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10 Rissanen’s theorem and econometric time
series

Werner Ploberger and Peter C. B. Phillips

1 Introduction

The twin notions of ‘simplicity’ and ‘complexity’ affect modelling
throughout the social and physical sciences and are recognized as being
important in most modelling methodologies, even though there may be
no general agreement on methodological principles themselves. We there-
fore applaud the courage of the organizers of the Tilburg Conference in
fostering an interdisciplinary treatment of these twin themes. The inter-
disciplinary nature of the subject means that most readers of this volume
will be specialists in fields other than our own primary interest, which is
econometrics, and are therefore most likely to be interested in the main
ideas of our work on this topic rather than the technical details.
Consequently, this chapter passes over most technicalities and seeks to
explain why econometricians are interested in a particular aspect of
Rissanen’s theorem. Those readers who wish to pursue the technical
details can consult our companion paper, Ploberger and Phillips (1998).
In economics, and other empirical sciences, researchers collect data —
say ¥" = (x,)i; — which do not follow any pre-ordained pattern but
which can often be successfully ‘explained’ using a certain probabilistic
framework. In particular, the data can be modelled in terms of a “‘data-
generating process’ or DGP whereby it is assumed that the observed
series X' comprises realizations of some random vanables Xi,..., X,
that are jointly distributed according to a probability measure P, This
approach to modelling naturally turns attention to the measure 2.
Usually, this probability measure arises from a theoretical model of the
underlying mechanism. In most applications, however, we do not have
enough prior information or ‘first principles’ to define all possible para-
meters of our model. Instead of one probability measure we have to
consider a parametrized set — say P, — of probability measures, where

This chapter is based on a lecture given by Werner Ploberger at the Tilburg Conference in
January 1997.
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¢ € © (the parameter space) and it is often simply assumed that the ‘true’
DGP is among those measures. We must now use our data x” for infer-
ence about the parameter #. Under this framework, a large number of
applications have been developed and successfully applied in practical
work, including econometrics.

This parametric statistical framework is not, of course, free from con-
ceptual and practical difficulties, one of which is alluded to above, viz. the
existence of a knowable ‘true’ model for x". A major practical difficulty
that arises in most empirical applications is that the above description
does not include one essential part: in many cases the parameter space
itself is not fixed.

Consider a popular time series example. Often a process like x, is
influenced by its past history and a common model for such data is an
autoregressive process of the form

x: = alxl.._l + uapxt...p + u‘

where the u, are i.L.d. N0, ol). In this case, our parameter space consists
of all (p+ 1)-tuples (ay,...,d, 0. Usually one has no information
about p, although in economics we can usually expect p > 2 if we are
secking to model cyclical behaviour and p > 4 when we are modelling
quarterly data. In choosing p, we are aware of two immediate dangers:

1. We can specify p too small. Then, we lose the opportunity to find the
‘true’ model within our class. We have misspecified.

2. We can specify p too large. Then, statistical procedures become less
efficient, a matter that affects estimation, inference and forecasting
capability.

The loss of efficiency from p being large can be dramatic, especially in
maultiple time series situations where a unit increase in the lag parameter p
involves m? additional parameters for an m-variable system. It is such an
object of concern for econometricians that it is treated in standard under-
graduate texts like Dougherty (1992). For this reason, it can be said that
econometricians are often preoccupied with the complexity of the model
class.

In economics, as elsewhere in the statistical sciences, many people have
advocated the principle of parsimony: seek out the model with the smal-
lest number of parameters which ‘fit the data’. The principle has been
successful in practical applications and it obtained a precise theoretical
foundation through attempts to quantify the loss of information arising
from the lack of knowledge about the parameters. Several proposals,
including the AIC criterion by Akaike (1969, 1977) and the BIC criterion
by Schwarz (1978), have won acceptance and been widely adopted in the
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empirical literature. This chapter concentrates on one of the most
remarkable approaches in this class, the idea of stochastic complexity,
due to Rissanen. We will be particularly concerned with a theorem in
Rissanen (1987) which shows that stochastic complexity attains, in a
certain well-defined sense, the best achievable rate of approach to the
‘true’ law of a process in a given parametric class.

