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EMPIRICAL LIMITS FOR TIME SERIES
ECONOMETRIC MODELS

By Werner Ploberger and Peter C. B. Phillips1

This paper characterizes empirically achievable limits for time series econometric mod-
eling and forecasting. The approach involves the concept of minimal information loss in
time series regression and the paper shows how to derive bounds that delimit the proxim-
ity of empirical measures to the true probability measure (the DGP) in models that are
of econometric interest. The approach utilizes joint probability measures over the com-
bined space of parameters and observables and the results apply for models with station-
ary, integrated, and cointegrated data. A theorem due to Rissanen is extended so that it
applies directly to probabilities about the relative likelihood (rather than averages), a new
way of proving results of the Rissanen type is demonstrated, and the Rissanen theory is
extended to nonstationary time series with unit roots, near unit roots, and cointegration of
unknown order. The corresponding bound for the minimal information loss in empirical
work is shown not to be a constant, in general, but to be proportional to the logarithm
of the determinant of the (possibility stochastic) Fisher-information matrix. In fact, the
bound that determines proximity to the DGP is generally path dependent, and it depends
specifically on the type as well as the number of regressors. For practical purposes, the
proximity bound has the asymptotic form �K/2� logn, where K is a new dimensionality
factor that depends on the nature of the data as well as the number of parameters in the
model. When ‘good’ model selection principles are employed in modeling time series data,
we are able to show that our proximity bound quantifies empirical limits even in situations
where the models may be incorrectly specified.
One of the main implications of the new result is that time trends are more costly

than stochastic trends, which are more costly in turn than stationary regressors in achiev-
ing proximity to the true density. Thus, in a very real sense and quantifiable manner, the
DGP is more elusive when there is nonstationarity in the data. The implications for pre-
diction are explored and a second proximity theorem is given, which provides a bound
that measures how close feasible predictors can come to the optimal predictor. Again, the
bound has the asymptotic form �K/2� logn, showing that forecasting trends is fundamen-
tally more difficult than forecasting stationary time series, even when the correct form of
the model for the trends is known.

Keywords: Proximity bounds, data generating process, empirical measures, Fisher
information, minimal information loss, Lebesgue measure, optimal predictor, path depen-
dence, trends, unit roots.

1� introduction

The objective of most econometric work is the construction and use of
good empirical models for given data. The ‘true’ model, or ‘true’ probability

1 The first draft of this paper was written in 1995 and it was completed in November 1998. Our
thanks go to the referees and the Co-Editor, for helpful guidance and comments in crafting the
revision. The authors acknowledge the support of the Cowles Foundation and Phillips acknowledges
the support of the NSF under Grant Nos. SES 94-22922, SBR-9730295, and SES 0092509.

627



628 w. ploberger and p. c. b. phillips

measure, for the data is unknown and, in most practical cases, it is reasonable to
suppose that it is unknowable. This true probability measure, which we will often
refer to as the data generating process (DGP), is usually hypothesized up to a
parameter that needs to be estimated from the data. Often, the data are scarce
relative to the number of parameters that need to be estimated, and this makes it
intuitively evident that ‘lower’ dimensional parameter spaces may be preferable
in practice to ‘higher’ dimensional ones, a maxim that governs much empirical
work in statistics and econometrics.
The mathematical justification for this maxim of parsimony in model dimen-

sion is important and is especially relevant in the context of models of economic
time series, where the series are often comparatively short and appear to have
trending behavior. One of the objectives of the current paper is to quantify the
concept of the dimension of a model in a manner that accommodates nonstation-
ary environments. In developing our theory, we follow an approach pioneered
by Rissanen (1986, 1987, 1996) and seek to establish a theory of minimal infor-
mation loss in time series regression that is suitable for use in modern econo-
metric settings. A survey of the field is given in Gerencser and Rissanen (l992)
and the volume by Keuzenkamp, McAleer, and Zellner (2002) contains papers
that report on some recent developments. So far, Rissanen’s ideas have had little
impact in econometrics or on thinking about econometric methodology, although
their importance was emphasized recently in Phillips (1996).
Suppose a sample of n observations is available and all that is known is that the

DGP belongs to a k-dimensional parametric family and satisfies certain regularity
conditions. The seminal theorem by Rissanen on which we build here shows that
the minimum information distance (based on the relative likelihood) between
any candidate probability measure and the DGP is, on average, bounded from
below by the quantity �k/2� logn for almost all parameters, i.e., for all parameters
besides a Lebesgue null set. The bound provides a yardstick for how ‘close’ to
the DGP we can get within a parametric family, assuming that the parameters all
have to be estimated with the given data. Apparently, the larger the parametric
dimension k, the greater is the ‘closest’ distance any fitted model can come to
the DGP as n increases.
The present paper shows that the concept of dimension changes in a subtle

and important way when we are modeling in a nonstationary environment and
seek to quantify distance. Our main proximity theorem given in Section 3 of the
paper shows that it is not the dimension of the parameter space that determines
the distance of fitted models from the DGP but the order of magnitude of the
sample Fisher information matrix. The proximity bound has the asymptotic form
�K/2� logn, where K is a new dimensionality factor that depends on the nature
of the data as well as the number of parameters in the model. In all of the
commonly occurring cases in econometrics, K has the form K =∑k

i=1	i, where
the quantity 	i measures the trend exponent of regressor i. For stationary series,
intercepts, and dummy variables, 	i = 1; for stochastic trends, 	i = 2; and for
linear time trends 	i = 3. Thus, the ‘closest’ distance a fitted model can come
to the DGP increases twice as fast as n increases when there are integrated
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regressors and three times as fast when there are linear time trends, than when
the regressors are stationary. If we think of a good empirical model as one that
comes close to capturing the features of the DGP, then the practical import of
this result for empirical researchers is that good empirical models are inevitably
more elusive for trending time series.
A second proximity theorem is given in Section 6 and provides bounds on

the quality of prediction in structural linear models. These bounds measure how
close feasible predictors can come to the optimal predictor in simultaneous equa-
tions models with Gaussian errors. The explicit bound on forecasting capability
depends on the dimensionality factor K and therefore reveals that forecasting
nonstationary time series is inherently more difficult than forecasting stationary
time series.
Since our set up allows for models with integrated and cointegrated variables,

our results apply for most commonly occurring econometric models, including
VAR’s with some unit roots and some cointegrated variables. New techniques for
proving proximity results are developed here and these showcase some advan-
tages of working with joint measures over the sample and parameter spaces.
Results on proximity bounds turn out to have intimate connections with Bayesian
modelling, and some of these connections are explored here. In particular, we
show that Bayesian models (in the sense of Phillips and Ploberger (1996) and
Phillips (1996)) asymptotically achieve the proximity bounds and are therefore
‘nearly optimal’ descriptions of the DGP given that the parameters are unknown.
It is sometimes suggested that the error from misspecification is more impor-

tant in practical modeling and prediction than errors of estimation that arise in
the construction of empirical models where maximum likelihood estimates are
used in place of the true parameters. Our mathematical apparatus and proximity
results continue to be relevant in cases of misspecification. When gross misspec-
ification involving omitted variables occurs (i.e., an incorrect lower dimensional
model is selected), our results show that the misspecification is of the order of
magnitude of our proximity bound provided good model selection criteria are
employed. When the misspecification is local (i.e., the omitted variable effects
are marginal), our bound also continues to apply. So it turns out that our bound
quantifies empirical limits that are relevant whether the models are correctly or
incorrectly specified.
The paper is organized as follows. Section 2 gives some modelling preliminar-

ies, discussing both Bayesian and classical versions of empirical models. Our main
proximity theorem for empirical econometric modeling is contained in Section 3.
That result is derived under high level assumptions that are justified for some
specific econometric models in Sections 4 and 5. Section 6 explores some of the
implications of our results for forecasting and gives a second proximity theorem,
which provides a bound that measures how close feasible predictors can come to
the optimal predictor. This result on forecasting is illustrated in some simulations
reported in Section 7. Section 8 concludes. Proofs, derivations, and some comple-
mentary technical results are provided in Appendix A. Our principal notation is
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displayed in a table in Appendix B. Readers interested in the main import of our
theorems can avoid technicalities by concentrating on Sections 2, 3, 6, 7, and 8.

2� empirical models and likelihood ratios

We start by considering a fairly typical empirical modelling situation with time
series data. We have data xn = �xt�

n
1 that we associate with the realization of a

random process that takes values in a space E with an associated event -algebra
�. The random elements need not be finite dimensional real vectors, and E could
be an arbitrary Polish space. So we can describe qualitative as well as quantitative
data. The data are assumed to arrive consecutively—i.e., we get observation xn

at ‘time’ n. We use �n to denote the information available at n—i.e., �n ⊃ �xn�,
the -algebra generated by xn.
Our purpose is the evaluation of empirical models and, therefore, we need to

clarify what we mean by this notion in a general context. Some typical mecha-
nisms for constructing empirical models are discussed below. Once this concept
is defined we will have a natural basis for developing a criterion for relating dif-
ferent empirical models of the same process given the same observed data. In
our framework, we think of an empirical model as a sequence of conditional
probability measures, Gn, from �n to E, i.e., an empirical model is a representa-
tion of the process that allows us at each point n and for every xn to calculate a
prediction of the next observation, xn+1, in the random sequence. In particular,
Gn contains all the information needed to produce the prediction and does not
rely on any unknown parameters. This is precisely what the conditional measure
provides, viz., a mathematical description of a law that governs the forthcoming
observation given the past that has been observed so far. Note that prediction is
not taken here in the narrow sense of a linear prediction or projection on the
past xn, although it could turn out that this is one of its features. Instead, it is a
complete probability distribution. It is easily seen that there is a one to one cor-
respondence between empirical models (Gn) and empirical probability measures
G on E�. In particular, due to the fact that E is Polish, we can see that for every
sequence (Gn) it is possible to construct a compatible probability measure G, i.e.,
a probability measure whose conditional distributions are the Gn and vice versa.
How do we find candidate empirical models of the data? There is some dif-

ference here between the stylized ‘classical’ and ‘Bayesian’ paradigms of data
analysis. Our approach seeks to cover both paradigms. Let us assume that we
are in a typical parametric context wherein the DGP is assumed to be known up
to a certain parameter � and let P� be the corresponding probability measure.
The classical procedure is to use the information in �n to estimate �, say by the
maximum likelihood estimator (MLE) �̂n, and then use P�̂n

�·�xn� as the inferred
empirical model for the process. One way of constructing an empirical model
in the classical framework is simply to ‘plug’ the estimator into the conditional
probability measure in this way and proceed in a recursive manner as we move
through the data from some given point of initialization n0 for which there is
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enough data to obtain the estimate �̂n0
. In the terminology of Dawid (1984), the

outcome of this recursion is a prequential density.
On the other hand, in the Bayesian paradigm, a prior density ���� for � is

defined in addition to P� and then the Bayesian mixture

P =
∫

����P� d�(1)

gives the marginal distribution of the data xn. We can then construct conditional
probability measures from P and the associated conditional data densities, viz.

p�xn+1�xn� = p�xn+1�
p�xn�

�(2)

where

p�xn� = dP

d�
=
∫

����
dP�

d�
d�

and � is a dominating measure (possibly Lebesgue measure) for P�.
In the above setting, the class of potential empirical models for the data is wide.

Indeed, as soon as we have a rule for obtaining numerical values of parameters or
rules for averaging the parameters out, almost anything can be considered as an
empirical model for the data. To prevent modelling concepts from degenerating
into the trivial, we introduce a yardstick for measuring the ‘goodness’ of a model.
Suppose the data are generated by some probability measure P� and we use an
empirical model G as the supposed data generating mechanism. Denote by P

�n�
�

and G�n� the restrictions of these probability measures to �n: i.e., we limit the
information to that available at time n. Similarly, we denote by P �n� the restriction
of the Bayesian measure P to �n. Then, our ‘goodness of fit’ measure is just the
sequence of random variables

�n�G�n�� = log dG�n�

dP
�n�
�

�(3)

where dG�n�/dP
�n�
� is the likelihood ratio of G�n� and P

�n�
� , i.e., the Radon

Nikodym (RN) derivative of G�n� with respect to P
�n�
� (or, the RN derivative of

the absolutely continuous part of G�n� if G�n� is not absolutely continuous with
respect to P

�n�
� ). The random variables (3) allow us to compare different empir-

ical models—i.e., G1 is ‘better’ than G2 iff �n�G1� ‘is greater than’ �n�G2� in
whatever way we define an ordering between random variables, although the
ordering is only a partial ordering because it is possible that some models are
not comparable.
We think that this measure for the ‘distance’ of a given empirical model from

the ‘true’ probability measure is a sensible formalization of the intuitive concept
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of one empirical model being ‘better’ than another for the following reasons:
1. It is compatible with Kullback-Leibler (KL) type information ‘metrics’ since

−E��n�G� is just the KL information distance of G�n� to P
�n�
� (i.e. the measures

modeling information up to time n). So if G1 is better than G2, then G
�n�
1 is, in

KL-distance, nearer to P
�n�
� than G

�n�
2 .

2. If �n�G� = 0, then G�n� = P
�n�
� , i.e., the probability measures describing the

data are identical.
3. If, for n → 	, �n�G� = OP�

�1�, then G�n� and P
�n�
� are contiguous in the

sense of LeCam (1986). As a consequence, it is impossible to construct consistent
tests of P

�n�
� against G�n�. So, in this case, it is impossible even asymptotically to

tell for sure if the data were generated by P� or G.
4. Suppose we have given two empirical models, say G1 and G2, and �n�G1�−

�n�G2�→	 as n→	. If a researcher has to decide between these two empirical
models—i.e. choose the one that describes the data in a better way, then the
Neyman-Pearson Lemma suggests the use of the likelihood ratio (LR) test of G1
against G2. In this case, the researcher will choose the ‘better’ empirical model
in our sense since

log
dG1

dG2
= �n�G1�−�n�G2� →	 asymptotically.

