
A GAUSSIAN APPROACH FOR CONTINUOUS TIME MODELS 
OF THE SHORT-TERM INTEREST RATE 

 
 
 
 
 
 

BY 
 

JUN YU AND PETER C. B. PHILLIPS 
 
 
 
 
 

COWLES FOUNDATION PAPER NO. 1124 
 
 
 
 
 
 
 
 
 

COWLES FOUNDATION FOR RESEARCH IN ECONOMICS 
YALE UNIVERSITY 

Box 208281 
New Haven, Connecticut 06520-8281 

 
2006 

 
http://cowles.econ.yale.edu/ 



Econometrics Journal(2001), volume4, pp. 210–224.

A Gaussian approach for continuous time models of the
short-term interest rate

JUN YU† AND PETER C. B. PHILLIPS‡

†Department of Economics, University of Auckland, Private Bag 92019, Auckland, New Zealand
E-mail:j.yu@auckland.ac.nz

‡Cowles Foundation for Research in Economics, Yale University, University of Auckland,
New Zealand and University of York, UK
E-mail:peter.phillips@yale.edu

Received: May 2001

Summary This paper proposes a Gaussian estimator for nonlinear continuous time mod-
els of the short-term interest rate. The approach is based on a stopping time argument that
produces a normalizing transformation facilitating the use of a Gaussian likelihood. A Monte
Carlo study shows that the finite-sample performance of the proposed procedure offers an
improvement over the discrete approximation method proposed by Nowman (1997). An em-
pirical application to US and British interest rates is given.
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1. INTRODUCTION

Continuous time models of the interest rate are now frequently formulated in terms of nonlinear
stochastic differential equations. Econometric estimation of such models has been intensively
studied in the recent literature. Broadly speaking, three methods have been proposed to estimate
the parameters of such systems. The first method employs a discrete time approximation to the
continuous system and estimation of the discrete time model is conducted by nonlinear regression
or maximum likelihood. This is the approach used by Chanet al. (1992) (CKLS, hereafter) and
Nowman (1997). The second method exploits the martingale property of the diffusion process
and approximates the transition function, the likelihood or the moment conditions. Some of these
approximations are based on simulations (e.g. Duffie and Singleton (1993), Gallant and Tauchen
(1996), Eraker (2001), Elerianet al. (2001), Durham and Gallant (2002)), some are based on
numerical approximations (such as Lo (1988)), while others are based on closed-form approx-
imations (such as Äıt-Sahalia (1999, 2000)). A third approach seeks to estimate the drift and
diffusion functions directly by nonparametric kernel techniques (Florens-Zmirou (1993), Jiang
and Knight (1997), Bandi and Phillips (1999)).

The approximation scheme used in the discretization method proposed by CKLS is based
on the Euler method. In comparison to the continuous time model, the discrete time model is
relatively easy to estimate. As a linear approximation, however, the Euler method introduces a
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Gaussian approach for continuous time models 211

discretization bias since it ignores the internal dynamics which can be excessively erratic. It is
well known that ignoring such a bias can result in inconsistent estimators (see Melino (1994)).
The discrete approximation method proposed by Nowman (1997) presents the first application of
Gaussian methods of estimation for nonlinear continuous time models of interest rates. It is based
on the Gaussian estimation method developed by Bergstrom (1983, 1984, 1985, 1986, 1990) for
linear systems. Since the general form of continuous time models of interest rates involve con-
ditional heteroscedasticity, however, the process is not Gaussian. So, in order to use Gaussian
estimation, Nowman (1997) assumes the volatility of the interest rate is constant over each unit
observation period, thereby facilitating the construction of a discrete time version of the model.
In essence, this procedure uses the Euler method to approximate the diffusion term over the unit
interval. In so doing, the method replaces a non-Gaussian process by an approximate Gaussian
one. Since only the diffusion term is approximated, the Nowman method has the advantage of
reducing some of the aggregation bias relative to full discretization. Strictly speaking, the Now-
man procedure is a form of quasi-maximum likelihood. While simulations or approximations
can overcome the difficulties involved in calculating the likelihood function or the moments of
the diffusion process, it is in general difficult to gauge the accuracy of the approximations.