Since our chapter concentrates on the application of Rissanen’s theo-
rem to econometric time series, we will shortly discuss the basic ideas
underlying his approach from an econometric time series perspective, We
will not pursue here the information-theoretic interpretation of the the-
orem (q.v. Cover and Thomas, 1991). In information theory, a probabil-
ity measure is very largely a means to construct a code, or as Rissanen
(1986) put it, a ‘language to express the regular features of the data’. In -
econometrics, it is often an object of central importance in itself — one
goal in the construction of models being the computation of ‘probabil-
ities’ of events, for which the probability measure is an essential element.
Thus, for us, the result of modelling will be — for every sample size — a
probability measure — say G, — on the sample space for x".

This approach allows us to consider both Bayesian and classical statis-
tical modelling. A Bayesian statistician would use the ‘Bayesian mixture’
Q. = f Ppdu(6), where p is the prior distribution for the parameter 6, as
the data measure. If py is the density of Py with respect to some dominat-
ing measure, then the Bayesian mixture g, = f pydu(6) is simply the data
density, or, as it is sometimes called, the marginal likelihood. Conditional
data densities for X, = (Xu+1. .., X4} given x™ can then be constructed
from the ratios gy, = qn/qn,, With corresponding measures @, ,,

Now, suppose that the conditional probabilities Py(x,|x""') have den-
sities py(x,x"") with respect to a common dominating measure v. A
classical statistician might — for every ¢ < n that was big enough — use
x'~! to estimate 8, e.g. by the use of the maximum likelihood estimator
6,1, and then use the ‘plug-in’ density p; (1) to *predict’ x,. Then
the model, in our sense of a useable empirical measure, is given by the
density P = [Tn<r<nPs_ (5ebx""), Where ng is the smallest number of
observations for which 8, is well defined. This model corresponds to
Dawid’s (1984) ‘plug-in forecasting system’ and leads to his notion of
prequential probability. Phillips and Ploberger (1994, theorem 2.3) and
Phillips {1996) establish the asymptotic equivalence between these pre-
quential DGPs and the conditional Bayesian data densities g, ,, - One can
also use procedures like the Kalman filter to ‘predict’ the next data point
and this would simply correspond to the use of a different model, in our
terminology.
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Since the class of possible ‘models’ for the data is extremely large it is
natural to start thinking about ways of assessing the quality of models as
statistical instruments. Since models, in the sense above, are just prob-
ability measures, we can compare them — or their densities — with the true
data-generating process. There are a variety of sensible distance functions
for probability measures (see Strasser, 1985, and LeCam and Yang, 1990,
for an overview and discussion of their properties). One of these is the so-
called Kullback-Leibler (KL) information distance. This distance meas-
ure is weill known pot to be a metric, since it iS not symmetric, but has
some useful advantages and is appealing in our context where-the models
are measures aiid we want to compare the ‘likelihood’ of different mod-
els. The KL distance from model G, to the ‘true’ DGE_P, is defined as
—~Ey log# e

Rissanen (1987 1996) showed that if X, is stationary, if © is a regular
subset of the R¥, i.. if

dim® =k,

and if some technical conditions are fulfilled, then the Lesbesgue measure
(i.e., the volume in R*) of the set

{ : —Egiogﬁ klogn]

converges to  for any choice of empirical model G,. This theorem shows
that whatever one’s model, one can approximate (with respect to KL
distance) the DGP no better, on average, than }klogn for the typical
parameter. Thus, outside of a ‘small’ set of parameters we can get no
closer to the truth than 1 klogr — the ‘volume’ of the set for which we can
do better actually converges to zero!

In a way, Rissanen’s theorem justifies a certain amount of scepticism
about models with a large number of parameters. Note that the minimum
achievable distance of an empirical model to the DGP increases linearly
with the number of parameters. In essence, the more complex the system
is, the harder it is to construct a good empirical model. Thus, the theorem
makes precise the intuitive notion that complex systems can be very hard
to model, that models of larger dimension place increasing demands on
the available data!

