2m2e−cmu− 8c2m2e−2cmv

)1/2
,

Λm (u, v) =
(
λm − cm− 2cme−cmu

)
eλm

+
(
λm + cm+ 2cme−cmu

)
e−λm .

Using the asymptotic expansions (26) and (27) for Λm and
λ−1m e

cm+2cme−cmu, respectively, we obtain, asm→∞,

1
λm
ecm+2cme

−cmuΛm (u, v) = 2
(
1− u2 − 2v

)
− 8cu

(
u2 + 2v

)
me−cm + 8u

(
u2 + 2v

)
e−cm + O

(
m2e−2cm

)
.

Hence, by (18), the m.g.f. of the random vector in (17) admits the
following asymptotic expansion asm→∞:

9m (u, v) =
(
1− u2 − 2v

)−1/2
×

{
1−

4u
(
u2 + 2v

)
1− u2 − 2v

(cm− 1) e−cm + O
(
m2e−2cm

)}−1/2
=
(
1− u2 − 2v

)−1/2
×

{
1+

2u
(
u2 + 2v

)
1− u2 − 2v

(cm− 1) e−cm + O
(
m2e−2cm

)}
.

Thus, the approximate m.g.f. of (2ce−cm
∫ m
0 J̃cdW̃ , 4c

2e−2cm
∫ m
0

J̃2c ds) is given by

9m (u, v) =
1(

1− u2 − 2v
)1/2

+
2u
(
u2 + 2v

)(
1− u2 − 2v

)3/2 (cm− 1) e−cm. (19)

Having obtained an asymptotic approximation for 9m (u, v),
we employ a method similar to Satchell (1984) in order to derive
an approximation for the density function of

(
2ce−cm

∫ m
0 J̃cdW̃

)
(
4c2e−2cm

∫ m
0 J̃

2
c ds
)−1
. Using a standard result for the den-

sity of ratios of random variables, the density function of
(2ce−cm

∫ m
0 J̃cdW̃ )(4c

2e−2cm
∫ m
0 J̃

2
c ds)

−1 is given by

f (r) =
1
2π i

∫ i∞

−i∞

∂9m (u, v − ru)
∂v

∣∣∣∣
v=0
du. (20)

Differentiating the expression

9m (u, v − ru) =
1(

1− u2 − 2v + 2ru
)1/2

+
2u
(
u2 + 2v − 2ru

)
(cm− 1) e−cm(

1− u2 − 2v + 2ru
)3/2

and using the identity

u3 − 2ru2(
1− u2 + 2ru

) 5
2
=

−u(
1− u2 + 2ru

) 3
2
+

u(
1− u2 + 2ru

) 5
2

yields

∂9m (u, v − ru)
∂v

∣∣∣∣
v=0
=

1(
1− u2 + 2ru

) 3
2

+ 4 (cm− 1) e−cm
u(

1− u2 + 2ru
) 3
2

+ 6 (cm− 1) e−cm
u3 − 2ru2(

1− u2 + 2ru
) 5
2

=
1(

1− u2 + 2ru
) 3
2

− 2 (cm− 1) e−cm
u(

1− u2 + 2ru
) 3
2

+ 6 (cm− 1) e−cm
u(

1− u2 + 2ru
) 5
2
.

Thus, using a closed-form expression for the contour integrals,

h (j, k) =
1
2i

∫ i∞

−i∞

uj(
1− u2 + 2ru

) 2k+1
2
du, 0 ≤ j ≤ k, (21)

similar to Satchell (1984), (20) becomes

f (r) =
1
π
h (0, 1)−

2 (cm− 1)
π

e−cmh (1, 1)

+
6 (cm− 1)

π
e−cmh (1, 2)

=
1
π

1
1+ r2

−
2 (cm− 1)

π
e−cm

r
1+ r2
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+
6 (cm− 1)

π
e−cm

2r
3
(
r4 + 2r2 + 1

)
=

1
π
(
1+ r2

) + 2r (1− r2)
π
(
1+ r2

)2 (cm− 1) e−cm.
Theorem 2. For each c > 0, the approximate density of(
2ce−cm

∫ m

0
J̃cdW̃

)(
4c2e−2cm

∫ m

0
J̃2c ds

)−1
is given by

f (r) =
1

π
(
1+ r2

) + 2r (1− r2)
π
(
1+ r2

)2 (cm− 1) e−cm,
with an approximation error of order O

(
m2e−2cm

)
as m→∞.