5. This way of ordering models has recently been shown to be of economic
relevance by Sandroni (2000) and Blume and Easley (2000). These authors inves-
tigate futures markets in which the agents use their (subjective) probabilities to
place bets on future events. In particular, Sandroni (2000) shows that—under
reasonable assumptions—the KL-distance of the agent’s model to the DGP pro-
cess essentially determines his survival: an agent with smaller KL-distance will
drive an agent with larger KL-distance (to the DGP process) out of business.
Having established the ‘distance’ between an empirical model and the ‘true’

DGP and between one empirical model and another, the question of finding the
‘best’ model arises naturally. In Phillips (1996) and Phillips and Ploberger (1996),
the ‘goodness’ of Bayesian models was analyzed in a context where the likelihood
was locally asymptotically quadratic. In that case, a corresponding asymptotic
approximation to the data density, called the PIC density, was computed, leading
to an empirical model for the data. This PIC density was used in those papers for
model selection purposes to distinguish between different empirical models and
to perform order estimation of cointegration rank, lag order, and trend degree
in cointegrated VAR models.
In this paper, as part of our generalization of a result of Rissanen (1986, 1987),

we will show that the empirical PIC density is essentially optimal in terms of
its rate of approximation to the true model. Given a parameterized family of
probability measures and any empirical model for the data, we show that the
Lebesgue-measure of the set of parameters corresponding to probability mea-
sures for which the empirical model is ‘better’ than a certain bound converges to
zero—i.e., the parameter set for which we can beat this bound is relatively thin.
More than this, the lower bound is shown to be achievable and it is attained
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asymptotically by the PIC density (see (4) below), clarifying the sense in which
the empirical model corresponding to the PIC density is optimal.
A trivial example illustrates the sort of situation where the bound can be

exceeded—i.e., on the thin set referred to above. This is an empirical model
consisting of a probability measure G�n� obtained by using a specific value of
the unknown parameter (irrespective of the data). Then, for this one parameter
value, �n is zero identically, and in this one case we have the best overall model,
but we will ‘pay’ for this success at all other values of the parameter. So, if we
are wrong in our presumption of the specific parameter value, then there may
be a very heavy cost to using the empirical model G�n�.
The technical framework used in our development here is analogous to Phillips

(1996) and Phillips and Ploberger (1996). In particular, we will maintain the
following assumption among other conditions that will be detailed later.

Assumption A0:
(i) The conditional probabilities P��·��n−1� have densities p��xn��n−1� (with

respect to some dominating measure � on E), the parameter space � ⊂ �k, and
the mapping � → logp��xn��n−1� is twice continuously differentiable.
(ii) The score process component

�n��� = �

��
logp��xn��n−1�

is square integrable. Define Bn��� =∑
1<i<n E���i����i���′��i−1�.

(iii) The prior distribution is proper with continuous density ��·� that is bounded
away from the origin on every compact set K, so that inf�∈K ���� > 0.

The matrix Bn in A0(ii) is the conditional quadratic variation process of the
score process

∑
i≤n �i���. It can be regarded as one possible generalization of

the Fisher information matrix, a fact that we will more fully explore in following
sections.
Phillips (1996) and Phillips and Ploberger (1996) show that if P denotes the

Bayesian empirical model (1), then as n →	, we have the asymptotic approxi-
mation

dP

dP�

∼ ����exp
[
�n

(
�̂n

)]
�detBn����

1
2

∼ ����exp
[(

�− �̂n

)′
Bn���

(
�− �̂n

)
/2
]

�detBn����
1
2

(4)

where �̂n is the maximum-likelihood-estimator for � and �n��� is the log like-
lihood function. Expression (4) is the PIC density and leads to the asymptotic
approximation

log
dP�

dP
∼ 1
2
logdetBn���− log����− (

�− �̂n

)′
Bn���

(
�− �̂n

)
/2�(5)

What determines the order of magnitude of the terms on the right side of (5)?
Clearly it is reasonable to assume that detBn��� →	, whereas the second sum-
mand is a constant and the third is nothing else than the Wald-LM-LR test statis-
tic for testing the parameter to be �. Asymptotic theory developed in recent years
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indicates that it is very plausible that—even under nonstationary circumstances—
this statistic will remain OP�

�1�. (For the case of general time series processes
with some unit roots, this is assured by the limit theorems in Park and Phillips
(1988, 1989)). So, the term involving logdetBn��� in (5) will determine the order
of magnitude of the loss that is due to the lack of information about the param-
eter. In effect, log�dP�/dP� behaves for large n like �1/2�log detBn���, which
therefore determines how ‘close’ the empirical measure P can get to P�. In the
next section, our main proximity theorem makes this heuristic precise and shows
that it is only possible on a very small set of parameter values that, for arbitrary
� > 0, log�dP�/dP� ≤ ��1−��/2�log detBn��� with nonnegligible probability.
These two results have some interesting consequences for Bayesian empirical

models:
(i) Even from the point of view of our ‘semi-classical’ analysis, Bayesian

empirical models are impossible to beat from the predictive point of view.
(ii) The inevitable loss, logdetBn���, is easily seen to be dependent on the

dimension of the parameter space, allowing for this concept of dimension to be
suitably defined. In the stationary case, for instance, Bn will asymptotically be
of the form B ·n, and therefore logdetBn��� will asymptotically have the form
logdet�nB� = k logn+O�1�, where k is simply the dimension of B. In nonsta-
tionary cases, we will see that a more complex concept of dimension is needed
that takes into account trending behavior of the data. It follows in both station-
ary and nonstationary cases that even the use of informative priors is no remedy
against the curse of dimensionality. In other words it continues to be essential to
use parameters parsimoniously—a view that is commonly expressed by authors
recommending methods for practitioners, e.g., Doan, Litterman, and Sims (1984),
West and Harrison (1989), Zellner and Min (1992).
In practice, it will often be the case that data will be explained not only in terms

of their own past, but also by covariates. Under some reasonable assumptions, we
can deal with this type of complication in our framework. Let us assume that our
data xn consist of two ‘components’ as in xn = �yn� zn� (again, yn and zn can take
values in arbitrary spaces). Suppose yn are the endogenous variables (i.e., the
variables we want to explain) and zn are the exogenous variables, i.e. the variables
we take as ‘given’. Then, our models will be constituted as conditional probability
measures explaining yn by zn�xn−1�    � x1, since we do not want to model the
exogenous variables. Such variables often reflect the outcome of governmental
or political decisions and, while these decisions influence economic variables, it
is usually not a feasible option to model these variables themselves (i.e., to make
distributional assumptions about them).
The formalized concepts of exogeneity discussed in Engle, Hendry, and

Richard (1983) have a long and successful tradition in econometrics and we are
able to apply them here. The key step is a formalization of the plausible assump-
tion that the endogenous variables can be modeled without the exogenous ones.
We therefore should have the following factorization:

p��xn�xn−1� = q��yn�zn�xn−1�f �zn�zn−1� xn−1��(6)
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wherein the density factorizes into the (parameterized) conditional density of
y and the conditional density for z. Since the exogenous variables should be
modeled without any reference to the model for the endogenous variables, their
conditional density is not dependent on the parameters needed to describe the
model for the endogenous ones.
Strictly speaking, we can think of (6) as a definition of exogenity (for a detailed

discussion we refer to the article cited above). So, assuming we have given our
parameterized family in terms of the conditional densities q��yn�zn�xn−1�, we
can define � ′

n−1 = �zn�xn−1� and the models as conditional probabilities from
� ′

n−1 to yn. Then, we can think of constructing models g�xn�xn−1� for the whole
process x by modeling the conditional distribution of yn given $zn�xn−1% and
the conditional distribution of the zn component by its true density f . These
models depend on the ‘true’ (and unknown) density for the exogenous variables,
but it only influences them (and not the endogenous component y). Moreover,
since we do not want to predict the z component, the unknown character of
the true density is of no importance to us. It is easily seen that, in the density
ratios dG/dP�, this—unknown—density cancels out. Therefore, we may, without
a limitation in generality, assume that �n−1 = �xn−1�, and, consequently, we are
able to assume that our likelihoods are of the form

logp��xn�    � x1� =
n∑

i=1
logq��yn�zn�xn−1��(7)

3� a proximity theorem for empirical models

This section lays out our main proximity theorem for empirical models, dis-
cusses some of its implications and provides an extension to the case where the
model class may be misspecified. Let �&��� be the measurable space on which
the observed processes are defined and to which the probability measure P� is
attached. Of central importance to our development will be an augmented space
&∗ together with a -algebra �∗, which are defined as follows.

Definition 1: Let &∗ = � × & and let �∗ be the corresponding product
-algebra of the Borel field of � and �. Analogously, let �∗

n be the product
-algebra of the Borel fields of � with �n.

This augmented space has some interesting properties. In particular, we can,
for fixed � ∈�, extend the probability measures P� to &∗ by defining P��A×B�=
IA���P��B� for A ⊂ �, B ∈ � and then use standard measure theory to extend
it to the whole product -algebra. (Here, IA�·� is the indicator function of the
set A.)

&∗ consists of pairs (��)), where � ∈ �. We now consider the random vari-
able (i.e., the mapping) attaching to each pair its first component, which we
will denote for notational convenience by �, too. This random variable can
be understood as the ‘true’ parameter, because the distribution of this ran-
dom variable under the measure P� is trivial, viz., P��$���)� * ) ∈ &%� = 1 and
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P��$�+�)� * + ∈ ��+ �= �%� = 0. This concept of a ‘true’ parameter, also makes
sense for probability measures outside the set $P�%.
We can also extend the Bayesian mixture (1) to this probability space. Define

for A ⊂ �, B ∈ � the measure P�A×B� = ∫
A

����P��B�d� and then extend the
measure to �∗. Restricting this measure to � one easily sees that it is identical
to (1). In what follows, we often need to do probability calculations with the
measure P (for example, we may need to show that certain random quantities
are OP �1� as n →	) and this formulation will then be very useful. In a similar
way, we can extend an empirical model measure G, which is defined on �&���,
to �&∗��∗� by defining the extended measure as G�A×B� = ∫

A
����d� ·G�B�

for A ⊂ ��B ∈ �.
What is the advantage of this construction? Working with �×& as the basic

space enables us to consider the fundamental objects with which we work (e.g.,
likelihood processes), which are really continuous random fields indexed with �,
as simple random variables. Indeed, a random field Z� (indexed by �) is just a
family of measurable mappings from & into the real numbers. It is now an ele-
mentary task (if there exists a countable dense subset on �) to show that the
following statement holds. “For almost all ) ∈ &, the mapping � → Z��)� is
continuous” implies “the mapping ���)� → Z��)� is (almost surely equal to) a
measurable mapping.” In the sequel, we will use this construction without further
mentioning it. For most of the paper we will find this “random variable inter-
pretation” of the likelihood process is better suited to our purposes. So we will,
if not explicitly mentioned otherwise, assume that we are working on &∗ rather
than &.
Besides Assumption A0, our development relies on two ‘high-level’ assump-

tions, A1 and A2, that are given below. A1 simply guarantees that the informa-
tion (in all parametric directions) contained in our experiment diverges to infinity
when the sample size increases. This condition is the equivalent of a persistent
excitation condition in regression models. Assumption A2 postulates that there
are probability measures close to P�n� that, after we have ‘cut out’ small events,
have a density that is of the order of magnitude of �detBn����−1/2. The existence
of such a density in a very general class of econometric models is described in
Phillips and Ploberger (1992, 1996). As explained later in the proof of Theorem 2,
the measures Q

�.�
n can be constructed in such a way that for all A ∈ �∗

n we have
Q

�.�
n �A� = Pn�A∩Fn� = ∫

P��A∩Fn�����d� where Fn ∈ �∗
n is a sequence of sets

for which lim infn→	 P�Fn� > 1−. for arbitrarily small . > 0.

Assumption A1: 0min�Bn�→	 a.s. �P�� for n→	, where 0min�·� denotes the
smallest eigenvalue.

Assumption A2: For every . > 0 there exist measures Q
�.�
n on �∗

n for which the
following hold:
(i) lim supn→	 TV �Q

�.�
n �P �n��≤., where TV denotes the total variation (or vari-

ational distance) between the measures.
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(ii)
dQ

�.�
n

dP
�n�
�

√
detBn��� = OP �1� as n →	

on a sequence of sets Fn ∈ �∗
n for which lim infn→	 P�Fn� > 1−. for arbitrarily

small . > 0. That is, given 1 > 0 there exists an M1 such that

lim inf
n→	 P

(
Fn ∩

[
dQ

�.�
n

dP
�n�
�

√
detBn��� < M1

])
> 1−1�

where P is our extended measure on �∗
n.

Theorem 1: Let Assumptions A0, A1, and A2 hold and let G be an empirical
model. Then, for 	�� > 0 and for every compact set L of �, the Lebesgue measure of{

� * P�

([
− log

(
dG�n�

dP
�n�
�

)
≤ 1−�

2
logdetBn���

])
≥ 	

}
∩L(8)

converges to 0 as n →	.

Discussion

Theorem 1 is related to a result on minimal information loss in modelling that
was proved by Rissanen (1986, 1987). Rissanen showed that if the generating
mechanism for the data is a stationary process and some technical conditions are
fulfilled, then the Lebesgue measure of the set{

� * −E�

(
log

dG�n�

dP
�n�
�

)
≤ 1
2

k logn

}
(9)

converges to 0 for any choice of empirical model G�n�. This theorem showed that
whatever one’s model, one can approximate (with respect to KL distance) the
DGP of a stationary process no better on average than �1/2�k logn. Thus, outside
of a ‘small’ set of parameters we can get no closer to the truth than �1/2�k logn,
and the ‘volume’ of the set for which we can do better actually converges to zero.
Our result has a similar interpretation. Up to a ‘small’ exceptional set, the

empirical model G�n� cannot come nearer to the DGP than �1/2�log detBn as
shown in (8). Since G�n� is arbitrary, the result tells us that there is a bound
on how close any empirical model can come to the truth and that this bound
depends on the data through Bn. It may well therefore be path dependent, rather
than being reliant solely on the dimension, k, of the parameter space as (9). As
we discuss in Section 6, for many cases of importance in econometrics (notably,
models with trending data), the asymptotic behavior of logdetBn will be of the
form K logn with K > k, so that the effective dimension that appears in the
bound (8) exceeds the dimension of the parameter space.
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Not only is there a bound on how close we can come in empirical modelling
to the true DGP, but the bound is attainable. Indeed, Phillips (1996) and Phillips
and Ploberger (1996) show how to construct empirical models for which(

− log dG�n�

dP
�n�
�

)/
�log detBn� →P�

1
2

�(10)

These are formed by taking G�n� to be the Bayesian data measure P �n� for proper
Bayesian priors. Or, in the case of improper priors, the empirical models G�n�

may be obtained by taking the conditional Bayes measures, given some initial
(training) subsample of n0 observations. Empirical models that are asymptotically
equivalent can also be obtained by prequential methods, like those discussed in
Dawid (1984) and Phillips (1996).
Models that are ‘better’ than those that attain (10) must satisfy the inequality

defined by the event

An =
[(

− log dG�n�

dP
�n�
�

)/
�log detBn� ≤ 1−�

2

]
(11)

for some � > 0 at least somewhere in the probability space. However, if the
probability of the event An converges to zero, one cannot reasonably define G�n�

to be better because the sample space over which the inequality (11) holds has
negligible probability. Therefore, for a model to be essentially better, we must
postulate the existence of an 	 > 0 for which P��An�≥	, and then the probability
of events such as An is nonnegligible. What Theorem 1 tells us is that the set
of such essentially better models has Lebesgue measure zero in the parameter
space in Rk as n →	. In this well defined sense, we can generally expect to be
able to do no better in modeling the DGP than to use the Bayesian models P �n�.