2 Stylized facts about econometric data and models

Before discussing our extension of the Rissanen theorem, we discuss some
typical features of economic time serics that help to motivate our general-
ization. We particularly want to draw attention to the following:
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{a) Economic time series are often non-stationary Simple inspec-
tion of time series plots for aggregate macroeconomic data are suffi-
ciently compelling to justify this observation. Extensive analysis of
economic data, following early work by Nelson and Plosser (1982), con-
firms that there is good reason to believe that the trending mechanism is
stochastic. However, the precise form of the non-stationarity is not so
much an issue. Even if one chooses models that involve time polynomials,
or breaking time polynomials as in Perron (1989), the non-stationarity of
the data itself is seldom at issue.

(b) Many interesting econometric models have a ‘stochastic infor-
mation matrix’ Following the formal development of unit-root tests (both
parametric approaches like those in Dickey and Fuller, 1979, 1981, and
semiparametric approaches like those in Phillips, 1987), econometricians
have devoted substantial effort to analysing the particular class of non-
stationary models where the stochastic trend results from accumulated
shocks. The log likelihood function for such models is — after proper
normalization — asymptotically quadratic, but has some special features
that distinguish it from the traditional stationary case. Indeed, contrary
to the standard assumption that the matrix originating from the quad-
ratic term (i.e. the properly normalized second derivatives of the like-
lihood function} converges to a constant, under unit root non-
stationarity this matrix converges in distribution {o a ‘proper’ limit ran-
dom matrix. Secondly, when we move away from unit root non-
stationarity but stay in the local vicinity, the limit matrix also changes.
In this sense, the traditional Fisher information is both random and
variable in the limit, divergences from traditional theory that were
pointed out in Phillips (1989). These points of difference end up having
a profound effect on the extension of Rissanen’s theorem.

‘The simplest example is as follows. Consider an autoregressive process
x, defined by

X, =0x,y + 1 (1)

where «, is i.i.d N(0, 1), the scale parameter being set to one and assumed
to be known. The log likelihood.(up to additive constants) can be written
as

1 "
- iz(x: = ext—l)z
(2]

: " 1 1
=—§zuf+{»<e_-n}[;‘,-§x,_lu,]—i{n(e-1>}2{p§x%.,]. ®

=1
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The log likelihood function here is exactly quadratic and, in the case
where we centre on ¢ =1 (the true DGP has a unit autoregressive
root), we use the normalization factor n (in contrast to the traditional
/7). The quadratic factor ;3 x7 converges in distribution to a non-
trivial functional of a Brownian motion and the linear factor }Y 7,
X,_1%; to a stochastic integral of Brownian motion (see Phillips, 1987).
When we centre on 8 = 1+ £ in the vicinity of unity, we get the same
normalization factor », but the limit functionals involve a diffusion pro-
cess. In both cases, there is random Fisher information in the limit. For a
detailed discussion of the behaviour of this likelihood, see Phillips (1989)
and Jeganathan (1995).

The main aim of our companion paper, Ploberger and Phillips (1998),
is to generalize Rissanen’s theorem to an environment that inchudes such
examples. In doing so, we did not use the KL-distance. Instead of inves-
tigating the expectation of the log-likelihood ratio log%‘, we focus on
deriving bounds for log%' itself. Rissanen's (1987) empﬁasis lay in the
construction of codes which encode the data optimally (i.e. using the
smallest number of bits). Then, the measure E;log g% is closely related
to the amount of bits necessary to encode the data (e.g. for storage or
transmission). Qur primary interest is in statistical inference, not just data
encoding, so we focus our attention on the log-likelihood ratio log‘f;g:
itself rather than its average value. In consequence, we may imterpret
certain aspects of our theory differently from that of Rissanen.