This paper proposes a different approach to forming a discrete time model. It has the interest-
ing feature that it produces a Gaussian approach to estimating non-Gaussian diffusion processes.
It is related to the Nowman discrete approximation method in the sense that a discrete model
is derived and used for estimation. However, we use a very different mechanism to obtain an
exact discrete model with Gaussian errors and the discrete observations of the process that sat-
isfy this model are no longer equally spaced. The proposed estimator uses this new discrete time
model and is a Gaussian estimator in the sense that it maximizes the Gaussian likelihood. The
procedure exploits the martingale property of the process driving the diffusion and uses a time-
change technique as a normalizing transformation to convert the process to a Gaussian one. The
time-change transformation is itself of empirical interest because it depends on the properties
of the process and, upon estimation, reveals the extent of the departure from Gaussianity during
the observation period. Our method is also related to the idea of subordination in the sense that
Gaussianity can be induced. Many types of subordinators have been used in the literature. Clark
(1973) suggests using a Brownian motion as a subordinator while others use more complicated
processes or exogenous variables as subordinators (see, for example, Ané and Geman (2000),
Barndorff-Nielsen and Shephard (2001), Conleyet al. (1997), Gemanet al. (1998), Madan and
Senata (1990)). Rather than compounding two processes, however, our method is more on the
normalization transformation and the normality is endogenously determined.

The paper is organized as follows. Section 2 reviews various continuous time models of the
short-term interest rate and Nowman’s estimation method. Section 3 develops the alternative
approach of this paper. Section 4 reports a simulation study of the performance of the proposed
approach in comparison with the Nowman method. Section 5 illustrates the procedure in an
empirical application. Section 6 concludes.

2. CONTINUOUS TIME INTEREST RATE MODELS

Consider an interest rate diffusion process{r (t) : t ≥ 0} generated by

dr(t) = (α + βr (t))dt + σ r γ (t)d B(t), (2.1)

c© Royal Economic Society 2001



212 Jun Yu and Peter C.B. Phillips

Table 1.Alternative one-factor short-term interest rate models and parameter relationship.

Model α β γ

Merton (1973) dr(t) = αdt + σd B 0 0

Vasicek (1977) dr(t) = (α + βr (t))dt + σd B 0

Coxet al. (1985) dr(t) = (α + βr (t))dt + σ r 1/2d B 1/2

Dothan (1978) dr(t) = σ rd B 0 0 1

Geometric Brownian motion dr(t) = βr (t)dt + σ rd B 0 1

Brennan and Schwartz (1980) dr(t) = (α + βr (t))dt + σ rd B 1

Coxet al. (1980) dr(t) = σ r 3/2d B 0 0 3/2

Constant elasticity of variance dr(t) = βr (t)dt + σ r γ d B 0

CKLS (1992) dr(t) = (α + βr (t))dt + σ r γ d B

whereB(t) is a standard Brownian motion defined on the probability space(�, =B, (=B
t )t≥0, P),

andα, β, σ , andγ are unknown system parameters.1 In this model,r (t) mean-reverts towards
the unconditional mean−α

β
, −β measures the speed of the reversion, andγ determines the

sensitivity of the variance with respect to the level ofr (t). Assume the datar (t) is recorded
discretely at(0, 1, 21, . . . , T1) in the time interval[0, T1], where1 is a discrete time step
in a sequence of observations onr (t). If r (t) is the annualized interest rate observed monthly
(weekly or daily), then1 = 1/12 (1/52 or 1/250).

The specification of equation (2.1) allows a possible nonlinear diffusion term but only a
linear drift.2 Equation (2.1) nests some well known models of the short-term interest rate. Their
specifications and the parameter restrictions are summarized in Table 1 which can be also found
in Jiang and Knight (1997). Except for a few special cases, maximum likelihood is difficult to use
since the likelihood function does not have a closed-form expression. Also, in almost all practical
contexts the diffusion process is not Gaussian. For example, Coxet al. (1985) show that when
γ = 0.5 the distribution ofr (t + 1) conditional onr (t) is non-centralχ2

[2cr(t), 2q + 2, 2λ(t)],
wherec = −2β/(σ 2(1 − eβ)), λ(t) = cr(t)eβ , q = 2α/σ 2

− 1, and the second and third
arguments are the degrees of freedom and non-centrality parameters, respectively.