Extension to Misspecified Models

The bound (8) is computed under the presumption that the true DGP belongs
to the specified class and the probability calculations are made correctly using P�.
The bounds therefore measure empirical limits in an ideal situation where the
formulated model class is correct. In practice, all formulated models are incorrect
and, in consequence, empirical models often tend to drift away from the data as
we extend them beyond the sample period. In such situations, it may seem natural
to expect errors of specification to become more important (eventually) than any
empirical limits on the data’s capacity to reproduce the DGP in a given class. Our
approach can be used to analyze such situations and this section outlines some
ideas about how this can be accomplished and gives some preliminary findings
that indicate our proximity bound has a wider range of application.
A classic form of misspecification arises when the chosen model has a param-

eter space whose dimension is set to be too small. If the misspecification is seri-
ous, then we would expect the omitted variable effects to show up in terms of
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systematic prediction errors. These effects will be manifest eventually in model
determination trials whenever consistent methods of model selection are used
and allowance is made for high dimensional choices. In particular, if the PIC
density (4) is used as a model selection criterion on a period by period basis and
the maximum allowable dimension is incremented as the sample size increases,
then PIC should choose the larger model whenever the extra terms are impor-
tant enough to improve predictions, since PIC has an asymptotic representation
as a prequential probability (Phillips (1996)). A more difficult issue, perhaps, in
model determination arises when the effects of including the additional regres-
sor are marginal. Both cases may be analyzed by our mathematical apparatus,
the latter by considering local alternatives.
The heuristic argument2 that follows shows that gross misspecification (when

taken in the context of the empirical models being considered, including those
with large numbers of parameters) must itself be bounded and, in particular,
must be only of the order of magnitude of our bound if the lower dimensional
model is selected. Consider a situation where the parameter space � =�m ⊂�kn

and the dimension kn is permitted to grow slowly with n. For any given n, we
may consider models with parameters �m ∈ �m and then model determination
criteria such as BIC or PIC rely on a penalized likelihood of the form

1
n
log �m

(
�̂m

n

)− f �m�n��(12)

where �m�·� is the likelihood with m parameters, �̂m
n is the maximum likelihood

estimate of �m, and f �m�n� is the penalty. If the criterion returns the lower
order model with � < m, then

1
n
log �m

(
�̂m

n

)− f �m�n� <
1
n
log ��

(
�̂�

n

)− f ���n��(13)

and, taking the likelihood to be smooth with second derivative matrix ��2��·�, (13)
can be approximated asymptotically by the corresponding inequality(

�̂m
n − �̂

�

n

)′[− 1
n

��2�
m

(
�̂m

n

)](
�̂m

n − �̂
�

n

)
< f �m�n�− f ���n��(14)

where �̂
�

n is �̂�
n packed with zeros in appropriate elements. (We leave aside here

issues relating to more complex normalization of ��2��·� than n−1.) The left side
of (14) can be interpreted as a type of Hausman statistic. If the larger model
is correct and under regularity conditions that ensure �̂m

n →a�s� �, the left side of
(14) is asymptotically

inf
��∈��

(
�−��

)′[− 1
n

��2�
m ���

](
�−��

)
�(15)

2 A rigorous development requires some extension of the asymptotic theory in Phillips and
Ploberger (1996) and Phillips (1996) to the case of misspecified models, allowing for normalizations
that include nonstationary data. Some

√
n asymptotics in a related situation for pseudo-Bayes pro-

cedures under possibly incorrect modeling are given in Bunke and Milhaud (1998).
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This means that a criterion will choose a model of smaller order � only when
the squared distance between the true parameter and the lower dimensional
manifold is smaller than the difference in the penalty. For most cases, like BIC
and PIC, this difference is of order O��logn�/n� and converges to zero. So,
in all of these cases the gross misspecification resulting from the choice of the
lower order model will be at most of the order of magnitude of the bound in
(8) and (33) standardized by n to accord with the form of (12). In short, when
‘good’ model determination criteria are employed and allowance is made for
expansion in the dimension of the parameter space as n increases, the effects of
errors of specification are no more important than the empirical limits on the
data’s capacity to reproduce the true DGP in a given model class. Also, it seems
inevitable that such criteria will lead to some ‘underfitting’ when the ‘information
distance’ (15) between the true DGP and the fitted model class is small enough.
Likewise, when the specification error is small (e.g., when the omitted variables

have coefficients that are local to zero) the bound in (8) continues to hold. In
particular, if the true parameter vector has the local form (again ignoring issues
relating to more complex normalization of ��2��·� than n−1)

�m = �� +hm
n

where hm
n = o�

√
�logn�/n�, then we have for any empirical model Gn

1
n
log

dGn

dP�m

= 1
n
log

dGn

dP��

+ 1
n
log

dP��

dP�m

and the second term on the right side can be shown by expansion to be of a
smaller order than our bound. According to our theory, the (negative of the)
first term on the right side is, for almost all ��, essentially bounded below as in
(8). Hence, for essentially all �m we cannot find a model better than one that
respects the bound given in (8).
The above arguments indicate that there is an interesting link between the

bound (8) and the order of magnitude of increments in the penalty function as
the dimension of the parameter space increases. We conjecture that it is possible
to extend these arguments to show that there is a certain ‘optimal’ property to
model selection using the PIC criterion.

4� sufficient conditions for assumption a2

As stated earlier, A2 is a ‘high-level’ assumption. This section reformulates
the assumption into more familiar terms and provides more primitive conditions
for its validity. In earlier work (Phillips and Ploberger (1996) the behavior of the
density of the Bayesian mixture measure (1) with respect to the true measure P�

was investigated. It was shown there that, for a rather wide class of economet-
ric models and under relatively weak regularity assumptions, the Bayesian data
density dP/dP� is asymptotically proportional to the PIC density (4). We utilize
these asymptotic results and some of the primitive conditions of that earlier work
in validating A2. We start with the following assumption.
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Assumption B0: Wn���= ��̂n−��′Bn�����̂n−��=OP�
�1� for Lebesgue almost

all � ∈ �.

This assumption is plausible and can be expected to hold under quite general
conditions. First, the statisticWn��� is analogous to a Wald statistic and forms the
basis of an asymptotic test that the parameter � takes on a certain value. Under
P�, it is reasonable to suppose that Wn��� = OP�

�1�, although the critical values
may well be nonstandard and, in some cases, even parameter dependent (this
means dependent on �, here, as there are no extra nuisance parameters in our
P�). Obviously, the condition is fulfilled in the ‘classical’ case of stationary time
series, but it has also been established in models with unit roots (Phillips and
Durlauf (1986)) and with unit roots and cointegration (Park and Phillips (1988,
1989)). Note that one obvious implication of Assumption B0 and the excitation
condition A1 is that �̂n →p ��P�� for Lebesgue-almost all � ∈ �. Thus, the MLE
is consistent almost everywhere (Lebesgue measure) in the parameter space.
Together with Assumption B0, the results from Phillips (1996) give sufficient

conditions (conditions C1–C7 in that paper) for A2 to hold. They cover almost
all ‘classical’ (i.e., asymptotically stationary) situations as well as cases with unit
roots and cointegration. We will, however, go one step further. Here we are not
so much interested in the data density itself; we only want to bound it from
above. We can therefore use more convenient conditions to assure this. Central to
our derivation is the assumption that the second derivative of the log likelihood
function is continuous in a neighborhood of �. Our main focus, in fact, is a small
shrinking neighborhood of �. In effect, the probability measures corresponding
to parameters in this neighborhood are contiguous to the original probability
measure. In the ‘classical’ case, these neighborhoods shrink with the order of
1/
√

n.

Assumption B1: The conditional log likelihood logp��xt��t−1� is twice contin-
uously differentiable (in �) and ��t��/�� is integrable, where �t��� = � logp��xt�
�t−1�/��, as before.

Under Assumption B1 and since ��t��/�� is integrable, we have

E�

(
��t��

��

∣∣∣∣�t−1

)
+E���t���

′
t� ���t−1� = 0�

Hence
∑

t≤n���t��/���+Bn��� is aP�-martingale.AsBn��� increasesmonotonically
and diverges (in view of A1), it is reasonable to assume that

∑
t≤n���t��/���+Bn���

is ‘small’ compared with Bn���, or, for each vector h,

∑
t≤n

h′ ��t��

d�
h+h′Bn���h = o�h′Bn���h��
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This requirement is a standard assumption in asymptotic theory, c.f. Hall and
Heyde (1980, Ch. 6.). In Phillips (1996) the requirement was assumed to hold
uniformly in h, i.e.

sup
�h�=1

∣∣∣∣∣
∑

t≤n h′ ��t��

��
h+h′Bn���h

h′Bn���h

∣∣∣∣∣= op�
�1��

Denote by �n��� the log likelihood function and by �
�1�
n ���, �

�2�
n ��� its first and

second �-derivatives. We reformulate the above requirement in the following
form.

Assumption B2: For Lebesgue-almost all � ∈ �,

sup
�h�=1

∣∣∣∣∣h′��2�
n ���h+h′Bn���h

h′Bn���h

∣∣∣∣∣→P�
0�

We also use another well-established asymptotic technique, namely the local
approximation of the log-likelihood with a quadratic over ‘shrinking’ neighbor-
hoods (c.f. Phillips (1996) and Kim (1994)). We have to be careful in making our
assumptions about this phenomenon, since we want to allow for generality and
are especially interested in cases where the information matrix (i.e., Bn���� is
neither asymptotically constant nor regular in the sense that its eigenvalues can
have different orders of magnitude. To accomplish this, let M > 0 and define the
following shrinking neighborhood system of �0

EM��0� = $� * ��0−��′Bn�����0−�� ≤ M%�

Assumption B3: For all M > 0,

sup
�h�=1� �∈EM ��0�

∣∣∣∣∣h′��2�
n ���h−h′��2�

n ��0�h

h′Bn��0�h

∣∣∣∣∣→P�0
0�

Finally, we add the following technical requirement on the space �.

Assumption B4: The boundary of � (i.e., the difference between its closure and
interior) has Lebesgue-measure zero.

We are now in a position to state our result. Theorem 2 gives sufficient con-
ditions for Assumption A2 to hold in terms of the more primitive assumptions
outlined above.

Theorem 2: Suppose Assumptions A0–A1 and B0–B4 are fulfilled with mea-
surable bounds.3 Then, Assumption A2 holds.

3 As in Lemma P-BD and Remark MB in the Appendix.
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5� gaussian models

In econometric practice, models with a conditional Gaussian distribution are
important and such models satisfy Assumption A2 under general conditions.
In particular, we need not limit ourselves to cases where the limiting distribu-
tion of the MLE is a mixture of Gaussian processes. For the theory to be useful
in econometric applications that include unit roots and cointegration, one has to
include models where the limiting distributions may involve diffusion processes.
To permit extensions to such situations, we do require some functional limit the-
ory to be fulfilled. But, the conditions are relatively mild and, as shown in Park
and Phillips (1988, 1989), they are fulfilled for all models of practical interest.
The model class to be considered is prescribed by the systems equation

yt = 9�:�xt +ut�(16)

where yt is a k-vector of endogenous variables, xt is an m-vector of exogenous
or predetermined (i.e., �t−1-measurable) variables, : is a parameter vector, and
ut =d iidN�0�=� where = = =�>�, i.e., we allow = to depend on a parameter
vector > that is to be estimated.
We assume the following:

Assumption C1: The parameter space � = $�:�>� * : ∈�1�> ∈�2% with �1 ⊂
��, �2 ⊂ �p, and both sets are open and their boundaries have Lebesgue measure
zero. Furthermore, the functions : → 9�:� and > → =�>� are twice continuously
differentiable. Moreover, =�>� is ( for Lebesgue-almost all >) nonsingular.

Assumption C2: Both parameters are locally identified, i.e., the first derivatives
of 9 and = (with respect to : and >) have maximal rank (i.e., � and p, respec-
tively).

Assumption C3: For Lebesgue almost all �, there exist orthogonal matri-
ces On = On��� and diagonal matrices Dn��� = Dn = diag�0i�n� such that
lim inf i�n 0i�n > 0, and the random variables

Wn = �1/
√

n�
∑
t≤n

D−1
n O′

nztu
′
t and An = �1/n�

∑
D−1

n O′
nztz

′
tOnD−1

n

converge jointly in distribution. In particular, �Wn�An� →d �W�A�, where W and
A are random elements and A is positive definite (almost surely P�).

Under these conditions, the following result validates our main proximity
theorem.

Theorem 3: If the model (16) satisfies Assumptions C1–C3, and all OP�

bounds are measurable in �, then Assumption A2 holds.