3 The generalization of Rissanen’s theorem

Defining a ‘distance’ to the true model automatically establishes an order-
ing on sets of models: ‘good’ models have a ‘small’ distance to the true
DGP measure, whereas ‘bad’ models have a ‘large’ distance. Our distance
measure will be the log-likelihood ratio itself, viz. the random variable

dG
log 75" | ©)

From the econometric point of view, the idea of using (3) as the basis for
a distance measure between the model G, and the DGP is an attractive
one, since the resulting ‘ordering’ reflects established practice of choosing
models. Suppose one has given two models G, , and G, ,. Statisticians are
accustomed to basing inference on the value of the likelihood ratio %ﬂ,
measured here by the Radon Nikodym derivative of the two measurés.
This practice applies irrespective of the particular foundations for infer-
ence. A ‘classical’ statistician would use this ratio as the basis for a test in
the Neyman-Pearson framework, whereas a Bayesian statistician would
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use this ratio asa Bayes factor in the context of posterior odds testing. In
cither event, if & %, Is ‘large’, Gy , is taken to be the better model over G, ,,
and vice versa if the ratio is ‘small’, Since we can write

s dGl n dGl,n
G,, ~ ¢ 7p, ~\°8p,

the logarithm (which is a monotone transformation) of this ratio is just
the difference of our distance measure (3) for the two models.

From our pomt of view, it is not so important to look at the expecta-
tion E(log;;‘) Since lim,_,q logx = —oo0, the expectation can be over-
influenced by small values of %5 9. To itlustrate, consider a series of events
A, in part of the sample space of x" and models G 1. defined on the same
sample space. Suppose G| ,(4,) = 0 and P4(4,) — 0 for all 8, but

Po(A,) > 0. “
Then define alternate models G, , by

dGy {0 on 4,
= I

m = on the complement of A,,]

I-aau)

Most statisticians would consider G, , and G, , to be asymptotically
equivalent: since their likelihood ratio converges to one — and even the
variational distance between these two measures converges to zero — there
is no way to distinguish them asymptotically. On the other hand, (4)
demonstrates that

dGz.n —
E,(log dPg ) =T
so that, upon averaging, G, , is taken to be one of the worst possible
models!

The precise formulation and requisites for our extension of the
Rissanen theorem are technical and we refer readers to our original
paper, Ploberger and Phillips (1998), for details. The exposition here is
intended to outline the essential features and to discuss its implications.
In this regard, it is helpful to clarify the model classes under investigation.

As mentioned above, we want the likelihood function to be asymp-
totically sufficiently ‘smooth’, ie. locally quadratic, and we start by
making this statement more precise. The key conditions can be laid
out as follows.

1. The parameter space © is an open and bounded subset of R,
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2. The measures Py on the sample space of x" are, for all n € N, gener-
ated by densities pp = pg(x"). For ¢ € 8, the log-likelihood is defined
as £,(6) = log pg(x").

3. There exist deterministic norming matrices D,, such that for k € R* we
have the expansion

1

2,0+ D h) = £,(6) + Wik — Ek’M,,h + o(H'h), 5)
uniformly for all bounded A, where
aL,
..]p
W,=D, rx
and
iy e &e
M, =DnlBanls Bn=“"wa;; (6)

are the properly normalized first two coefficients in the Taylor-series
expansion of the likelihood. (This model class is discussed extensively
in e.g. LeCam and Yang (1990) and Jeganathan (1995).) An expansion
that is equivalent to (5) is obtained when the second derivative matrix
in (6) is replaced by the conditional quadratic variation of the score
process 3£,,/36.

4, The components W,, M, defined above converge jointly in distribu-
tion to random elements (a matrix in the case of M,) which we denote
by W and M. We furthermore assume that

M > 0 with probability one

in the matrix (positive definite) sense.
5. There exists an estimator é, for which the normafized quantity
D, (8, — 6) remains bounded stochastlcally

Ploberger and Phillips (1998) discuss and use some more general con-
ditions than these. However, concentration on problems for which the
likelihood satisfies the above conditions simplifies the exposition consid-
erably, vet still allows for some non-trivial cases as the following two
examples illustrate.

