94.5.2. Spurious Regression and Generalized Least Squares, proposed by Peter C.B. Phillips and Douglas J. Hodgson. Let X_t be an I(1) n-vector process generated by

$$\Delta X_t = \nu_t = C(L)e_t, \qquad C(L) = \sum_{j=1}^{\infty} C_j L^j, \qquad \sum_{j=1}^{\infty} j^{1/2} |C_j| < \infty,$$

where $e_t \equiv \text{i.i.d.}(0, \Sigma_e)$ with finite fourth cumulants. Suppose that the matrix $C(1)\Sigma_e C(1)'$ is positive definite. Partition X_t as $X_t' = (X_{1t}', X_{2t}')$ into subvectors of dimension n_1 and n_2 . Consider the following two regressions:

$$X_{1t} = \hat{B}X_{2t} + \hat{u}_t, \tag{P1}$$

$$\Delta X_{1t} = \tilde{B}\Delta X_{2t} + \tilde{u}_t. \tag{P2}$$

- (a) Determine the asymptotic behavior of \hat{B} and \vec{B} and give a limit theory for these estimators appropriately scaled and centered.
- (b) Let \hat{P} be the estimated autoregressive coefficient in the following regression of the residuals from (P1):

$$\hat{u}_t = \hat{P}\hat{u}_{t-1} + \text{error.}$$

Determine the asymptotic behavior of \hat{P} and give a limit theory for an appropriately scaled and centered statistic based on \hat{P} .

(c) Use \hat{P} to apply a matrix Cochrane-Orcutt transformation to the data and thereby estimate the coefficient matrix from the linear regression

$$\tilde{X}_{1t} = Z_t \operatorname{vec}(B^*) + \operatorname{error}, \tag{P3}$$

$$\tilde{X}_{1t} = X_{1t} - \hat{P}X_{1t-1},$$

$$Z_t = I \otimes X'_{2t} - \hat{P} \otimes X'_{2t-1}.$$

Compare the estimates B^* and \tilde{B} . Is there any asymptotic relation between