The proof of Theorem 3 involves several technical lemmas. These results and
the proof of the theorem are given in the Appendix.
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6� a proximity theorem for forecasts
from structural linear models

In this section we apply the above results to derive bounds for the quality of
the prediction in linear models. In particular, we seek to determine how close
to the optimal predictor we can get using empirical models, i.e. models in which
the parameters have been estimated. The analysis leads to a proximity theorem
that provides an explicit bound on forecasting capability.
We consider a standard linear econometric model of the form

@ yt = Bxt +ut(17)

where B and @ are the (partially unknown) parameter matrices, the k-vector
yt contains endogenous variables, and the h-vector xt consists of exogenous and
predetermined (i.e., �t−1-measurable) variables. So, @ is a k×k-matrix, and B is
a k×h-matrix. The set up includes traditional simultaneous equation models as
well as VAR models.
Let us assume that the ut are i.i.d N�0�=�4 and independent of xt . The con-

ditional Gaussian distribution of yt given �t−1 will be denoted by the measure
P�� t−1 = N�@ −1Bxt�=�, where � represents the unknown elements of the param-
eter matrices �B�@ �. If all the parameters were known, the best prediction for
yt would be

ỹt = @ −1Bxt�(18)

and the unavoidable error yt − ỹt = @ −1ut is distributed N�0�@ −1=−1@ −1�. In
general, however, one has to estimate the matrices B and @ . Therefore, it is not
possible to compute ỹt and, in practice, one has to use another predictor for
yt—say ŷt (generated, for instance, by plugging in estimates of B and @ in (18)).
For our analysis, we do not have to be concerned with how this prediction is
constructed, as long as it is �t−1-measurable.
Our object is to investigate the asymptotic behavior of the weighted forecast

mean square difference

An =
n∑

t=n0

$�yt − ŷt�
′=−1�yt − ŷt�− �yt − ỹt�

′=−1�yt − ỹt�%�(19)

where n0 is some point of initialization of the forecasts and where to simplify
notation in what follows we set n0= 1, with no loss of generality. In particular, we
will show that there exists a number K (depending on the degree of nonstation-
arity and the number of cointegrating relationships in xt) that has the property
that for Lebesgue almost all parameters and for all � > 0,

P��BAn ≤ �1−��K lognC� → 0�(20)

4 This distributional assumption may seem to be restrictive. However, we want to derive lower
bounds for the prediction error due to the fact that we have to estimate parameters and estimate
the optimal predictor. In general, one does maintain specific assumptions about the distribution of
the ut to obtain an optimal predictor. Our bounds are valid for all situations where Gaussian errors
are not excluded.
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This result shows the inherent advantage of the approach we are taking. Our
generalization of Rissanen’s theorem enables us to cover the case of prediction
errors when the regressors are nonstationary. Interestingly, as we will see, in
these cases something new happens. The additional errors do not follow the
classical (number of parameters) ∗ (logarithm of sample size) rule. Instead, in
our new rule, we have to multiply the number of parameters by an additional
factor that is essentially determined by the number and type of the trends in the
regressors. The new dimensionality factor K, which is made explicit in Theorem 4
below, introduces a new concept of the dimension of a model that is relevant in
nonstationary data environments.
Before formulating the prediction theorem we make our assumptions specific.

We assume that we have given a model of the form (17) and that the parameters
are certain coefficients of B and @ , with the remaining coefficients being known
by way of normalization and identifying restrictions.

Assumption D1: The parameter space is given by the elements Bi� j , �i� j� ∈ M1
and @i� j , �i� j� ∈ M2. All the other coordinates are known. Moreover, we assume
that M1 and M2 are such that all of the identification assumptions of the preceding
section are fulfilled.

The problem we are dealing with is just another formulation of the usual iden-
tification problem for structural models. In the notation of the previous section
9 = @ −1B and therefore

d9 =−@ −1d@ 9 +@ −1 dB�(21)

For our identification condition C2 to be fulfilled for Lebesgue almost all param-
eters it is well known that the following necessary and sufficient conditions must
be true.
1. @ is nonsingular for almost all parameters.
2. For each i such that 1≤ i≤k define index sets corresponding to the included

variables (or coefficients) as follows:

M1�i� = $j * �i� j� ∈ M1%�(22)

and

M2�i� = $j * �i� j� ∈ M2%�(23)

Then, for Lebesgue almost all parameters the following rank-condition holds:

R1: For all i such that 1≤ i ≤ k the set of h-vectors(24)
$ej * j ∈ M1�i�%∪$�j * j ∈ M2�i�% are linearly independent�

where the ej are h-vectors with all components zero except the jth component,
which is unity, and �j is the jth row of 9 .



646 w. ploberger and p. c. b. phillips

Assumption D2: Any linear combination of the components of xt is either sta-
tionary and ergodic or integrated of order one.5

Further, we define for all a ∈ �h the process et�a� to be either a′xt—if a′xt

is stationary—or Aa′xt = a′xt − a′xt−1— if a′xt is nonstationary. Then the pro-
cess et�a� is stationary in both cases.6 We can therefore (if we assume that the
processes are purely nondeterministic) apply Wold’s decomposition theorem and
conclude that

et�a� =
	∑

i=0
ciut−i = c�L�ut�(25)

where ut−i is white noise with variance 2a . Clearly, the constants ci as well as the
ut depend on a. Nevertheless, we can make the following assumption:

Assumption D3: For every a ∈ �h the process et�a� either is constant or in its
Wold-decomposition (25) the following holds true:

	∑
i=0

i
1
2 �ci� < 	�(26)

and

c�1� =
	∑

i=0
ci �= 0�(27)

Assumption D3 guarantees that the autocorrelations between the components
of et converge to zero fast enough to assure the continuity of the spectral density
of et . Further, for a �= 0, et�a� �= 0 and partial sums of the et�a� may be assumed
to satisfy a functional central limit theorem. That is, as a function of z, with
0≤ z ≤ 1, we have

1√
n

BnzC∑
t=1

et�a� →d c�1�aW�z��(28)

where W�z�, 0 ≤ z ≤ 1 is a standard Wiener process. The functional law (28) is
known to hold under (26) under quite weak conditions on ut (see Phillips and
Solo (1992)).
Moreover, it is easily seen that (27) guarantees the strict positivity of the long

term variance (i.e., c�1�22a > 0) and this implies that the variance of the non-
stationary linear combinations increases linearly with time. For this study, we

5 Following convention, a process is said to be integrated of order one, or I�1�, if its first difference
is stationary and has nonzero spectral density at the origin. The first difference is, in this event, said
to be I�0�.
6 The function a→ et�a� is discontinuous in some cases (e.g., if there are cointegrating relationships

present in the original process).
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restrict ourselves to ‘genuine’ I�1� processes and exclude processes that may be
fractionally integrated.
For the formulation of Theorem 4 below we need to introduce another con-

cept, which we call the total degree of integration. While it is easy to classify scalar
processes as trend stationary, I�1� or I�0�, this classification is, for our purposes,
too crude in the multivariate case, where there may be some trends and some unit
roots but not necessarily a full set of either. Heuristically, it seems reasonable to
think of a bivariate process (say) with two independent integrated processes as
being ‘more’ integrated than a bivariate process with one integrated component
and one stationary component. Similarly, a bivariate process composed of a ran-
dom walk and a random walk with drift would seem to have a ‘higher’ degree
of nonstationarity than two random walks. It turns out that this concept of the
degree of nonstationarity plays a major role in determining empirical limits on
forecasting ability. The following definition covers the most important situations
in practice. A more general analysis is given in the Appendix.

Definition 3: Let zt be a vector process satisfying Assumptions D1–D3.
Assume zt has nstat stationary components,7 ncoint cointegrating relationships, and
m components in total. Then, the ‘total degree of integration’ of zt (written as
TI�zt�) is defined as follows. If no component of zt contains a deterministic
trend, then

TI�zt� = �nstat +ncoint�+2�m− �nstat +ncoint���(29)

If at least one of the components of zt is stationary about a linear trend, then

TI�zt� = �nstat +ncoint −1�+2�m− �nstat +ncoint��+3�(30)

If at least one of the components of zt is an integrated process with drift, then

TI�zt� = �nstat +ncoint�+2�m−1− �nstat +ncoint��+3�(31)

In case (29), there are two elements in the sum comprising TI�zt�. To the
extent that TI�zt� differs from nstat +ncoint in (29), it measures how many lin-
early independent integrated components (or stochastic trends) are present in
zt . These components receive twice the weight of the stationary components. In
case (30) there are three summands: the final one is for the deterministic trend,
which receives three times the weight of the stationary elements; the penultimate
one is the number of independent integrated processes, which again receives a
weight of 2; and the first one is for the number of stationary components less
one for the trend stationary element that has already been included with the dif-
ferent weight of 3. In case (31) there are again three summands: the final one
is for the drift; the penultimate one is for the number of linearly independent

7 For convenience we also allow for constant components. The nonsingularity condition in Assump-
tion D2, however, restricts us to just one possible constant component.
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integrated components minus one for the drift; the first one is for the stationary
components.
As we will see, the total degree of integration index TI�·� also determines the

order of growth of the determinant of the information matrix associated with the
components of the variables xt that enter different equations of the model (17).
As such, it ends up playing an important role in determining the dimensionality
constant K in (20) and in the bounds of our proximity theorems.
It will be convenient in our following development to introduce some new

notation to enable us to work equation by equation. In particular, we define for
each i with 1 ≤ i ≤ k new processes r

�i�
t . The dimension of r

�i�
t is set as the sum

of the number of elements of M1�i� and M2�i� (defined in (22) and (23)). Then,
we define for each element of M1�i� and each element of M2�i� a component of
r

�i�
t as follows: for j ∈M1�i� we let the component equal �xt�j , the jth component
of xt , and for j ∈ M2�i� we let the component be �9xt�j , the jth component of
the vector 9xt .
Heuristically, this construction can be described in the following way. We con-

sider all the parameters to be estimated in equation i. For each parameter in B
we take the corresponding random variable as a component, and for each param-
eter in @ we take the corresponding component from the reduced form.
With this definition in hand, we can formulate our theorem on feasible empir-

ical limits to forecasting and proximity to the optimal predictor when there are
parameters to be estimated. The proof is lengthy and is in the Appendix.

Theorem 4: Suppose we have given a model (17) satisfying Assumptions
D1–D3. Fix = = E�utu

′
t�. Then, for all strictly positive 	 and � the Lebesgue mea-

sure of the set of parameters[
� = $�Bi� j � @k�h��i� j�∈M1 and �k�h�∈M2

% such that

P�BAn ≤ �1−��K lognC ≥ 	
]

converges to zero, where K =∑
i TI�r�i�

t � and the r
�i�
t are defined above.

Remark: In the case of univariate yt the assumption on = is harmless. It is
an easy consequence of the results from Phillips and Ploberger (1994) that the
bound is sharp, since the MLE of the coefficients does not depend on =. In the
multivariate case, we usually have no information about = and it will generally
affect the MLE. However, this fact does not make our bound any less valid. For,
even if one knew =, it would be impossible to get a better forecast! It does remain
to show that this bound is attainable—for some special cases, see Gerencser and
Rissanen (1992). The general nonstationary case is, to the best of our present
knowledge, still an open problem that is of obvious interest and importance. We
are optimistic that there will be a positive solution of the problem.
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7� illustration

We proceed to illustrate the proximity theorems by taking a simple example.
The design is the linear regression model

yt = �xt +ut� with ut ≡ iid N�0�1� �t = 1�    � n��(32)

in which � is the only unknown parameter. For alternate generating mechanisms
of xt we take the following five choices, representing an increasing degree of
nonstationarity: (i) the stationary autoregression xt = 	xt−1+�t , �t ≡ iidN�0�1�
with autoregressive coefficient 	= 0�5; (ii) the Gaussian random walk xt = xt−1+
�t , �t ≡ iidN�0�1� with x0= 0; (iii) and the three deterministic trends xt = t� t2� t3.
The dimensionality factor K in each of these cases is as follows: (i) K = 1; (ii)
K = 2; and (iii) K = 3�5�7 respectively for the three trends.
Using simulated data from (32) for sample sizes n = 10�11�    �100, we esti-

mate � by least squares, compute the forecast ŷn+1 = �̂nxn+1 and the optimal
forecast ỹn+1 = �xn+1 and the forecast divergence

An =
n∑

t=n0

{
�yt − ŷt�

2− �yt − ỹt�
2}

initialized at n0 = 10. From R = 10�000 replications of An we compute kernel
estimates of pdf �An� for n = 100 for the five choices of xt . Figure 1 graphs these
densities, showing clearly how the forecast divergence from the optimal predic-
tor increases with the nonstationarity of the regressor. Figure 2 graphs the cor-
responding densities of An/K logn, revealing how the factor K logn is effective
in standardizing the densities. We note from Figure 2 that there is greater dis-
persion, after standardization, in the stationary than in the nonstationary cases

Figure 1.—Probability densities of An.



650 w. ploberger and p. c. b. phillips

Figure 2.—Probability densities of An/K lnn.

with the least dispersion for An/K logn occurring in the case of the trend xt = t3.
Overall, the dimensionality constant K seems to work well in capturing the extent
of the forecast divergence in this model.
We also estimate the probability that An exceeds the proximity bound, viz.

Pn = P�BAn > �1−��K lognC��

This probability is independent of the parameter � since the distribution of An

clearly has this property in the present case. In view of (20) and Theorem 4, we
expect Pn → 1 as n → 	. The rate at which Pn → 1 is then of interest for the
models with different regressors. Figure 3 shows the simulation estimates of this
probability over the sample range n ∈ B10�100C. Interestingly for sample sizes less
than about n = 20, we see that forecasts from models that have deterministic
trends have a lower probability of exceeding the bound than forecasts from a sta-
tionary autoregression or random walk. However, for n larger than 20, forecasts
from models with deterministic trends have greater probabilities of exceeding the
bound and approach unity more quickly than those models with stationary and
random walk regressors. We might therefore infer that forecasts from models
with deterministic trends deteriorate as n increases relative to those from models
with stationary and random walk regressors.