Remark 2. We may compare the approximate density of Theo-
rem 2 with the approximate density of the normalized and cen-
tred least squares estimator in the purely explosive case. Satchell
(1984) derives the approximate density of

ρn
(
ρ̂n − ρ

)
ρ2 − 1

generated by (15) with Gaussian innovations ut , fixed ρ ∈ (−1, 1)
and X0 = 0. UsingMAPLE to calculate the contour integrals in (21),
we have obtained the following expression for this density1:

fn (r) =
1

π
(
1+ r2

) − 1
π

ρ

|ρ|n

[
2−

(
ρ2 − 1

)
n

ρ2

]
r − r3(
1+ r2

)2 .
Letting ρ = 1 + cm/n, we obtain |ρ|−n = e−cm[1 + O(m2/n)],
giving

ρ

|ρ|n

[
2−

(
ρ2 − 1

)
n

ρ2

]
= −2 (cm− 1) e−cm

[
1+ O

(
m2

n

)]
.

Thus, fn (r) agrees with the approximate density derived in
Theorem 2 as long asm2/n→ 0. The latter condition ensures that
ρnn,m =

(
1+ cm

n

)n is approximated by ecm: sincem/n→ 0,

ρnn,m = exp
{
n log

(
1+

cm
n

)}
= exp

{
n
[
cm
n
+ O

(
m2

n2

)]}
= ecme

O
(
m2
n

)
.

5. Discussion

The paper provides a second-order expansion of the local to
unity distribution around the standard normal distribution for
the stationary side of unity and around the Cauchy distribution
on the explosive side of unity. Using the local-to-moderate
parameterization for the autoregressive root ρn,m = 1 + cm

n , the
results are obtained by employing sequential asymptotics. A (first-
order) limit for the normalized and centred least squares estimator
ρ̂n is obtained in terms of the local to unity distribution as n →
∞. A second-order expansion of the local to unity distribution is
obtained asm→∞.
From an analytical point of view, this procedure is equivalent to

a second-order approximation of the Phillips (1987) local to unity
distribution for large values of the localizing coefficient. Setting

1 There seems to be an omission of a factor of 2 in the second term of Satchell’s
formula (4.6) for the approximate density.
C = cm, the local-to-moderate root of (2) becomes the standard
local to unit root ρn = 1+ C

n , and a second-order limit theory for

Q1C =
(−2C)1/2

∫ 1
0 JCdW

−2C
∫ 1
0 J
2
Cds

and Q2C =
2Ce−C

∫ 1
0 JCdW

4C2e−2C
∫ 1
0 J
2
Cds

is given by Theorems 1 and 2 upon substituting C = cm:

FQ1C (x) = 8 (x)+
1+ x2
√
−2C

ϕ (x)+ O
(
1
C

)
fQ2C (r) =

1
π
(
1+ r2

) + 2r (1− r2)
π
(
1+ r2

)2 (C − 1) e−C .
The adequacy of the above approximation may be assessed using
the Monte Carlo experiment of Fig. 1 with C = cm. However, we
favour the use of the parameterization ρn,m = 1+ cmn as it provides
more insight into the sample segmentation principle that drives
the limit theory and also because it provides a more natural design
in Monte Carlo experiments, asm is integer valued.

Appendix

Proposition A.1. The moment-generating function of
(∫ 1
0 JcmdW ,∫ 1

0 J
2
c ds
)
is given by

Mcm (u, v) =

{
1
2κm
ecm+u

[(
κm − cm− u

)
eκm

+

(
κm + cm+ u

)
e−κm

]}−1/2
where κm =

(
c2m2 + 2cmu− 2v

)1/2.
A.1. Proof of (3) and (4)

Recalling that W̃ (t) =
√
mW (t/m) is a standardBM,weobtain∫ 1

0
Jcm (s) dW (s) =

∫ 1

0

∫ s

0
ecm(s−r)dW (r) dW (s)

=

∫ 1

0
ecms

∫ ms

0
e−cudW

( u
m

)
dW (s)

=

∫ m

0
ecv
∫ v

0
e−cudW

( u
m

)
dW

( v
m

)
=
1
m

∫ m

0

∫ v

0
ec(v−u)d

(√
mW

( u
m

))
× d

(√
mW

( v
m

))
=
1
m

∫ m

0

∫ v

0
ec(v−u)dW̃ (u) dW̃ (v)

=
1
m

∫ m

0
J̃c (s) dW̃ (s) ,

where we have used the substitution v = ms. Similarly,∫ 1

0
Jcm (s)2 ds =

∫ 1

0

(∫ s

0
ecm(s−r)dW (r)

)2
ds

=

∫ 1

0
e2cms

(∫ ms

0
e−cudW

( u
m

))2
ds

=
1
m

∫ 1

0
e2cms

(∫ ms

0
e−cudW̃ (u)

)2
ds
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=
1
m2

∫ m

0
e2cv

(∫ v

0
e−cudW̃ (u)

)2
dv

=
1
m2

∫ m

0

(∫ v

0
ec(v−u)dW̃ (u)

)2
dv

=
1
m2

∫ m

0
J̃c (s)2 ds. �

A.2. Expansion for τm, τ−1m

For each c < 0, we have, asm→∞,

τm = −cm− wm1/2 +
w2 + 2z
2c

−
w3 + 2wz
2c2

m−1/2 + O
(
m−1

)
, (22)

τ−1m =
1
−cm

+
w

c2m3/2
+ O

(
m−2

)
. (23)

Proof. Using the Taylor expansion for (1+ x)1/2, we can write

τm = |c|m
{
1+

2
cm1/2

w −
2z
mc2

}1/2
= −cm

{
1+

w

cm1/2
−
z
mc2
−
1
8

(
2
cm1/2

w −
2z
mc2

)2
+

w3

2c3m3/2
+ O

(
1
m2

)}
= −cm

{
1+

w

cm1/2
−
w2 + 2z
2c2m

+
w3 + 2wz
2c3m3/2

+ O
(
1
m2

)}
.