Whenγ > 0, the conditional volatility of the model increases with the level of the interest
rate. This is the so-called ‘level effect’. Since the conditional variance is not constant forγ 6= 0,
the Gaussian estimation method proposed by Bergstrom (1983, 1985, 1986, 1990) is not directly
applicable. To use Bergstrom’s procedure, Nowman (1997) assumes that the conditional volatility

1Although we focus on the 1-factor model in this paper, there are many multi-factor models that have been studied in the
short-term interest rate literature. Examples include Andersen and Lund (1997), Babbs and Nowman (1999), Brennan and
Schwartz (1979), Brenneret al. (1996), Chen and Scott (1992), Longstaff and Schwartz (1992), Duffie and Kan (1996).
These extensions are not considered in the present paper and the simple but popular model (2.1) is used to illustrate our
new approach.
2The specification of a linear drift has been criticized in the recent literature. For example, using a nonparametric

test, Äıt-Sahalia (1996) rejected all parametric models and argues that the linearity in the drift is a major source of
misspecification. Stanton (1997) proposed nonparametric estimators of the drift and diffusion functions and found that
the estimated drift is highly nonlinear, especially when the interest rate is more than 14%. However, a Monte Carlo study
performed by Chapman and Pearson (2000) indicates poor finite-sample properties of the nonparametric estimators of
Aı̈t-Sahalia (1996) and Stanton (1997). Pritsker (1998) found that the Aı̈t-Sahalia (1996) test rejects the true model too
often. Some other recent work by Bandi and Phillips (1999) proposed nonparametric estimators of the drift and diffusion
that are applicable in nonstationary cases.
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Gaussian approach for continuous time models 213

remains unchanged over the unit intervals,[s1, (s+ 1)1), s = 0, 1, . . . , and then approximates
the stochastic equation (2.1) over these intervals by the equation

dr(t) = (α + βr (t))dt + σ r γ (s1)d B(t), s1 ≤ t < (s + 1)1. (2.2)

The corresponding exact discrete model of (2.2) then has the form (e.g. Bergstrom (1984))

r (t) = e1βr (t − 1) +
α

β
(e1β

− 1) + η(t), (2.3)

where the conditional distributionη(t)|=B
t−1 ∼ N(0, σ2

2β
(e21β

− 1)(r 2γ (t − 1))). With this ap-
proximation, the Gaussian method can be used to estimate equation (2.3).

The Nowman procedure can be understood as using the Euler method to approximate the
diffusion term over the unit interval. Compared with the discretization method where the Eu-
ler method is applied to both the drift and diffusion terms in the diffusion process, Nowman’s
method can be expected to reduce some of the temporal aggregation bias. Strictly speaking, how-
ever, the method is a form of quasi-maximum method since (2.3) is not the true discrete model
corresponding to equation (2.1) but is merely a conditional Gaussian approximation.

Nowman’s method is related to the local linearization method proposed by Shoji and Ozaki
(1997, 1998) for estimating diffusion processes with a constant diffusion term and a possible
nonlinear drift term, that is3

dr(t) = µ(r )dt + σd B(t). (2.4)

While Nowman approximates the nonlinear diffusion term by a locally linear function, Shoji and
Ozaki (1998) approximate the drift term. In essence, Nowman’s procedure can be regarded as a
local linearization method.

3. GAUSSIAN ESTIMATION USING RANDOM TIME CHANGES

In this section a Gaussian method is developed to estimate the equation (2.1). The approach is
based on the idea that any continuous time martingale can be written as a Brownian motion after
a suitable time change. In particular, by the Dambis, Dubins-Schwarz theorem (hereafter DDB
theorem)—see Revuz and Yor (1999)—we have the following result which gives a normalizing
transformation for an arbitrary continuous martingale.

Lemma 3.1 (DDB Theorem).Let M be a(=t , P)-continuous local martingale vanishing at0
with quadratic variation process[M]t such that[M]∞ = ∞. Set

Tt = inf{s|[M]s > t}. (3.5)

Then, Bt = MTt is a (=Tt )-Brownian motion and Mt = B[M]t .