8� conclusion

Theorem 1 and Rissanen’s result (9) justify a certain amount of skepticism
about models with large numbers of parameters. In the stationary case, it is rel-
atively easy to compare the ‘loss’ from parameter estimation in different param-
eter spaces. According to Rissanen’s result, the loss due to parameter estimation
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Figure 3.—Simulation estimates of PBAn ≥ �1−��K lognC.

is essentially determined by the dimension of the parameter space. In this case,
the minimum achievable distance of an empirical model to the DGP increases lin-
early with the number of parameters. In the presence of nonstationarities, how-
ever, the situation changes. It is not the dimension of the parameter space that
determines the distance of the model to the true DGP, but the order of mag-
nitude of the sample Fisher information matrix. All the commonly arising cases
lead to asymptotic expressions of the form

logdetBn ∼
( k∑

i=1
	i

)
logn(33)

for the sample information and 	i � 1 with inequality occurring for at least one
element i. In particular, 	i = 2 for stochastic trends and 	i = 3 for a linear deter-
ministic trend. In such cases, the distance of the empirical model to the DGP
increases faster than in the traditional case. In effect, when nonstationary regres-
sors are present, our proximity bound suggests that it is even more important to
keep the model as simple as possible. An additional stochastic trend in a linear
regression model will be twice as expensive as a stationary regressor in terms of
the marginal increase in the nearest possible distance to the DGP and a linear
trend three times more expensive. Although nonstationary regressors embody a
powerful signal and have estimated coefficients that display faster rates of con-
vergence than those of stationary regressors, they can also be powerfully wrong
in prediction when inappropriate and so the loss from including nonstationary
regressors is correspondingly higher. Of course, the loss from inappropriately
excluding such terms can also be high, and in such cases of misspecification, our
proximity bounds continue to apply. Indeed, if the omitted terms have effects
that exceed our bounds then the terms will be incorporated in the model by
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virtue of the PIC model determination criterion. The quantitative form of the
proximity bound shows that in a very real sense true DGP turns out to be more
elusive when there is nonstationarity in the data.
The above remarks apply irrespective of the modelling methodology that is

involved. Neither Bayesian nor classical techniques can overcome the bound on
empirical modelling. The bound can be improved only in ‘special’ situations, like
those where we have extra information about the true DGP and do not have
to estimate all the parameters. For instance, we may ‘know’ that there is a unit
root in the model, or by divine inspiration we may hit upon the right value of a
parameter and decide not to estimate it. The proximity bound also holds under
gross and local model misspecification provided ‘good’ model selection criteria
such as BIC or PIC are used on a period by period basis in determining the
empirical model.
As we have seen, these results that delimit the achievable proximity to the

true DGP in empirical modelling have counterparts in terms of the capacity of
empirical models to capture the good properties of the optimal predictor (i.e.
the predictor that uses knowledge of the DGP and, in particular, the values of
its parameters). Increasing the dimension of the parameter space carries a price
in terms of the quantitative bound of how close we can come to replicating the
optimal predictor. Furthermore, this price goes up when we have trending data
and when we use trending regressors.
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APPENDIX

A� Proof of Theorem 1

Let G be any empirical model measure. As discussed in Section 3, if the measure is defined on
�&���, it can be easily extended to �&∗��∗� by defining G�A×B� = ∫

A
����d� ·G�B� for A ⊂ �,

B ⊂ &. Analogously, we can extend the Q
�.�
n to �∗

n , too. To simplify notation, we just denote these
extensions by Q

�.�
n as well. Then Q

�.�
n �A×B� = ∫

A
����d� ·Q�.�

n �B� for A ⊂ �, B ⊂ &.
We have to show that for all 	�� > 0 and all compact L

0

({
� ∈ L * P�

[
log

(
dG�n�

dP
�n�
�

)
≥−1−�

2
logdetBn���

]
≥ 	

})
→ 0�

where 0�·� is Lebesgue measure on �.
Choose 	�� > 0 and fix a compact L. Define the sets

Cn =
{

� ∈ L * P�

[
log

(
dG�n�

dP
�n�
�

)
≥−1−�

2
logdetBn���

]
≥ 	

}
�
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and

@n =
{

���)� * � ∈ Cn� and log

(
dG�n�

dP
�n�
�

�)�

)
≥−1−�

2
logdetBn����)�

}
�

Then, with �0�L� = inf�∈L ���� > 0 we have

P�@n� =
∫

Cn

P��@n�����d� ≥ 	 ·�0�L� ·0�Cn��

Therefore, for the theorem to hold it is sufficient to show that P�@n� → 0. This assertion follows by
showing, as we do below, that for an arbitrary . > 0 we have lim supn→	 Q

�.�
n �@n� ≤ 7.. Then, A2(i)

gives the required result for P�@n�.
First, Assumption A2(ii) guarantees that

dQ
�.�
n

dP
�n�
�

√
detBn���

remains OP �1�. Therefore, there exists an M2 = M2�.� for which, with

K1�n =
[

dQ
�.�
n

dP
�n�
�

√
detBn��� ≤ M2

]
�

we have P�K1�n� ≥ 1−.. As lim supn→	 T V �P �n��Q
�.�
n � ≤ ., there exists an N1 = N1�.� such that for

n ≥ N1, �P�K1�n�−Q
�.�
n �K1�n�� < 2. and, consequently, Q

�.�
n �K1�n� ≥ 1−3..

By Assumption A1, detBn →	. Therefore, there exists an N2 = N2�.� such that, with

K2�n =
[
�detBn��/2 ≥ 1

.
M2

]
�

and � > 0 arbitrary, P�K2�n�≥ 1−.. We can, without loss of generality, choose N2 ≥N1, and therefore
Q

�.�
n �K2�n� ≥ 1−3..
It is now sufficient to show that lim supn→	 Q

�.�
n �@n ∩K1�n ∩K2�n� ≤ .. Let ���)� ∈ @n ∩K1�n ∩K2�n

and let n ≥max�N1�N2�. Since ���)� ∈ @n, we have

dG�n�

dP
�n�
�

�)� ≥√
�detBn�����−1�)�

and, since ) ∈ K1�n ∩K2�n,

dP
�n�
�

dQ
�.�
n

�)� = 1
dQ

�.�
n

dP
�n�
�

�)�

≥ 1
M2

√
detBn����)��

So, on @n ∩K1�n ∩K2�n we have

dG�n�

dQ
�.�
n

�)� = dG�n�

dP
�n�
�

�)� · dP
�n�
�

dQ
�.�
n

�)� ≥ 1
M2

�detBn��/2 ≥ 1
.

�

Hence,

1≥ G�n��@n ∩K1�n ∩K2�n�(34)

≥
∫

@n∩K1�n∩K2�n

dG�n�

dP
�n�
�

· dP
�n�
�

dQ
�.�
n

·dQ�.�
n ����d�

≥ Q
�.�
n �@n ∩K1�n ∩K2�n�

.
�
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Setting Kn = K1�n ∩K2�n and letting Kc
n be the complement of Kn, we have

Q�.�
n �@n� = Q�.�

n �@n ∩Kn�+Q�.�
n �@n ∩Kc

n�

≤ Q�.�
n �@n ∩Kn�+Q�.�

n �Kc
n�

≤ .+6.�

which delivers the required result. Q.E.D.

Remark: In the inequality (34), the “≥” must not be replaced by an “=”, as it may be possible
that G�n� is not absolutely continuous with respect to P

�n�
� , in which case dG�n�/dP

�n�
� is the absolutely

continuous part of G�n� only.

B� Proof of Theorem 2

Before proving Theorem 2, we give two technical lemmas and a definition that are useful in what
follows. The first lemma provides a formula for a restricted Radon Nikodym density in terms of
mixture densities.

Lemma RRN: Suppose we define for every set F ∈ �∗
n the measure �F by �F �A� = P�A∩F � and

let LF be its restriction to �n. Then

dLF

dP
�n�
�0

=
∫

�
IF ���

dP�

dP�0

����d��(35)

Proof: Use a monotone class argument. Evidently, the lemma is valid for all sets

F = B×C� B ⊂ �� C ⊂ &�(36)

Moreover, if it is true for sets F ′, F ′′ with F ′ ⊂ F ′′, then it is valid for F ′′ −F ′, too. Furthermore,
if the relationship is true for a monotone increasing sequence of events Fk, k = 1�2�    , then it
is true for its limit also. Therefore, the set of all sets F for which the lemma is true is a Dynkin-
system generated by the sets (36). As this generating set is ∩-stable, the Dynkin system is the whole
-algebra, which proves the lemma. Q.E.D.

The second lemma gives us a useful technique for converting OP�
bounds into OP bounds. This

lemma is of some independent interest and is relevant, for example, whenever asymptotic analysis
under the Bayesian measure P is being considered.

Lemma P-BD: Suppose we are given two sequences of processes En��� and Fn���, for which En���=
OP�

�Fn����, for Lebesgue almost all � ∈ �. Moreover, given � > 0 and

M����� < 	(37)

for which

P�

[∣∣∣∣En���

Fn���

∣∣∣∣≥ M�����

]
≤ ��(38)

almost everywhere in �, it is further assumed that the bounding quantity M����� is measurable in �. Then

En��� = OP �Fn�����(39)

where P = ∫
P�����d� is the mixture measure (1) and ��·� is a proper prior distribution on � with∫

����d� = 1.
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Proof: In view of (37) we can write � =⋃
k∈N $� * M����� < k%, at least up to a set of Lebesgue

measure zero in �k. Hence, by virtue of the integrability of ��·�, we have
lim
k→	

∫
$�*M�����≥k%

P�����d� = lim
k→	

PBM����� ≥ kC = 0�

For the last equation above, observe that � and M����� are random variables, the latter due to the
measurability assumption on M�����.
It follows that for all � > 0 we can find a K��� so that

PBM����� ≥ K���C < ��(40)

To demonstrate (39) it is sufficient to show that for all � > 0

P

[∣∣∣∣En���

Fn���

∣∣∣∣≥ K���

]
≤ 2��(41)

To show (41) holds, write[∣∣∣∣En���

Fn���

∣∣∣∣≥ K���

]
⊆
([∣∣∣∣En���

Fn���

∣∣∣∣≥ M�����

]
∩ BM����� < K���C

)
∪ BM����� ≥ K���C�(42)

Then, in view of the construction of K��� in (40), the probability of the second event BM����� ≥
K���C in (42) is ≤�, whereas for the first event we have

P

([∣∣∣∣En���

Fn���

∣∣∣∣≥ M�����

]
∩ BM����� < K���C

)

=
∫

P�

([∣∣∣∣En���

Fn���

∣∣∣∣≥ M�����

]
∩ BM����� < K���C

)
����d�

=
∫

BM�����<K���C
P�

([∣∣∣∣En���

Fn���

∣∣∣∣≥ M�����

])
����d�

≤ �
∫

����d� = ��

where we use the fact that (38) holds for Lebesgue almost all � by assumption. Summing these
probabilities gives (41), and the result follows. Q.E.D.

Remark MB: The measurability assumption in Lemma P-BD seems quite mild and facilitates
the conversion of P� probabilities of bounding events into P probabilities. When we require this
measurability assumption in the future, we will simply say “with measurable bounds.” An alternative
approach would be to assume directly that the OP�

bounds hold uniformly in �, which is a more
severe restriction and one that may be violated in some cases where limit distributions do not occur
uniformly in the parameter space, as happens in some time series situations like those involving unit
roots.

In the proof of Theorem 2 (and some of our later derivations), we have occasion to deal with
inequalities between random variables defined on our augmented space �×& which are not valid
for all elements of �×&. In such cases the following definition is useful.

Definition 2: Given random variables X1, X2 on �×&, we say that

X1 ≤ X2 on a set F

if and only if

IF X1 ≤ IF X2�

We are now in a position to prove Theorem 2.
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Proof of Theorem 2: We need to show that for every . > 0 we can approximate P �n� by
measures Q

�.�
n in such a way that A2 holds, viz.,

(i) lim supn→	 T V �P �n��Q
�.�
n � ≤ ., and

(ii) �dQ
�.�
n /dP

�n�
� �

√
detBn��� remains OP �1� at least on a sequence of sets Fn ∈ �∗

n for which
lim infn→	 P�Fn� > 1−. for arbitrarily small . > 0. That is, given 1 > 0 there exists an M1 for which

lim inf
n→	

P

(
Fn ∩

[
dQ

�.�
n

dP
�n�
�

√
detBn��� < M1

])
> 1−1�

Choose . > 0. Then, in view of B0 we can find M = M�.� so that

lim inf
n→	

P
([

�̂n ∈ EM ���
])≥ 1−.�

Define the events F
�i�

n ∈ �∗
n , i = 1�2�3�4, as follows:

F �1�
n = [

�̂n ∈ EM ���
]∩ BE2M ��� ⊂ �C�(43)

F �2�
n = [−(�− �̂n

)′
��2�

n

(
�̂n

)(
�− �̂n

)≤ 4M]
�(44)

F �3�
n =

[
sup

�h�=1�+∈EM ���

∣∣∣∣∣h′��2�
n �+�h−h′��2�

n ���h

h′Bn���h

∣∣∣∣∣ <
1
16

]
�(45)

F �4�
n =

[
sup
�h�=1

∣∣∣∣∣h′��2�
n ���h+h′Bn���h

h′Bn���h

∣∣∣∣∣ <
1
16

]
�(46)

and then set Fn = F
�1�

n ∩F
�2�

n ∩F
�3�

n ∩F
�4�

n . It is apparent that Fn ∈ �∗
n (and the same applies for F

�i�
n ,

i = 1�2�3�4). It is important to understand that these sets are all subsets of �×&.
Assumptions B2 and B3 imply that limn→� P�F

�3�
n ∩ F

�4�
n � = 1. From the defining properties of

the F
�i�

n and EM ��� it can easily be seen that F
�1�

n ∩F
�3�

n ∩F
�4�

n ⊂ F
�2�

n ∩F
�3�

n ∩F
�4�

n . Therefore,

lim inf
n→	

P�Fn� ≥ lim inf
n→	

P
(
F �1�

n ∩F �3�
n ∩F �4�

n

)≥ lim inf
n→	

P
(
F �1�

n

)≥ 1−.�

Assumption B4 guarantees that limn→	 PBE2M ��� ⊂ �C = 1.
Now define the measure R

�.�
n on �∗

n by R
�.�
n �A� = P�Fn ∩ A� and let Q

�.�
n be its restriction

on �n. Then T V �P �n��Q
�.�
n � ≤ T V �P ��∗

n�R
�.�
n � = 1−P�Fn�, which shows that the first requirement of

Assumption A2 is fulfilled.
For the second part of A2, we have to compute �dQ

�.�
n /dP

�n�
� �. In the proof that follows, we will

use the fact that the Q
�.�
n are restrictions of the measures R

�.�
n . For all A ∈ �n we have Q

�.�
n �A� =

R
�.�
n �A� = P�A∩Fn� = ∫

P��A∩Fn�����d�. From this representation, the density can be computed
easily by using (35) from Lemma RRN. In particular, for a given � ∈ �, we have

dQ
�.�
n

dP
�n�
�

=
∫

�
IFn

�+� ·� dP
�n�
+

dP
�n�
�

��+�d+�

We now need to show that for ��� ·� on Fn√
detBn���

∫
�

IFn
�+� ·� pn�+�

pn���
��+�d+ = OP �1�� as n →	�(47)

where pn�+� = dP
�n�
+ /d� is the density of P

�n�
+ and, similarly, pn���. For IFn

�+� ·� to be nonzero, it
follows from the construction of the set Fn = F

�1�
n ∩F

�2�
n ∩F

�3�
n ∩F

�4�
n that

−(+ − �̂n

)′
��2�

n

(
�̂n

)(
+ − �̂n

)≤ 4M�

which allows us to restrict the domain of integration accordingly.
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It is easily seen from the definitions of F
�3�

n ∩F
�4�

n and F
�1�

n that on Fn

Bn��� ≤ 4(−��2�
n

(
�̂n

))
(48)

(in the usual partial ordering of nonnegative definite matrices), so that

detBn��� ≤ det(4(−��2�
n ��̂n

)))
�(49)

Both (48) and (49) should be understood as inequalities between random variables defined on �×&.
Thus, (48) means that if �)��� ∈ Fn, then Bn����)� ≤ 4�−�

�2�
n ��̂n���)�.

