94.2.6. Convergence of a Nonlinear Time Series Model, proposed by Peter C.B. Phillips. In the model

$$X_t = (\frac{1}{2} + \varepsilon_t) X_{t-1}, \qquad t = 1, 2, \dots$$

the shocks ε_t are independent and identically distributed with mean zero and variance $\frac{1}{4}$, and X_0 is a random variable with zero mean and finite variance $\sigma^2 > 0$.

Show that $Z_t = 2^{t/2}X_t$ converges almost surely as $t \to \infty$. (Hint: Use the martingale convergence theorem for a suitable function of Z_t .) Hence, show that $X_t \to_{a.s.} 0$ as $t \to \infty$.