3The local linearization method by Shoji and Ozaki is more generally applicable to diffusion processesdr(t) =

µ(r )dt + σ(r )d B(t) with a nonlinear drift and a nonlinear diffusion. This is because a nonlinear transformation can
be made to transform the above diffusion process to equation (2.4); see Ozaki (1985) for details about the nonlinear
transformation.

c© Royal Economic Society 2001



214 Jun Yu and Peter C.B. Phillips

The processBt is referred to as the DDB Brownian motion ofM . According to this result,
when we adjust from chronological time in the local martingaleM to time Tt we transform
the process to a Brownian motion. As we move along the new path in the resulting Gaussian
process, sampling speed needs to be varied in order to accomplish the transformation. But this
is something that can be done when we have finely spaced data. The required time changes are
given by equation (3.5), so they depend on the quadratic variation of the processMt . Since this
process is path dependent, the time adjustment will be made according to the observed path of
the process.

We can use the lemma to extract an exact discrete Gaussian model for (2.1). First, note that
model (2.1) forr (t) has for any givenr (0) the following solution:

r (t) =

[
r (0) +

α

β

]
eβt

−
α

β
+

∫ t

0
eβ(t−s)σ r γ (s)d B(s), (3.6)

so that we can write for anyh > 0

r (t + h) =
α

β
(eβh

− 1) + eβhr (t) +

∫ h

0
σeβ(h−τ)r γ (t + τ)d B(τ ). (3.7)

Let M(h) = σ
∫ h

0 eβ(h−τ)r γ (t + τ)d B(τ ). M(h) is a continuous martingale with quadratic vari-
ation

[M]h = σ 2
∫ h

0
e2β(h−τ)r 2γ (t + τ)dτ. (3.8)

We now use the time transformation (3.5) in the lemma to construct a DDB Brownian motion to
represent the processM(h). To do so, we introduce a sequence of positive numbers{h j } which
deliver the required time changes. For any fixed constanta > 0, let

h j +1 = inf{s|[M j ]s ≥ a} = inf

{
s

∣∣∣∣σ 2
∫ s

0
e2β(s−τ)r 2γ (t j + τ)dτ ≥ a

}
. (3.9)

Next, construct a sequence of time points{t j } using the iterationst j +1 = t j + h j +1 with t1
assumed to be 0. Evaluating equation (3.7) at{t j }, we have

r (t j +1) =
α

β
(eβh j +1 − 1) + eβh j +1r (t j ) + M(h j +1). (3.10)

According to the lemma,M(h j +1) = B(a) ∼ N(0, a). Hence, equation (3.10) is an exact dis-
crete model with Gaussian disturbances and can be estimated directly by maximum likelihood.
Although both (2.3) and (3.10) are exact discrete models, only (3.10) is the exact discrete model
with Gaussian disturbances. The time-transformed model (3.10) has both theoretical and prac-
tical significance. An interesting feature of (3.10) is that the discrete time model does not have
equally spaced observations. One needs to sample the process more frequently when the level
of interest rates, and hence the conditional volatility, is higher. Thus, the sampling process is
endogenous. Figures 1 and 2 illustrate how the time transformation varies according to the gen-
erating process and the sample path using the two real data sets from Section 5. In both figures
the vertical lines represent the sequence of sampling points{t j }. The finer they are, the higher
the sampling speed is. Obviously the sampling speed varies in both cases. For example, for the
US Treasury bill rate, we have to sample all the observations available to us when the market
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Gaussian approach for continuous time models 215

Figure 1. Time transformations for the UK interest rate.

Figure 2. Time transformations for the US interest rate.

experienced high interest rates at the beginning of 1980s but sample much less frequently when
the market experienced lower interest rates in the 1960s. Also, from equation (3.9) we note that
the sampling points{t j } are more sensitive whenγ is larger. This is confirmed by Figures 1 and 2
sinceγ is estimated to be 1.3610 in the US market and 0.2898 in the UK market.

c© Royal Economic Society 2001



216 Jun Yu and Peter C.B. Phillips

Letting θ = (α, β, σ, γ ) and definingL(θ) as minus twice the averaged logarithm of the
likelihood function of the model

L(θ) =
1

N

∑
j

[
2 loga +

(r (t j +1) −
α
β
(eβh j +1 − 1) − eβh j +1r (t j ))

2

a2

]
, (3.11)

where N is the number of sample points resulting from the transformation. Minimization of
equation (3.11) leads to the ML estimators ofθ . It can be seen that in terms of the estimation of
α andβ the above maximum likelihood procedure is equivalent to least squares, i.e.

min
α,β

1

N

∑
j

(
r (t j +1) −

α

β
(eβh j +1 − 1) − eβh j +1r (t j )

)2

. (3.12)