Moreover, we can use (43)–(46) to derive approximations for the second derivative of the log-
likelihood. In particular, on Fn we have

sup
�h�=1�+∈E4M ���

∣∣∣∣∣h′��2�
n �+�h−h′��2�

n ���h

h′Bn���h

∣∣∣∣∣≤ 1
16

�

and, as �̂n ∈ EM ���, we also have

sup
�h�=1�+∈EM ���

∈
∣∣∣∣∣h′��2�

n �+�h−h′��2�
n ��̂n�h

h′Bn���h

∣∣∣∣∣≤ 18 �

and, therefore, (using (48)) on Fn

sup
�h�=1�+∈EM ���

∣∣∣∣∣h′��2�
n �+�h−h′��2�

n ��̂n�h

h′��2�
n ��̂n�h

∣∣∣∣∣≤ 1
2

�

We may conclude that for + ∈ EM ���, and all vectors h, we have on Fn

1
2

h′��2�
n

(
�̂n

)
h ≤ h′��2�

n �+�h ≤ 3
2

h′��2�
n

(
�̂n

)
h�

As EM ��� is convex, we can use the Taylor expansion to conclude that for + ∈ EM ��� on Fn

�n�+� ≤ �n

(
�̂n

)+ 1
4

�+ −��′��2�
n

(
�̂n

)
�+ −���

and

�n

(
�̂n

)≤ �n���− 3
4

(
�̂n −�

)′
��2�

n

(
�̂n

)(
�̂n −�

)
�

As �dP
�n�
+ /dP

�n�
� � = exp��n�+�−�n����, we therefore have the following inequality on Fn:

dP
�n�
+

dP
�n�
�

≤ exp
(
1
4

�+ −��′��2�
n

(
�̂n

)
�+ −��

)
exp

(
−3
4

(
�̂n −�

)′
��2�

n

(
�̂n

)(
�̂n −�

))
�

Let �n = sup�∈E4M
����. Then

∫ dP
�n�
+

dP
�n�
�

��+�d+(50)

≤ exp
(
−3
4

(
�̂n −�

)′
��2�

n

(
�̂n

)(
�̂n −�

))∫
exp

(
1
4

�+ −��′��2�
n

(
�̂n

)
�+ −��

)
d+�n�

The first factor in (50) is OP�
�1� for Lebesgue-almost all � due to Assumptions B0 and B2. It follows

from Lemma P-BD and the measurability of the bound that this first factor on the right side of

(50) is also OP �1� as n → 	. The second factor of (50) equals C/

√
det�−�

�2�
n ��̂n��, where C is a

universal normalizing factor depending only on the dimension of �. Inequality (49) shows that, on
Fn, det�−�

�2�
n ��̂n�� ≥ Const ·detBn���, which proves (47) and then A2(ii) is established. Q.E.D.
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C� Proof of Theorem 3

The proof of Theorem 3 will be developed using a series of lemmas and propositions, whose
proofs will be given as we go along. As in Theorem 1 and 2, it is helpful to ‘cut out’ events with
small probabilities and in doing so it is convenient to use the notation introduced in Definition 2. It
is also convenient to define H�>� = =�>�−1, and then the log likelihood function for model (16) can
be expressed as

�n�:�>� = n

2
logdetH�>�− 1

2

∑
t≤n

�yt −9�:�zt�
′H�>��yt −9�:�zt��

Some elementary calculations yield the following results about the conditional quadratic variation
matrix Bn in this case.

Lemma A1:
(i) Bn is block-diagonal:

Bn =
(

B
�:�
n 0
0 B

�>�
n

)
O

(ii) limn→	�1/n�B
�>�
n is constant, nonsingular and a continuous function of H�>� =∑

�>�−1.
(iii) �B�:��i� j = tr�

∑
t≤n ztz

′
t · ��9 ′/��i�H��9/��j��.

In the sequel, we often use bounds for matrix products of the form tr�AB� and the following
result, whose proof is straightforward, is a useful tool.

Lemma A2: Let A, B, C be nonnegative definite matrices with B ≤ C. Then tr�AB� ≤ tr�AC�.

Using the notation of C3, define the matrices Sn and Qn by Sn = On�Dn ·Dn�O′
n and �Qn�i� j =

n · tr�Sn��9 ′/��i���9/��j��.

Lemma A3: For every . > 0 there exist a�.�, A�.� > 0 for which

P
[
a�.�Qn ≤ B�:�

n ≤ A�.�Qn

]≥ 1−.�

Proof: From Assumption C3, we may conclude that for every . > 0 there exist c�.�, C�.� > 0,
such that with

Kn =
[
c�.�I ≤ 1

n

∑
D−1

n O′
nztz

′
tOnD−1

n ≤ C�.�I

]
�

we have P�Kn� ≥ 1−./2. Then, on Kn, c�.�Sn ≤ �1/n�
∑

ztz
′
t ≤ C�.�Sn.

Let h ∈ Rm. Then, from Lemma A1,

h′Bnh = tr
((∑

t

ztz
′
t

)(∑
i� j

hihj

�9 ′

��i

H
�9

��j

))
�

and Lemma A2 shows that on Kn

c�.� · tr
[
Sn

(
=ihihj

�9 ′

��i

H
�9

��j

)]
≤ h′Bnh ≤ C�.� · tr

[
Sn

(
=i� jhihj

�9 ′

��i

H
�9

��j

)]
�

So, defining

�Vn�i� j = tr
(

Sn

�9 ′

��i

H
�9

��j

)
= tr

(
�9

��j

Sn

�9 ′

��i

H

)
�
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we can rewrite the above inequalities as

c�.�Vn ≤ Bn ≤ C�.�Vn�(51)

By the regularity property of the prior distribution we can find a compact G ⊂ �2 so that =�>�
is nonsingular for > ∈ G and PB> ∈ GC ≥ 1−./2. Consequently, we can find h0, H0 so that h0I ≤
H�>�≤H0I . Analogous to the proof of (51) above, we can then show that h0Qn ≤Vn ≤H0Qn, which,
together with (51), proves the Lemma. Q.E.D.

Lemma A4: det�Bn�:�>�� = OP �n�np det�Qn��.

Proof: Since det�Bn� = det�B�:�
n �det�B�>�

n �, the second proposition of Lemma A1 implies
that det�B�>�

n � = O�np�. Lemma A3 shows that det�B�:�
n � = OP �n� det�Qn��, and, the result

follows. Q.E.D.

The proof of Theorem 3 now proceeds in an analogous way to the proof of Theorem 2. For every
. > 0 we will construct events Cn = Cn�.� ∈ �∗

n with lim inf P�Cn� ≥ 1−., define the approximating
measures Qn = Q

�.�
n by Qn�A� = P�A∩Cn�, and then make use of Lemma RRN to give the density

dQ
�.�
n

dP
�n�

�:�>�

=
∫

�
1Cn

��R�S�� ·� dP�R�S�

dP�:�>�

��R�S�dRdS�

We will show that, on the event Cn (or, to be precise, if 1Cn
��R�S�� ·� is not identically zero) and

using Kn to denote random variables that remain OP �1�,

log
dP�R�S�

dP�:�>�

≤ Kn�(52)

and, with 0 denoting the Lebesgue-measure on the appropriate spaces,

0
({

R * 1Cn
��R�S�� ·� �= 0})≤ Kn√

n� det�Qn�
�(53)

0
({

S * ICn
��R�S�� ·� �= 0})≤ Kn√

np
�(54)

The required result then follows from these bounds.
To start, we write the log likelihood function as

��R�S� = n

2
logdetH�p�− 1

2

∑
�yt −9�R�zt�

′H�S��yt −9�R�zt��

Setting ut = yt −9�:�zt , H0 = H�>�, A�S� = 9�:�−9�S�, we have

��R�S�−��:�>� = n

2
�log detH�S�− log detH�>��− 1

2
tr��=utu

′
t��H�S�−H�>���

− 1
2

=�u′
tH�S�A�S�zt +z′

tA�S�′H�S�ut�

− 1
2

=z′
tA�S�′H�S�A�S�zt�

For (52) to hold, we need to show that this difference in the likelihoods remains bounded in
probability. As we only need to give upper bounds for these terms, we only have to deal with the
first two summands on the right side. This is accomplished in the two propositions that follow.
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Proposition A5: For every . > 0 there exists a sequence C
�1�
n = C

�1�
n �.� of events so that

lim inf P�C
�1�
n � ≥ 1−. and the following property holds: if 1

C
�1�
n

��R�S�� ·� is not identically zero, then

n

2
�log detH�S�− log detH�>��− 1

2
tr��=utu

′
t��H�S�−H�>��� ≤ Ln

where the Ln ( for each fixed .) are OP �1� random variables.

Proposition A6: For every . > 0 there exists a sequence C
�2�
n = C

�2�
n �.� of events so that

lim inf P�C
�2�
n � ≥ 1−. and the following property holds: if 1

C
�2�
n

��R�S�� ·� is not identically zero, then∣∣∣∣− 12=�u′
tH�S�A�R�+A�R�′H�S�ut�

∣∣∣∣≤ Ln

where Ln are OP �1� random variables.

Analogous to the proof of Theorem 2, we will “cut out” all parameters “far away” from �:�>�.
Consider the OLS-estimator for 9 and =, viz., 9̂n = �=ytz

′
t��=ztz

′
t�

−1 and =̂n = �1/n�=�yt −
9̂nzt��yt − 9̂nzt�

′. We will use the following properties of these estimates.

Proposition A7:
√

n
(
9̂n −9�:�

)
O′

nDn�

√
n
(
=̂n −=�>�

)
�

and
√

n

(
=̂n −

1
n

∑
utu

′
t

)
remain OP �1� as n →	.

Proof of Proposition A7: Since 9̂n − 9�:� = �=utz
′
t��=ztz

′
t�

−1, it is easily seen from
Assumption C3 that

√
n�9̂n −9�:��O′

nDn converges in distribution to WA−1, which proves the first
statement in view of Lemma P-BD. For the second, observe that

=̂n −= =
(
1
n

=utu
′
t −=

)
+2 · 1√

n

(
9̂n −9�:�

)
OnDn

(
D−1

n O′
n

) 1√
n

=ztu
′
t

+ (
9̂n −9�:�

)
OnDn

{(
D−1

n O′
n

)( 1
n

=ztz
′
t

)(
OnD−1

n

)}
DnO′

n

(
9̂n −9�:�

)′
�

C3 and the first result of this lemma now show that the second and the third statements of the lemma
hold, again in view of Lemma P-BD. Q.E.D.

Proof of Proposition A6: Fix . > 0. Then we can find M = M�.� so that P�C ′
n� > 1−./2

and P�C ′′
n � > 1−./2 with C ′

n = B�√n�9̂n −9�OnDn� < MC and C ′′
n = B�H� < MC. Define C

�2�
n as

C ′
n ∩C ′′

n . Then

=�u′
tH�S�A�R�zt +z′

tA�R�′H�S�ut�=2tr
({

D−1
n O′

n�=ztu
′
t�
}
H�S�

{(
9̂n−9�:�

)
OnDn

})
+2tr({D−1

n O′
n�=ztu

′
t�
}
H�S�

{(
9�R�−9̂n

)
OnDn

})
�

Now analyze the two summands on the right-hand side of this equation. Each of these is a trace of a
product of three (random) matrices. The first factor is a random matrix that converges in distribution.
The norm of the second is, provided 1

C
�2�
n

��R�S�� ·� is not identically zero, dominated by M . Due

to the construction of C
�2�
n , the same applies to the third factor of the second sum. The third factor

in the first sum is the product of random matrices that converge in distribution to WA−1. Applying
Lemma P-BD completes the proof. Q.E.D.
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Proof of Proposition A5: Proposition A5 can be proven in a similar manner. Let Ĥn = =̂−1
n

and write

√
n
1
2

�log detH�S�− log detH�>��− 1
2
tr
(
1
n

�=utu
′
t��H�S�−H�>��

)
(55)

=√
n

{
1
2

(
log detH�S�− log det Ĥn

)− 1
2
tr
(
Ĥ−1

n �H�S�− Ĥn�
)}

+√
n

{
1
2

�log det Ĥn − log detH�>��− 1
2
tr
(
Ĥ−1

n

(
Ĥn −H�>�

))}
+√

n

{
1
2
tr
((

Ĥ−1
n − 1

n
�=utu

′
t�

)(
H�S�− Ĥn

))}
+√

n

{
1
2
tr
((

Ĥ−1
n − 1

n
�=utu

′
t�

)(
H�>�− Ĥn

))}
�

Deal with each of the four terms (in braces) on the right-hand side separately. Choose an arbitrary
. > 0. Then we can find M = M�.� so that, with C

�1�
n = B�Ĥn −H� ≤ M/

√
nC, P�C

�1�
n � ≥ 1−.. Then

Proposition A7 immediately shows that the fourth term converges to zero and the third term is
dominated on C

�1�
n by

sup
$S*1

C
�1�
n

�S� ·��=0%

√
n

{
1
2
tr
((

Ĥn −
1
n

�=utu
′
t�

)(
H�S�− Ĥn

))}→ 0�

as the first factor within the trace converges to zero from Proposition A7 and the second factor
remains bounded.
For the first and second terms of (55) we use the expansion for logdetA that is given in

Proposition A8, stated at the end of this section. This proposition shows that the difference of the
second term of (55) and

tr
(√

n

(
H�>�− 1

n
�=utu

′
t�

)
Ĥ−1

n

√
n

(
H�>�− 1

n
�=utu

′
t�

)
Ĥ−1

n

)
converges in probability to zero. As this sequence obviously converges in distribution, we can apply
Lemma P-BD and it remains OP �1�.
Now we only have to analyze the first summand in (55). Using the defining property of C

�1�
n , it is

easily seen that

sup
$S*1

C
�1�
n

�S� ·��=0%
�h1�n�S�−h2�n�S�� → 0�

and

h1�n�>�−h2�n�>� → 0�

where

h1�n�S� =√
n

{
1
2

(
log detH�S�− log det Ĥn

)− 1
2
tr
(
Ĥ−1

n

(
H�S�− Ĥn

))}
�

and

h2�n�S� = tr(√n
(
H�S�− Ĥn

)
Ĥ−1

n

√
n
(
H�S�− Ĥn

)
Ĥ−1

n

)
�
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It is clear that h2�n�>� converges in distribution and again remains OP �1� by virtue of Lemma P-BD,
so we only have to analyze h2�n�S�. For doing this, observe that Proposition A7 implies that

√
n�Ĥn−

H�>�� remains OP �1�, and so

sup
$S*I

C
�1�
n

�S� ·��=0%

√
n
∥∥H�>�−H�S�

∥∥
remains OP �1�, too. We can therefore conclude (with the help of Assumption C2 on local identifica-
tion) that

sn = sup
$S*I

C
�1�
n

�S� ·��=0%

√
n�> −S�(56)

is OP �1�. Moreover, �√n�H�S�−Ĥn��≤ �√n�H�>�−Ĥn��+�√n�H�S�−H�>���. The first of these
summands remains OP �1�. The second one, if I

C
�1�
n

�S� ·� �= 0, is dominated by

sn sup
$S*1

C
�1�
n

�S� ·��=0%
�DH�S���(57)

where

DH =
(

�H

�>1
�    �

�H

�>�

)
is the matrix composed of the first derivatives. Since for an arbitrary small R > 0 $S * 1

C
�1�
n

�S� ·� �= 0%⊂
$S * �S−>� < R% for all but a finite number of n, we may conclude that both factors of our product
(57) remain OP �1�. This completes the proof of Proposition A5. Q.E.D.