Example 1 Suppose x” is a realization of a time series for which
the conditional density of x, given x*~! is fj(x) depending on
the scalar parameter 6. In this case, the log-likelihood is
£,(0) = Y\, log fis(x;) and, under familiar regularity conditions
(e.g. ch. 6 of Hall and Heyde, 1980), the score process 3¢,/90 =
Y i dlogfip(x)/30 =Y ., en is a martingale. The quantity
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Lo=3tq Era (efe) is the conditional variance of the martin-
gale and measures conditional information (it reduces to the
standard Fisher information when the x, are independent).
Under quite general conditions, it is known (Hall and H_iyde,
1980, proposition 6.1) that the normed quantity &, = I, %3¢,/
99 satisfies a martingale central limit theorem and converges to
the mixed Gaussian law n;N(0, 1), where ny is the limit in
probability of E(l,;)"'I, and is generally random. This time
series set-up fits our general framework when we can choose a
scalar sequence D, for which D;2E(l,;) converges to a con-
stant, which will be the case when the ¢, are stationary and
ergodic martingale differences and then D, = /n.

Example 2 The Gaussian non-stationary autoregression (1) has
log-likelihood (2) and we can choose D, = n. Then, it is well
known from unit-root asymptotic theory (see Phillips and
Xiao, 1998, for a recent review? that the normed quantities
nae,/00 = ;“-Ex,_lu,, and —n~'&¢,/06" = ;"czx,z_l converge
in distribution to certain functionals of Brownian motion.
Again this example satisfies all the above requirements.

We are now in a position to state the main result of Ploberger and
Phillips (1998). We presume that for each n € N we have a given empirical
model represented by the proper probability measure G, and that the
assumptions given above apply. (Some additional technical conditions
are used in Ploberger and Phillips and these too are assumed to be ful-
filled.)

Proposition 1 For all a, £ > 0 the Lebesgue measure of the set

{9 : Pg[-‘ log:ﬁ: =< ! gslogdetB,,] > a}

converges 1o zero.

This resuli may be interpreted as follows. Up to a ‘small’ exceptional
set, the empirical model G, canhot come nearer to the true DGP than
Llogdet B,,. Since G, is arbitrary, the result tells us that there is a bound
on how close any empirical model can come to the truth and that this
bound depends on the data through B,,.

Phillips (1996) and Phillips and Ploberger (1996) show how to
construct empirical models for which

—(log g%:)/(log det B,) — —;— Y]
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These models can be formed by taking G, to be the Bayesian data mea-
sure Q, for proper Bayesian priors. Or, in the case of improper priors, the
models G, may be obtained by taking the conditional Bayes measures
Qn.n,» Which will be proper for all ny > k, and these can be assessed
against the corresponding true conditional DGP of x;, given x,,. In the
latter case, we may also take G, to be the classical (or prequential)
measure, P,,, which is asymptotically equivalent to the conditional
Bayes measure Q, , .

Given the feasibility of (7), it seems sensible to define ‘essentially better’
models as models G, for which

—(los ‘%) /(logdet B,) < 1—‘2'—3 ®)

for some ¢ > 0. The above inequality needs to be made more precise
because both logdG,/dP, and logdet B, are random variables, and so

the event 4,= [— (log :'—g:) [(logdet B,) < 1%‘] may be nontrivial. How-

ever, if the probability of the event 4, converges to zero, one cannot
reasonably define G, to be essentially better because the sample space
over which the inequality (8) holds has negligible probability. Therefore,
for a model to be essentially better, we must postulate the existence of an
a > 0 for which Py(4,) = @, and then the probability of events such as 4,
is non-negligible. What the proposition tells us is that the set of such
essentially better models has Lebesgue measure zero in the parameter
space in R* as n — oo0. In this well defined sense, we can generally expect
to be able to do no better in modelling the DGP than to use the models

Qr. Quny OF Py,

4 Conseguences

The upshot of proposition 1 is that for time series where there is apparent
non-stationarity, the smallest possible ‘distance’ of the empirical model
from the truth is given not by the quantity £logn, but by 1logdet B,.
When the data are stationary, these two benchmarks are asymptotically
equivalent. More specifically, in the stationary and ergodic case, it is
apparent that B, ~ nl, where [ = —E(%log ff(x,)/aeae’) is the Fisher
information matrix. Then, we have det B, ~ n" det] and it follows that
logdet B,/(klogn) —, 1.