The expansion for τ−1m is obtained by an identical argument. �

A.3. Expansion for λm, λ−1m

For each c > 0, we have, asm→∞,

λm = cm+ 2cume−cm − 2c
(
u2 + 2v

)
me−2cm

+ 4cu
(
u2 + 2v

)
me−3cm + O

(
me−4cm

)
, (24)

λ−1m =
1
cm
−
2ue−cm

cm
+

(
6u2 − 4v

)
e−2cm

cm
+ O

(
m−1e−3cm

)
. (25)

Proof. Using the Taylor expansion for (1+ x)1/2, we can write

λm

cm
=
(
1+ 4e−cmu− 8e−2cmv

)1/2
= 1+

1
2

(
4e−cmu− 8e−2cmv

)
−
1
8

(
4e−cmu− 8e−2cmv

)2
+
1
16

(
4e−cmu− 8e−2cmv

)3
+ O

(
e−4cm

)
= 1+ 2e−cmu− 4e−2cmv − 2e−2cmu2 + 8uve−3cm

+ 4e−3cmu3 + O
(
e−4cm

)
,

and (24) follows upon multiplication by cm. For (25), expanding
the reciprocal of (24), we obtain

cmλ−1m =
{
1−

[
−2ue−cm + 2

(
u2 + 2v

)
e−2cm + O

(
e−3cm

)]}−1
= 1− 2ue−cm +

(
6u2 − 4v

)
e−2cm + O

(
e−3cm

)
. �
A.4. Expansion forΛm(u, v)

For each c > 0, we have, asm→∞,
Λm (u, v) = 2c

(
1− u2 − 2v

)
me−cm

− 4c2u
(
1+ u2 + 2v

)
m2e−2cm

+ 4cu
(
1+ u2 + 2v

)
me−2cm + O

(
m3e−3cm

)
. (26)

Proof. By (24) and the Taylor series for the exponential function,
we obtain

eλm = ecm exp
{
2cume−cm + O

(
me−2cm

)}
= ecm

[
1+ 2cume−cm + O

(
m2e−2cm

)]
= ecm + 2cum+ O

(
m2e−cm

)
.

Similarly, (25) yields

e−λm = e−cm exp
{
−2cume−cm + O

(
me−2cm

)}
= e−cm

[
1− 2cume−cm + O

(
m2e−2cm

)]
= e−cm − 2cume−2cm + O

(
m2e−3cm

)
.

Using the above expansions for eλm and e−λm together with (24),
we obtain

Λm (u, v) =
[
−2c

(
u2 + 2v

)
me−2cm

+ 4cu
(
u2 + 2v

)
me−3cm + O

(
me−4cm

)]
×
[
ecm + 2cum+ O

(
m2e−cm

)]
+
[
2 cm+ 4cume−cm

+ O
(
me−2cm

)] [
e−cm − 2cume−2cm + O

(
m2e−3cm

)]
= −2c

(
u2 + 2v

)
me−cm + 4cu

(
u2 + 2v

)
me−2cm

− 4c2u
(
u2 + 2v

)
m2e−2cm + 2cme−cm + 4cume−2cm

− 4c2um2e−2cm + O
(
m3e−3cm

)
= 2c

(
1− u2 − 2v

)
me−cm − 4c2u

(
1+ u2 + 2v

)
m2e−2cm

+ 4cu
(
1+ u2 + 2v

)
me−2cm + O

(
m3e−3cm

)
. �

A.5. Expansion for λ−1m e
cm+2cme−cmu

For each c > 0, we have, asm→∞,

λ−1m e
cm+2cme−cmu

=
1
cm
ecm + 2u−

2u
cm
+

(
6u2 − 4v

)
e−cm

cm

− 4u2e−cm + 2cu2me−cm + O
(
m2e−2cm

)
. (27)

Proof. Writing

ecm+2cme
−cmu
= ecm exp

{
2cme−cmu

}
= ecm

[
1+ 2cmue−cm + 2c2u2m2e−2cm + O

(
m3e−3cm

)]
= ecm + 2cmu+ 2c2u2m2e−cm + O

(
m3e−2cm

)
,

we can obtain (27) by multiplying the above expression with the
expansion for λ−1m in (25). �
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