Continuing with the proof of Theorem 3, we now note that, since 0�$S *
√

n�> − S� ≤ sn%� =
const · �√n�−psp

n , and sn is OP �1� from (56) above, we have proved (54).
To complete the proof of Theorem 3, it remains to show (53). Let us define our events for some

given . > 0. In particular, using Proposition A7 we can find an M = M�.� so that P�C
�2�
n � > 1−.

with C
�2�
n = B��

√
n�9̂n −9�O′

nDn�� ≤ MC. Then, we have to show that

0
({

R * I
C

�2�
n

�R� ·� �= 0
})

= OP �n−�/2/
√
detBn��

As ∥∥(√n
(
9̂n −9�:�

)
O′

nDn

)∥∥+∥∥(√n
(
9̂n −9�R�

)
O′

nDn

)∥∥≥ ��
√

n�9�R�−9�:��O′
nDn���

we may conclude that{
R * I

C
�2�
n

�R� ·� �= 0
}
⊂ $R * ��

√
n�9�R�−9�:��O′

nDn�� ≤ 2M%(58)

on the event

B�(√n
(
9̂n −9�:�

)
O′

nDn

)� ≤ MC�(59)

This should be understood as follows. For all ) satisfying event (59) $R * I
C

�2�
n

�R�)� �= 0% is a subset
of the set on the right-hand side of (58). By the definition of M , the probability of the event (59) is
greater than 1−.. We have to show that for the sets

Rn�M� = $R * ��
√

n�9�R�−9�:��O′
nDn�� ≤ 2M%�
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0�Rn�M�� has the correct order of magnitude. We will give the proof only for the case of

On = I�(60)

Since the On have been assumed to be orthogonal, the proof is easily extended to the general case,
but the more complicated notation required would distract from the basic intuition behind the proof.
Moreover, we will use the notation Const as a generic symbol for a strictly positive constant that
is not necessarily the same in every expression. This property is most important for the proof. For
reasons of brevity, we will refrain from mentioning the strict positiveness of Const every time we use
the symbol.
Applying Proposition A7, it is sufficient to show, under our simplifying assumption (60), that

0�Rn�M�� = OP �n−�/2/
√
detBn� for all M . Since all norms on finite-dimensional spaces are equiva-

lent, it is easily seen that

Rn�M� ⊂ $R * tr��
√

n�9�R�−9�:��Dn��
√

n�9�R�−9�:��Dn�′� ≤ constM 2%�

Moreover, it is an immediate consequence of Lemma A3 that the volume of the ellipsoid $R * n�R−
:�′Qn�R−:� ≤ const% is OP �n−�/2/

√
detBn�.

Therefore, it is sufficient to show that for each : there exist a neighborhood U�:� and a constant
Const = Const�:� so that for R ∈ U�:�

tr���9�R�−9�:��Dn���9�R�−9�:��Dn�′� ≥ Const · �R−:�′�Qn/n��R−:��(61)

Let 9 = ���1��    ������ and Dn = diag�01�n�    � 0��n�. Then, the left side of (61) equals∑
02j�n���j��R�−��j��:��2�

and the right-hand side is

∑
�R−:�i�R−:�j tr

(
DnD′

n

�9 ′

��i

�9

��j

)
=∑

02j�n

∥∥∥∥∑�R−:�i

���j�

�:i

∥∥∥∥2�
where �v� =√∑

v2i is the usual Euclidean norm. Therefore, we prove the proposition if we can show
that for all j and all : there exists a neighborhood U�:� so that

���j��R�−��j��:��2 ≥ Const ·
∥∥∥∥∑�R−:�i

���j�

�:i

∥∥∥∥2�(62)

At first sight, the proof of this inequality seems to be a standard exercise in elementary analysis, but
this is true only in the case where the right-hand side is nonzero for all nontrivial vectors �R−:�. One
does, however, encounter the problem that, in general, there will exist vectors �R−:� that annihilate
the right-hand side (i.e., ��j��·� has a zero derivative in that direction), so the inequality is trivial
for them. But what happens “near” these vectors, i.e., when we add a small component of a vector
for which the directional derivative is nonzero)? The left-hand side of the inequality will be “small”
and so the inequality is nontrivial. The key to establishing the inequality in such neighborhoods lies
essentially in “projecting” the mapping to some lower-dimensional manifolds on which it is regular.
We make this construction in what follows.
Let us now fix a j and define R� = span$���j�/�:i%, i.e. the vector space of all linear combinations

of the ���j�/�:i, and let

N =
{

h *
���j�

�h
=∑

hi

���j�

�:i

= 0
}

�

Further, let V be the orthogonal complement of N . If V consists only of the null-vector, then the
right-hand side of (62) is identically zero and the inequality is trivial. Hence we can assume that
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dimV > 0. Then it is easily seen that dimR� = dimV = J . Then we can find vectors b1�    � bJ that
form a basis of V , i.e., they are linearly independent and V = $

∑J
i=1 Libi%. It can immediately be seen

that there exists a linear, bijective mapping Y* �J → R� defined by Y��L1�    � LJ �′� =∑J
i=1 Libi.

Analogously, we can find a basis c1�    � cJ of R� . Let us now define P as the J ×�-matrix describ-
ing the orthogonal projection onto R� with respect to the basis c1�    � cJ . That is, for any vector
x ∈ ��, the vector Px ∈ �J is such that

∑
�Px�ici is the orthogonal projection of x onto R� . It is

obvious that

rankP = J �(63)

Next, let p�·� be the mapping defined on a neighborhood of the origin of �J by the following. If
L = �L1�    � LJ �, then

p�L� = P
(
��j�

(
:+∑

Libi

)
−��j��:�

)
�

In view of Proposition A9, which is stated and proved at the end of this section, this mapping has
the property that the Jacobian of p�·� has full rank at the origin so that dimR = dimV .
Let S be the projection (defined in ��) on V in direction N (i.e., for h ∈ N , Sh = 0; for h ∈ V ,

Sh = h). Since V is the orthogonal complement of N , S is an orthogonal projection and therefore

�h�2 ≥ �Sh�2�(64)

Furthermore, it is easily seen that there for all h ∈ ��

�Sh�2 ≥ Const ·
∥∥∥∥∑hi

���j�

�:i

∥∥∥∥2�(65)

where

Const > 0�(66)

A feasible choice of Const is minh∈Z �Sh�2 with Z = $h ∈ V * �∑hi
���j�

�:i
�2 = 1%. Z is easily seen to

be a compact set, so the infimum of a continuous function on the set is its minimum. Hence any
strictly positive function can be bounded from below with a constant greater than zero, and so this
definition of Const fulfills (66).
As ��j��·� is continuous, there is a neighborhood U around the : for which with R ∈ U we have

P���j��R�−��j��:�� ∈ W . Let us analyze the mapping f defined by f �R� = �[ �Y−1��P���j��R�−
��j��:���. Then, due to the differentiability of [ and Y, there exists a Const with

�f �R�� ≤ Const · �P���j��R�−��j��:����

Again, Const can be assumed to be greater than 0 without limitation in generality, so we have also

Const · �f �R�� ≤ �P���j��R�−��j��:����

Then we have for R ∈ U

���j��R�−��j��:��2 ≥ �P���j��R�−��j��:���2 ≥ Const�f �R��2�

Now it remains to show that

�f �R��2 ≥ Const ·
∥∥∥∥∑�R−:�i

���j�

�:i

∥∥∥∥2�
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To prove this inequality, it is (because of (65) and (64)) sufficient to show that �Sf �R��2 ≥
Const�S�R−:��2 for �R−:� sufficiently small. Denoting by Df the Jacobian of f , Sf = ∫ 1

0 SDf �:+
0�R−:�� · �R−:�d0, we have

�Sf �R��2 =
∫ 1
0

∫ 1
0

�SDf �:+0�R−:�� · �R−:��′�SDf �:+��R−:�� · �R−:��d0d�(67)

=
∫ 1
0

∫ 1
0

�S�R−:��′�Df �����′�Df ������S�R−:��d0d��

By the chain rule, the Jacobian is

Df = �D[��DY�−1P
���j�

�:
�(68)

Therefore, due to the continuity of Df , we can, for �R−:� sufficiently small, conclude that

��Df �����′�Df �����− �Df �:��′�Df �:���

can be made arbitrarily small. Therefore, there exists a neighborhood around : so that the difference
for all R from this neighborhood is less than

00 =
1
2

min
$h∈V *�h�2=1%

h′�Df �:��′�Df �:��h�(69)

which is nonzero due to Proposition A10, which is stated and proved below. Thus, for R from this
neighborhood, we can conclude that the integrand in (67) is greater than or equal to 1

200�S�R−:��2,
which completes the proof of (53) and concludes the proof of Theorem 3. Q.E.D.

To complete the reasoning, it remains only to prove the following propositions that were used in
the proof of Theorem 3.

Proposition A8: Let A, B be nonnegative definite matrices so that �A−B��B−1� < 1. Then

log detA− log detB− tr�B−1�A−B��(70)

= tr��A−B�B−1�A−B�B−1�+o

( �B−1�3�A−B�3
1−�B−1��A−B�

)
�

Proof of Proposition A8: This is based simply on a Taylor expansion of logdetA and is
omitted.

Proposition A9: The Jacobian of p�·� has full rank at the origin, namely dimR = dimV .

Proof of Proposition A9: Assume otherwise. Then, we would be able to find nontrivial >i so
that

∑
>i

�p

�Li

= P

(∑
>i

���j�

�bi

)
= 0�

By definition of R� , �
∑

>i����j�/�bi�� ∈ R� , so if the orthogonal projection of this vector is zero, the
vector is zero itself. So we may conclude that

∑
>i����j�/�bi� = 0 and therefore, since we assumed

the >i to be nontrivial,

���j�

�>
= 0 with > =∑

>ibi ∈ R��
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But this would imply that > ∈ N , so > ∈ R� ∩N = $0%, which contradicts our assumption of > being
nontrivial. Then standard analysis shows that there exists an open set W ⊂ �J around the origin for
which there exists an inverse function [. It is easily seen to be continuously differentiable, and its
Jacobian has full rank, too, i.e.,

rankD[ = J �(71)

giving the required result. Q.E.D.

Proposition A10: Let 00 be as defined in (69): Then 00 > 0.

Proof of Proposition A10: First observe that the set $h ∈ V * �h�2 = 1% is compact: There-
fore the infimum of a continuous function over this set is a minimum. Therefore, our defini-
tion in (69) makes sense and we can assume that there exists a h ∈ V with �h�2 = 1 so that
h′�Df �:��′�Df �:��h = 00. Now suppose the proposition does not hold and there exists h ∈ V with
�h�2 = 1 for which h′�Df �:��′�Df �:��h = 0. Then, �Df �:��h = 0 and, due to (68) and the nonsin-
gularity of D[�:� and DY, we may conclude that

P
���j�

�:
h = P

���j�

�h
= 0�

Since P describes the orthogonal projection onto R� = span$���j�/�:i% � ����j�/�h�, we may con-
clude that

���j�

�h
= 0�

But this is just the definition of h ∈ N and therefore we have a contradiction to our assumptions
(viz., that h was nontrivial and an element of V , which is defined as the orthogonal complement
of N ). Q.E.D.