The autocorrelation properties of the sequence{r (t j )} are determined by the parameterβ. It is
well known that the ML estimate of the autocorrelation parameter for a sequence that almost has
a ‘unit root’ is downward biased (cf. Andrews (1993)). Since interest rates, when observed at
the daily, weekly and even monthly frequencies, tend to have large autoregressive coefficients,
the ML estimate ofβ has a downward bias which results in upward bias in the estimate ofα.
On the other hand, simulations we have performed and which will be discussed below show that
the Nowman estimates ofσ andγ are quite good in finite samples. In consequence, we propose
to use the new discrete time model to improve estimation ofα andβ but make no attempt to
improve estimation ofσ andγ , although this would be possible by taking into account the further
nonlinearities involved in the dependence of the time intervalh j on these parameters. In our
implementation, we therefore take Nowman’s estimates ofσ andγ and fix them in our algorithm.

Subject to a record fine enough to enable choice of the time intervalsh j, the estimates of
θ are maximum likelihood estimates and standard asymptotic theory applies. For example, the
asymptotic distribution is given by

√
N(θ̂ − θ)

a
∼ N(0, I −1(θ0)), (3.13)

whereI is the Fisher information matrix

I (θ) ≡ lim
N→∞

−E

[
1

N

∂2L(θ)

∂θ∂θ ′

]
, (3.14)

andθ0 represents the true values of the parameters. The information matrix can be estimated by
its sample counterpart

IN(θ) = −
1

N

∑
j

∂2l j (θ̂)

∂θ∂θ ′
. (3.15)

Although we illustrate our approach using the diffusion process with a linear drift term, one
can apply our procedure to estimate a process with a nonlinear drift, provided the model can be
transformed into a process with a linear drift. In general, the transformation needed is nonlinear
and dependent on the specification of the drift term as well as the diffusion term. Consider the
following diffusion process:

dr(t) = µ(r )dt + σ(r )d B(t). (3.16)

c© Royal Economic Society 2001



Gaussian approach for continuous time models 217

Using Ito’s formula withx = G(r ), equation (3.16) is equivalent to

dx(t) =
∂G

∂r
dr(t) +

1

2

∂2G

∂r 2
(dr(t))2

=
∂G

∂r
dr(t) +

1

2

∂2G

∂r 2
σ 2(r )dt

=
∂G

∂r
µ(r )dt +

∂G

∂r
σ(r )d B(t) +

1

2

∂2G

∂r 2
σ 2(r )dt

=

(
∂G

∂r
µ(r ) +

1

2

∂2G

∂r 2
σ 2(r )

)
dt +

∂G

∂r
σ(r )d B(t).

If one can chooseG(r ) to satisfy the second-order differential equation∂G
∂r µ(r )+

1
2

∂2G
∂r 2 σ 2(r ) =

α + βx, equation (3.16) is transformed into a model with a linear drift term and hence our
procedure can be applied.

4. IMPLEMENTATION AND SIMULATION

In practice, interest rates are observed at discrete, albeit short, time intervals. In consequence, the
time-change formula (3.9) is not directly applicable. Instead, we use the discrete time approxi-
mation

h j +1 = 1 min

{
s

∣∣∣∣∣
s∑

i =1

σ 2e2β(s−i )1r 2γ (t j + i 1) ≥ a

}
. (4.17)

To use the proposed procedure, a value fora must be selected. Asymptotically, the choice of
a should not matter as long asa is finite, but the same is not true in finite samples. Ifa is
chosen too large, then the effective sample size is too small and we cannot collect a sample with
enough information. Ifa is too small, then we lose the opportunity to adjust the sampling interval
to transform the process to Gaussianity. For practical implementation, we therefore propose to
choosea in a data-based fashion to reflect the average volatility in the data. To do so, we select
a as the ML estimate, saŷa, in the following constant volatility model (i.e. the Vasicek model):

r (t + 1) =
α

β
(e1β

− 1) + e1βr (t) + ε, (4.18)

with ε ∼ N(0, a). Thus,a is the unconditional volatility of the error term in (4.18).
To demonstrate the effectiveness of the above procedure, we generate 72 000 hourly obser-

vations from a square-root process withα = 12, β = −2, σ = 0.2. Instead of using all the
72 000 observations, we pretend that we only have daily observations and hence only a subset of
the simulated sequence is used. Based on the daily data and the transformation scheme (4.17),
we obtain a sequence of{h j } and time points{t j } which are then used to calculate the residu-
als in (4.18). Figure 3 shows the Quantile–Quantile plot of the residuals. It can be seen that the
normality is well induced.