In the non-stationary case, the two bounds are different. The distance
}logdet B, in the general case is determined by the logarithm of the
determinant of the conditional variation matrix of the score process, a
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form of Fisher information. Moreover, (6) and the weak convergence of
M, to some non-singular matrix implies that

logdet 8, o
2logdetD, 7

so that, under our assumptions here, the asymptotic behaviour of the
deterministic sequence

2logdet D,

essentially determines how ‘near’ we can get to the true DGP.

In the stationary case, it is relatively easy to compare the ‘loss’ from
parameter estimation in different parameter spaces. Rissanen’s theorem
states that the loss due to parameter estimation is essentially determined
by the dimension of the parameter space.! In the presence of non-
stationarities, however, the situation changes. It is not the dimension of
the parameter space (which we can think of as the simplest quantity
associated with the complexity of the model class) that determines the
distance of the model to the true DGP, but the order of magnitude of the
first and the second derivatives of the log-likelihood, which in our case
here is essentially represented by the matrix D,,. In some commonly aris-
ing cases, the matrices D, are diagonal and the diagonal elements are
given by simple powers of the sample size, n™, and then we have

' k
logdet D, ~ (Z a,-) logn (10)

i=]

©)

In the example below, we analyse the special case of a linear regression
model. We show that in cases of primary interest to econometricians
o, =1, with inequality occurring for at least one diagonal element i. In
such cases, the distance of the model to the DGP increases faster than in
the traditional case. Thus, when non-stationary regressors are present, it
appears to be even more important to keep the model as simple as pos-
sible. An additional non-stationary component in a linear regression .
model turns out to be motre expensive than a stationary regressor in
terms of the marginal increase in the nearest possible distance to the
DGP. In effect, non-stationary regressors have a powerful signal and
generally have estimated coefficients that display faster rates of conver-
gence than those of stationary regressors. But they can also be powerfully
wrong in prediction when inappropriate and so the loss from including

1 Rissanen (1996) investigates the role of the information matrix for stationary processes.
The dominant term, however, in that context is simply the dimension of the parameter
space.
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non-stationary regressors is correspondingly higher. In a very real sense,
therefore, the true DGP turns out to be more elusive when there is non-
stationarity in the data!

The above remarks apply regardless of the modelling methodology
that is involved. Neither Bayesian nor classical techniques can overcome
this bound. As the statement of the proposition itself makes clear, the
bound can be improved only in ‘special’ situations, like those where we
have extra information about the true DGP and do not have to estimate
all the parameters (¢.g. we may ‘know’ that there is a unit root in the
model, or by divine inspiration hit upon the right value of a parameter).
On the other hand, Phillips (1996) and Phillips and Ploberger (1996) show
under conditions similar to the ones considered here {or those in
Ploberger and Phillips, 1998), that the bound is attainable and can be
achieved by both Bayesian models and plug-in prequential models.

Example 3 Consider the linear model

Y= X0+ u, (11)

where y, is scalar, x, is a k-vector and the u, are i.i.d. Gaussian
with known variance, which we set to one. We assume the x, to
be (weakly) exogenous in the sense of Engle, Hendry and
Richard (1983). This condition allows us to substitute for the
full joint likelihood the concentrated log-likelihood

1
60) = ~3 ) 0 — %) (i2)
The function is quadratic and the conditional variance matrix of
the score is
B, = Zx,x}

=n

To illustrate the points made above about the growth (cf. (10)) of our
bound, we start by taking the special case where x, has the following form