D� Proof of Theorem 4

Fix an arbitrary predictor ŷt . Then, the conditional Gaussian probability measures Gt−1 =N�ŷt�=�
(for t ≥ 1, our common point of initialization for the predictions) produce an empirical model in the
sense of earlier sections. One can easily see that the corresponding log likelihood ratio with respect
to the true model is essentially given by −�1/2�At . Therefore, it is apparent that Theorem 4 is a
simple consequence of Theorem 1 if we can prove that

logdetBn

logn
→ K�(72)

in probability for Lebesgue-almost all parameters.
We start by choosing arbitrary matrices B and @ that fulfill our identification requirements given

in Assumption D1. Next, we proceed to compute the information matrix Bn. Lemma A1 shows that
this matrix is block diagonal. To use Lemma A1, it helps to simplify some formulae by defining a
2�-vector x∗

t as follows. The first � components of x∗
t are set to the vector xt itself, and components

�+1 to 2� are set equal to −9xt . The process x∗
t helps to simplify the expression for the score. For

this purpose, define for �i� j� ∈ M1 the elements of a k×2� selector matrix P 1
i� j to be all zero except

the element in position �i� j�, which is set to unity. Analogously, define for �i� j� ∈ M2 the elements
of the k×2� matrix P 2

i� j to be zero except the element in ��+ i� j�, which is set to unity. In general,
we will write P a

i� j with a = 1�2 corresponding to the indices of M1 and M2, respectively.
We need the following expressions for the derivative matrices: first,

�9

�@i� j

=−
[
0�0�    � �@ −1�i

column j

�    �0
]
9�
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where the first matrix in this product is square and has the ith column of @ −1 as its jth column, and
zeros elsewhere; and, second,

�9

�Bi� j

=
[
0�0�    � �@ −1�i

column j

�    �0
]
�

Using the selector matrices P a
i� j , we can write these matrices in the form

�9

�@i� j

xt = @ −1P 1
i� j x

∗
t(73)

and

�9

�Bi� j

xt = @ −1P 2
i� j x

∗
t �(74)

We now proceed to compute the matrix Bn. We can think of Bn as a matrix indexed with pairs of
elements of Ma, which constitute triples when combined with the index a. Formulae (73) and (74)
allow us to apply Lemma A1 and with a bit of calculation it is readily seen that

�Bn��i� j� b�� �q� ��d� =
∑
t≤n

tr
(
x∗

t

(
x∗

t

)′
P b′

i� j@
−1=@ −1P d

q��

)=∑
t≤n

tr
(
P d

q��x
∗
t

(
x∗

t

)′
P b′

i� j@
−1=@ −1)�

For each invertible @ we can find 11 = 11�@ �=�, 12 = 12�@ �=� so that 12I ≥ @ −1=@ −1 ≥ 11I , where
I is the identity matrix. Define the matrices Rn by

�Rn��i� j� b�� �q� ��d� =
∑
t≤n

tr
(
P d

q��x
∗
t

(
x∗

t

)′
P b′

i� j

)=∑
t≤n

tr
(
x∗

t

(
x∗

t

)′
P b′

i� jP
d
q��

)
�

Lemma A2 implies that

11Rn ≤ Bn ≤ 12Rn�

Hence, (72) is equivalent to

logdetRn

logn
→ K�(75)

Let us now look at the elements �Rn��i� j� b��q� ��d� if i �= q. In this case it is easily seen that P b′
i� jP

d
q�� = 0

and, therefore,

�Rn��i� j� b�� �q� ��d� = 0 for i �= q�(76)

Let us for 1 ≤ i ≤ k define the matrices �R
�i�
n ��j� b����d� = �Rn��i� j� b��i� ��d�, where j ∈ M1�i� if b = 1 and

j ∈M2�i� if b = 2. Then (76) shows that by reordering rows and columns we can rearrange the matrix
Rn into the form

Rn =


R

�1�
n 0 0

0
� � � 0

0 0 R
�k�
n

 �

which implies that detRn =
∏n

i=1 detR
�i�
n and consequently

logdetRn =
n∑

i=1
logdetR�i�

n �
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Consequently, to prove (75) it is sufficient to show that

logdetR�i�
n

logn
→ TE

(
r

�i�
t

)
�

where the processes r
�i�
t were defined above. To do so, we have to analyze the matrices R

�i�
n . Fix i,

with 1≤ i ≤ k, and examine the vector �P a
i� jx

∗
t �, where j is from Ma�i�. Then its components are zero

except for the jth, which equals �x∗
t �j : Hence, if j and � are from Ma�i�, then(

R�i�
n

)
�j� a����a�

=∑
t≤n

tr
(
P a

i��x
∗
t

(
x∗

t

)′
P a′

i� j

)=∑
t≤n

(
x∗

t

)
j

(
x∗

t

)
�
�

Going back to the definition of r
�i�
t , it is apparent that the components of this vector coincide with

the components of x∗
t when the index is in M1�i� or the difference of the index with m is in M2�i�.

Both vectors simply pick off the components of x∗
t that correspond to unknown parameters in row

i. Therefore R
�i�
n is just a reordered form of

∑
t≤n r

�i�
t r

�i�′
t : We therefore have to show that

logdet
∑

t≤n r
�i�
t r

�i�′
t

logn
→ TE

(
r

�i�
t

)
�(77)

To establish (77), it will be sufficient to prove the following two results:
(i) the existence of diagonal matrices Din and a nonsingular matrix Ai so that

D−1
in Ai

∑
i≤n

r
�i�
t r

�i�′
t AiD

−1
in ⇒ Ci�(78)

where ⇒ denotes weak convergence and Ci is a (possibly random) matrix that is a.s. invertible;
and (ii)

logdetDin

logn
= T I

(
r

�i�
t

)
/2�(79)

We will not give an explicit formula for Ai in (78). We will show its existence, mainly by using per-
mutations and linear combinations of the components of r

�i�
t that are analogous to the Gaussian elim-

ination algorithm for solving linear equations. First assume there are no deterministic components,
just I�1� and stationary components (as in case (29) of Definition 3). Let us assume our vector has
nstat stationary components, and that there are ncoint linearly independent cointegrating relationships.
Using a permutation matrix to rearrange the stationary components and then multiplying by a matrix
that performs the cointegrating space mapping, we can construct a nonsingular matrix A1 with the
following properties: the last ncoint +nstat components of the random vector St = A1r

�i�
t are stationary

processes and the first �m−�ncoint +nstat�� are nonstationary and, moreover, every linear combination
of them is nonstationary, so they are what we call full rank nonstationary. So �m−�ncoint+nstat�� is the
number of effective stochastic trends. Next we deal with deterministic trends. We will assume here
that only linear trends are included, extensions to higher order polynomial trends being straightfor-
ward (see the section that follows this proof). We will also consider the case where the linear trends
arise through the presence of trend stationary components (as in (30) of Definition 3). Without limi-
tation in generality, we can arrange for this type of trend to occur in the first component (otherwise,
simply multiply by a permutation matrix to accomplish this positioning of the elements). So, let us
assume that �St�1 = at +w1t , where w1t is a stationary and ergodic process. Now multiply St with
a matrix A2 constructed in the following way: row 1 of A2 should be the first row of the identity-
matrix; row j should be the jth row of the identity matrix if �St�j does not contain a deterministic
trend; otherwise assume that �St�j = bt+wjt , where wjt is a stationary and ergodic process, and then
the jth row should consist of �−b/a� in the first column (to eliminate the trend in the jth row), 1 in
the jth column and 0 in the remaining columns; for j > �m− �ncoint +nstat�� let the jth row of A2 be
identical to the jth row of the identity matrix. Next, let Rt = �A2St . Since Rt = �A2A1�r

�i�
t is a linear
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combination of r
�i�
t and the matrix A2A1 is nonsingular, it is sufficient to prove the assertions (78)

and (79) for Rt . We now do so for a ‘generic’ equation in the system and to simplify formulae simply
drop the affix i in our remaining derivations.
Let us define for the case where one element contains a (linear) deterministic trend the diagonal

matrix

Dn = diag�n3/2�n1�    � n1�n1/2�    � n1/2��

where m− �ncoint +nstat� diagonal elements equal n and �ncoint +nstat −1� elements equal n1/2. In the
case where none of the processes contains a deterministic trend we define

Dn = diag�n1�    � n1�n1/2�    � n1/2��(80)

where the first �m− �ncoint +nstat�� diagonal elements equal n and the rest equal n1/2. Now it is easily
seen that (79) holds true for our choice of Dn. It now remains to show (78): We have to compute
the limiting distribution of D−1

n

∑
t≤n RtR

′
tD

−1
n : Keeping in mind that the vector Rt is composed of

linear combinations of the original vector, we can apply the limit theory (28) that follows from
Assumption D3. We will only deal with the case where a linear deterministic trend is present, because
the other case follows in an analogous fashion. So, in this case, the first component of Rn contains a
deterministic trend and we can partition the vector Rn into three parts. The first part consists of the
first component only, the second part comprises the m− �ncoint +nstat� nonstationary components and
the third part consists of the ncoint +nstat − 1 stationary components. Next, we partition the matrices
D−1

n

∑
t≤n RtR

′
tD

−1
n and their limit random matrices analogously into nine submatrices, so that we

have, in effect, to show that

D−1
n

∑
t≤n

RtR
′
tD

−1
n ⇒ C =

c11 c12 c13
c′
12 C22 C23

c′
13 C ′

23 c33

(81)

and the limit matrix C is nonsingular a.s.
We know from the construction of Rn that its first component consists of a deterministic trend

(plus terms that are of smaller order than n): We therefore may conclude that for 0≤ z ≤ 1

lim
n→	

�Rnz�1
n

→ az

and

a �= 0
for if a = 0 no deterministic trend would be present. Therefore, it is easy to see that (81) holds true
for its uppermost left corner with

c11 = a2
∫ 1
0

z2 dz = a2

3
�

Since the components of Rn are linear combinations of the zt , we can apply Assumption D3
and (28). In particular, the vector R

�2�
n consisting of the nonstationary components (i.e., components

2 * �m− �ncoint +nstat��) satisfies an invariance principle. There exists a (vector) nonsingular Wiener
process V for which with 0≤ z ≤ 1

R�2�
nz ⇒ V �z� as n →	�

where the convergence is understood as convergence in the Skorohod topology of the function space
DB0�1Cg , with g = m− �ncoint +nstat�. For the stationary components R

�3�
n (the remainder of the vec-

tor Rn) we postulated (among other things) the existence of second moments and ergodicity. Hence,
we may conclude that

1
n

∑
i≤n

Ri →a�s�
�R
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and

1
n

∑
i≤n

RiR
′
i →a�s�

�C�

where �C is nonsingular and �C − �R �R′ is nonnegative definite.
Some lengthy calculations, which are similar to those in Park and Phillips (1988, 1989) and which

we therefore omit here, show that (81) is indeed true and we have the following limits:

c12 =
∫ 1
0

zV �z�′ dz�

c13 =
1
2

a�R′ =
∫ 1
0

z�R′ dz�

C22 =
∫ 1
0

V �z�V �z�′ dz�

C23 =
∫ 1
0

V �z��R′ dz�

C33 = �C�

Therefore, it remains to show the nonsingularity of the matrix C. Assume the opposite to be true.
Then, there exists a vector d for which

d′Cd = 0

and, using the above expressions, there would exist constants A and vectors D, E, not all zero, for
which ∫ 1

0
�Az+D′V �z�+E ′R�2 dz+E ′���C − �R �R′�E� = 0�

Keeping in mind that �C − �R �R′ is nonnegative definite, this would imply that

∫ 1
0

�Az+D′V �z�+E ′R�2 dz = 0�

which obviously contradicts the nonsingularity of the process V , so the singularity of C must be
wrong.
The proof is now completed for the case where the process contains a linear deterministic trend.

If such a trend is not present in the predetermined variables and we have to use (80) in the definition
of Dn, we can proceed in an analogous manner. The arguments carry over almost verbatim, and one
only has to ignore all statements regarding the first component. In a similar way, when there is a
single deterministic trend of degree p and no other trend term in the process, the same arguments
apply with the modified definition

Dn = diag
(
np+ 12 �n1�    � n1�n

1
2 �    � n

1
2
)

of the normalizing matrix. When there is a higher order trend polynomial in the model, Dn will take
the general form

Dn = diag
(
np+ 12 �np− 12 �    � n

3
2 �n1�    � n1�n

1
2 �    � n

1
2
)
�

with appropriate modifications in the proof to accommodate the extra deterministic terms.
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Total Degree of Integration: Suppose anm-vector zt can be written in the following ‘com-
ponents’ form involving a deterministic time polynomial, a vector of stochastic trends, and a vector
of stationary components:

zt =
p∑

i=1
bit

i +Czs
t +wt�(82)

In (82) suppose zs
t is an s-vector of s full rank I�1� processes (the stochastic trends) and wt is

an m-vector of stationary and ergodic time series satisfying D3. The trend coefficient matrix b =
Bb1�    � bpC is m×p and is assumed to have full rank p ≤ m and C is an m×s matrix for which b′

⊥C
has rank nint ≤ s∧�m−p�, where b⊥ is an m×�m−p� orthogonal complement matrix of b. Here, nint

denotes the number of effective stochastic trends, allowing for the presence of p deterministic trends
in zt and cointegrating relations. The effective cointegrating rank among the m−p components of
b′
⊥zt is then necoint = s∧�m−p�−nint . We can then decompose these remainingm−p components into
stationary and integrated components as m−p = $m−p−nint%+nint . Here nestat = �m−p�−nint is the
number of effective stationary components in zt which we can further decompose into cointegrating
and stationary components as

nestat = �m−p�−nint = $s∧ �m−p�−nint%+$�m−p�− s∧ �m−p�% = necoint +nstat�

It follows that in the general case of (82) we can define the total order of integration as

T I�zt� = $�m−p�−nint%+2nint +
p∑

i=1
�2i+1� = nestat +2nint +p�p+2��(83)

In this formula for T I�zt�, the number of linearly independent deterministic trend components in zt

is p, the number of effective stochastic trends is nint , and the number of effective stationary components
is nestat .
The case of a linear trend is particularly important. Here

�84a� T I�zt� = nestat +2nint +3�
We can see how this reduces to (30) and (31) of Definition 3. In case (30), there are only integrated
processes with ncoint cointegrating relations, trend stationary components, and stationary components
�nstat�. Since the trend does not arise in the integrated component, b′

⊥C has rank

nint = �m−nstat −ncoint�∧ �m−1� = m−nstat −ncoint�

as nstat ≥ 1 and ncoint ≥ 0. Then,
nestat = m−1−nint = nstat +ncoint −1�

and (84a) becomes

T I�zt� = �nstat +ncoint −1�+2�m−nstat −ncoint�+3�
as given in (30).
In case (31) there are only integrated processes with drift, ncoint cointegrating relations, and nstat

stationary components. The matrix b′
⊥C has rank

nint = m−1−nstat −ncoint ≤ �m−nstat −1�∧ �m−1��
and then (84a) becomes

T I�zt� = �nstat +ncoint −1�+2�m−1−nstat −ncoint�+3�
as given in (31).
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Finally, when p > m and b has full rank m, then all components of xt are dominated by deter-
ministic trends and T I�zt� = p�p+2�.
According to the formula (83), the weight given to a stationary component in the index is 1,

the weight on a stochastic trend is 2, and the weight on a time trend of degree i is 2i+ 1. For a
linear trend the weight is 3, whereas for a polynomial of degree p with p ≤ m linearly independent
coefficient vectors bi, as in (82) above, it is

∑p
i=1�2i+1� = p�p+2�.

Notation

→a�s� almost sure convergence T V �P�Q� total variation
= supA∈� �P�A�−Q�A��

→P�
convergence in P� probability 0min�B� smallest eigenvalue of B

⇒�→d weak convergence �·� Euclidean norm in Rk

oP�
�1� tends to zero in P� probability r ∧ s smaller of r and s

OP�
�1� bounded in P� probability B·C integer part

OP �1� bounded in P probability DB0�1C space of functions
∼d asymptotically distributed as continuous on the
IA�·� indicator function of A right with finite
E� expectation under P� left limits
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