Implementation of the proposed method then proceeds as follows: (1) estimate equation (4.18)
using the ML method and obtain̂a; (2) estimate equation (2.3) using the ML method and obtain
α̂, β̂, σ̂ and γ̂ , i.e. obtain the Nowman estimates of model (2.1); (3) seta, σ, γ as â, σ̂ , γ̂ re-
spectively and condition on them in the subsequent step; (4) choose initial values ofα, β to be
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Figure 3. QQ plot of the normalized sequence of a simulated series.

the Nowman estimates and perform a numerical optimization on (3.12) withh j +1 chosen ac-
cording to the time-change formula (4.17). The numerical solutions of this extremum estimation
problem are then the desired estimates. This algorithm has the advantage of being simple and
convenient for practical implementation. It has the disadvantage that it depends (and conditions)
on first-stage estimates of volatility parameters obtained from Nowman’s approximate model.
The simulations reported below indicate that this procedure works well in practice.

The objective function (3.12) has no direct analytic expression for its derivatives with respect
to β since both the sampling frequency and the total number of sample observations depend on
β. Consequently, the numerical optimization is carried out using Powell’s conjugate direction
algorithm (Powell (1964)).

To evaluate the finite-sample performance of our method, we conduct a small Monte Carlo
study. Suppose that the interest rater (t) follows the square-root process

dr(t) = (α + βr (t))dt + σ r γ (t)d B(t), (4.19)

with γ = 0.5.
For any given parameter setting, a sample path for the square-root diffusion is simulated

according to the two-step method used by Chapman and Pearson (2000). To ensure the validity
of our method for the frequencies commonly used in practice, we choose1 = 1/12, 1/52, 1/250
which correspond to monthly, weekly, and daily frequencies, respectively.

Table 2 shows the parameter settings and the sample sizes for all three frequencies. The
parameter values are close to what would be obtained from empirical applications when a square-
root diffusion model is fitted. For example, the parameter setting implies that the long-term mean
for annualized interest rates is 6.0 percent for all three frequencies. Daily interest rates revert
more quickly to the long-term mean than weekly and monthly rates. Moreover, we try to choose
the sample sizes close to those used in actual empirical studies in the literature.

The model is fitted to the simulated sequence by both Nowman’s method and the proposed
method withγ treated as additional unknown parameter. We also fit the sequence to the Vasicek

c© Royal Economic Society 2001
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Table 2.Parameter setting and sample size in the Monte Carlo study.

Monthly Weekly Daily

Sample Size 500 1000 2000

α 0.72 3.0 6.0

β −0.12 −0.5 −1.0

σ 0.6 0.35 0.25

γ 0.5 0.5 0.5

Table 3.Monte Carlo study comparing Nowman’s method and proposed method for monthly data.

Nowman’s method Our method

α β σ γ α β σ γ

MEAN 1.344 −0.2332 0.6173 0.4919 1.2330 −0.2275 0.6173 0.4919

BIAS 0.624 −0.1132 0.0173 −0.0081 0.5130 −0.1075 0.0173 −0.0081

VAR 0.5897 0.1713 0.0099 0.0071 0.5732 0.1589 0.0099 0.0071

MSE 0.9791 0.1841 0.0102 0.0071 0.8363 0.1705 0.0102 0.0071

Note: A square-root model withα = 0.72, β = −0.12, σ = 0.6, γ = 0.5 is used to simulate 500 monthly
observations for each of the 1000 replications.

Table 4.Monte Carlo study comparing Nowman’s method and proposed method for weekly data.

Nowman’s method Our method

α β σ γ α β σ γ

MEAN 4.409 −0.7320 0.3762 0.4925 4.1650 −0.7011 0.3762 0.4925

BIAS 1.409 −0.2320 0.0262 −0.0075 1.165 −0.2011 0.0262 −0.0075

VAR 4.0663 0.1109 0.0172 0.0357 3.8608 0.1030 0.0172 0.0357

MSE 6.0855 0.1647 0.0179 0.0358 5.2180 0.1435 0.0179 0.0358

Note: A square-root model withα = 3.0, β = −0.5, σ = 0.35, γ = 0.5 is used to simulate 1000 weekly
observations for each of the 1000 replications.

model in order to obtain the ML estimate ofa. We repeat the experiment using 1000 replications.4

The means, variances and mean square errors (MSE) of the resulting estimates are displayed in
Tables 3–5.