=Lt Wyeoo, W Zpsoe ., Zp), (13)

where W, ..., W, are (full-rank) integrated (i.e. unit-root) processes and
Z,, ..., Z, are stationary processes with non-singular variance matrices.
It is easily seen that D, = diag(s/n, VP, n, .n, \/n, ../n). Hence, applying
formula (9), we have
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logdet B, 51
20+3+m+Plogn

It follows from this formula that the inclusion of a deterministic trend
‘costs’ (in terms of the distance between the empirical model and the
DGP) three times as much as the lack of knowledge about the constant
or the coefficient of a stationary variable, whereas the inclusion of an
independent stochastic trend costs twice as much. Similarly, a polynomial
time trend of degree ¢ would cost 29 + 1 times as much as a stationary
ICEIessor.

In the gencral case where the regressors x; are stationary in some
directions, integrated in others and have some deterministic trend com-
ponents, it is possible to transform the system into one with regressors of
the form (13). Indeed, by rotating coordinates in the regressor space (cf.
Phillips, 1989, and Ploberger and Phillips, 1998), we can find a non-
singular matrix C for which Cx, has the form (13). In transformed coor-
dinates, we have the equivalent linear model y, = x{'6* + u,, where
xf = Cx, and 8" = C'~'9. Then, formula (14) above continues to apply
with p equalling the total number of stationary components (which
includes the number of cointegrating vectors) and m being the number
of primitive (i.e. not cointegrated) stochastic trends.

(14

Some implications for prediction

A direct analysis of the likelihood (12) helps to establish some results
about the best prediction in a linear model when the parameters are
unknown. Take the classical linear regression model (11) with g, i.i.d.
N(0,¢?) and o* known. If we knew the true parameter 8, the best pre-
dictor for y, given x, would equal x/4;. In practical empirical problems, of
course, the true parameter is unknown and has to be estimated, In place
of the optimal predictor x;6, therefore, we have to use another predictor
such as x,6,_;, where 8,_, is the OLS-estimator for & based on z'~! = (y
, %)%, Of course, we may also use more sophisticated methods relying on
the past history z*~!. So let us assume that we have given some predictors
¥, = ¥((x;, 27") for y,. Then, for fixed (t,x,,z"!) we can consider the
function

2
qdx, 2 = Jz%,exp(— %2‘)—)

which is evidently a proper density function, integrating to unity.
Therefore, the probability measure G' on the sample space defined by
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the density [],.,q(lx, 21} is a mode! (in our sense) for the data.?
Then, it is easily seen that

1
- mszd% =53 2 (0h =7 = 00— ¥’}

namely the difference between the sums of squared prediction errors for
the given predictor and the best possible predictor. Now we can apply our
proposition 1 and conclude that this difference must be (for Lebesgue-
almost all 8, of course) greater than our bound (14). This shows that there
is & natural bound on how close we can come to the optimal predictor, in
terms of mean-squared prediction error, and that this bound depends not
only on the parameter count but on the trend properties of the regressors.

5 Conclusion

In a certain way, our proposition helps to quantify the well-known opi-
nion of one of the editors of this volume that models with high-
dimensional parameter spaces are to be avoided. Increasing the
dimension of the parameter space carries a price in terms of the quanti-
tative bound of how close we can come to the ‘true’ DGP and, in con-
sequence, how closely we can reproduce the properties of the optimal
predictor. Qur proposition shows, further, that this price goes up when
we have trending data and when we use trending regressors. The price no
longer follows the (parameter count)*(logarithm of sample size) law, and
it becomes necessary to multiply the parameter count by an additional
factor that depends on the number and the type of trends in the regres-
SOTS.

No methodology can break this curse of dimensionality, at least for
almost all of the elements of the parameter space. The new element that
emerges from the present theory is that the curse is exacerbated when
non-stationary regressors and trending data are involved. Both in mod-
elling and in prediction, our results indicate that there are additional
gains to be had from parsimony in the formulation of models for trending
time series.

2 Strictly speaking, we should define a measure on the space of all y,, x,. But, we can use the
concept of exogenity mentioned earlier to restrict attention to conditional measures.
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