One result emerging from these tables is that Nowman’s method provides very good esti-
mates ofσ andγ in terms of both bias and MSE. The sample bias forσ is 3%, 7%, 1% with

4We also tried to estimate the model using a simulation-based method: efficient method of moments (EMM) proposed
by Gallant and Tauchen (1996). EMM is shown to be asymptotically efficient if the auxiliary model encompasses the data
generating process (see Gallant and Tauchen (1996)) its efficiency is close to that of maximum likelihood if the auxiliary
model approximates well the data generating process (see Gallant and Long (1997)). Since it is based on simulations,
however, computationally it is less efficient. We implemented EMM in the Monte Carlo study with the first parameter
setting. The same Gauss computer language as in Paganet al. (1996) was run on a Pentium III PC. After two weeks of
calculations, we are still unable to obtain results for 1000 replications. Moreover, we have found that often the objective
function for the EMM procedure is numerically unstable, resulting in singularity crashes and/or long convergence time.
The same observations have been also documented in Andersenet al. (1999) in the context of estimating the discrete
time stochastic volatility models. For these obvious reasons, we do not compare our estimates with the EMM estimates.
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Table 5.Monte Carlo study comparing Nowman’s method and proposed method for daily data.

Nowman’s method Our method

α β σ γ α β σ γ

MEAN 9.8250 −1.5360 0.2521 0.4970 8.8440 −1.4750 0.2521 0.4970

BIAS 3.8250 −0.5360 0.0021 −0.0030 2.8440 −0.4750 0.0021 −0.0030

VAR 19.1959 0.5219 0.0244 0.0746 17.822 0.4798 0.2521 0.4970

MSE 33.8266 0.8092 0.0244 0.0746 25.910 0.7054 0.0244 0.0746

Note: A square-root model withα = 6.0, β = −1.0, σ = 0.25, γ = 0.5 is used to simulate 2000 daily observations
for each of the 1000 replications.

Table 6.Empirical study comparing Nowman’s method and proposed method using UK short-term interest
rates.

Model Estimation method α β σ2(a) γ

Vasicek ML 3.8305 −0.3730 0.6767

CKLS Nowman 3.5615 −0.3490 2.1111 0.2898

CKLS Exact Gaussian 3.3283 −0.3389 2.1111 0.2898

(1.1693) (0.1122)

Note: The data used are the one-month sterling interbank rate from March 1975 to March 1995 (242 observations).
The Vasicek model estimated by ML is given bydr(t) = (α+βr (t))+σd B(t), and the CKLS model estimated by
Nowman’s method and our exact Gaussian method is given bydr(t) = (α + βr (t)) + σ r γ (t)d B(t). Asymptotic
standard errors are in brackets.

monthly, weekly and daily data respectively, and 2%, 2%, 1% forγ and hence is negligible. The
result justifies the choice of Nowman’s procedure to estimateσ andγ . On the other hand, the
finite-sample performance of Nowman’s estimates ofα andβ are nowhere near as good. For
example, the sample bias forα is 86.7%, 47.0%, 63.8% with monthly, weekly and daily data
respectively, and 94.3%, 46.4%, 53.6% forβ. Moreover, the sampling distribution ofβ is biased
downward for all three frequencies. The bias is still substantial even when the sample size is
reasonably large. This is consistent with the well known problems with estimation of first-order
autoregressive/unit root models, especially when the AR parameter is large. The downward bias
for β implies that the sampling distribution ofα is biased upward for all three frequencies. This
bias is still present in our exact Gaussian estimates. However, it is smaller than that of Nowman’s
method. For example, our method produces 15%, 8%, 16% less bias than the Nowman method
when estimatingα with monthly, weekly and daily data, respectively, and 5%, 6%, 6% when
estimatingβ. Furthermore, our method appears to be more efficient than Nowman’s method.
For example, in terms of the MSE, the efficiency gain is 3%, 7%, 7% when estimatingα with
monthly, weekly and daily data respectively, and 7%, 7%, 8% when estimatingβ. However, the
reductions of the MSEs are largely due to the decreases in bias.

We should point out that both Nowman’s method and our method are computationally highly
efficient although they may not be asymptotically most efficient. Using FORTRAN code in an
alpha-digital Unix system, for example, it takes Nowman’s method and our method no more than
1 and 3 minutes respectively to do all 1000 replications for each of the three parameter settings.
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Table 7.Empirical study comparing Nowman’s method and proposed method using US short-term interest
rates.

Model Estimation method α β σ2(a) γ

Vasicek ML 4.1889 −0.6072 0.6554

CKLS Nowman 2.4272 −0.3277 0.0303 1.3610

CKLS Exact Gaussian 2.0069 −0.3330 0.0303 1.3610

(0.5216) (0.0677)

Note: The data used are the one-month sterling interbank rate from June 1964 to December 1989 (307 observa-
tions). The Vasicek model estimated by ML is given bydr(t) = (α + βr (t)) + σd B(t), and the CKLS model esti-
mated by Nowman’s method and our proposed Gaussian method is given bydr(t) = (α + βr (t)) + σ r γ (t)d B(t).
Asymptotic standard errors are in brackets.

5. EMPIRICAL RESULTS

Two series of interest rates are used in the empirical study, including one British rate obtained
from Datastreamand one US rate obtained from the Center for Research in Security Prices.5

The British rate was used also in Nowman’s (1997) study and is the one-month sterling inter-
bank middle rate over the period from 03/1975 to 03/1995 (see Nowman for details). It contains
242 observations. The US rate is the US Treasury bill one-month yield data over the period from
06/1964 to 12/1989. It has 307 observations. The same dataset is used also by CKLS (Chanet
al. (1992)) and Nowman (1997) (see CKLS for details).

In Table 6 we present the ML estimates of the Vasicek model, the Nowman estimates in
the CKLS model and our exact Gaussian estimates for the UK interest rate. We also provide
asymptotic standard errors of our exact Gaussian estimates. (We should stress that the asymp-
totic standard errors given are conditional on the Nowman estimates and they may understate
the unconditional asymptotic standard errors.) Our method produces estimates that are similar to
Nowman’s, but leads to a smaller estimate ofα and a larger estimate ofβ, consistent with the
findings from the Monte Carlo study. The Nowman method provides an estimate of the uncondi-
tional mean of 10.20 percent while our method leads to 9.821 percent, with implied estimates of
the speed of the reversion by our method of 0.3389, which is smaller than the Nowman estimate
of 0.3490. In Table 7 we present the ML estimates in the Vasicek model, the Nowman estimates
in the CKLS model, and our exact Gaussian estimates for the US interest rate. We also provide
asymptotic standard errors of our exact Gaussian estimates. In this case, Nowman’s estimates
are not very close to our estimates. Our method results in a smaller estimate ofα, once again
consistent with the findings from the Monte Carlo study. However, contrary to the findings in the
Monte Carlo study, it results in a smaller estimate ofβ. The Nowman estimate of the uncondi-
tional mean is 7.41 percent while our estimate is 6.03 percent. The implied estimates of the speed
of the reversion are 0.3330 for our method and 0.3277 for Nowman’s method.

6. CONCLUSION

This paper gives an exact discrete time Gaussian model of a nonlinear continuous time diffu-
sion. The discrete model is suitable for Gaussian estimation of the short-term interest rate even

5Source: Center for Research in Security Prices. Graduate School of Business, The University of Chicago. Used with
Permission. All right reserved. www.crsp.com.
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when there are nonlinear volatility effects. Implementation of the model involves the use of non-
equispaced observations and the time-change transformation shows how the process needs to be
sampled more frequently when conditional volatility is higher. Monte Carlo simulations show
that the finite-sample performance of the proposed method compares well with estimates based
on the alternative discrete approximation of Nowman (1997). Nowman’s method provides very
good estimates of the two parameters in the diffusion term, but is less accurate in estimating the
parameters of the drift. The new procedure reduces the finite-sample bias and improves the finite-
sample efficiency of Nowman’s method in our simulations for all frequencies that are commonly
used in empirical work. In an empirical application of both procedures to British and US interest
rates, it is found that the two procedures produce similar estimates for British interest rates but
different estimates for US interest rates, where the unconditional mean is estimated to be 19%
lower using our procedure.
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