93.4.4. Reduced Rank Regression Asymptotics in Multivariate Regression, proposed by Peter C.B. Phillips. In the multivariate regression model

$$y_t = \Pi x_t + u_t, \qquad (t = 1, ..., T),$$
 (1)

 y_t is an *n*-vector of dependent variables, x_t is an *m*-vector of nonrandom exogenous variables, and $u_t \equiv \text{i.i.d.} \ N(0,\Omega)$ with $\Omega > 0$ (positive definite). The coefficient matrix Π in (1) has the form

$$\Pi = \alpha \beta', \qquad \beta' \beta = 1, \tag{2}$$

where $\alpha(n \times 1)$ and $\beta(m \times 1)$ are unknown vectors of parameters. The condition $\beta'\beta = 1$, together with the requirement that the first nonzero element of β is positive, identifies the vector β in Π . It is proposed to estimate (α, β, Ω) in (1) by maximum likelihood. You may assume that $X'X/T = I_m$ for all T where $X' = [x_1, \ldots, x_T]$.

- (a) Show that the MLE $\hat{\beta}$ of β satisfies
 - $\hat{\beta} = \operatorname{argmin} |\beta' X' Q_Y X \beta| / |\beta' X' X \beta|,$

where $Q_Y = I - Y(Y'Y)^{-1}Y'$. Find the corresponding MLE's of α and Ω .

- (b) Prove that $\hat{\beta} \stackrel{p}{\rightarrow} \beta$.
- (c) Find the limiting distribution of $\sqrt{T}(\hat{\beta} \beta)$ and $\sqrt{T}(\hat{\alpha} \alpha)$ and their joint limit distribution.

690 PROBLEMS AND SOLUTIONS

are estimated by maximum likelihood, giving the estimates $(\hat{\alpha}, \hat{\beta}) = \hat{\theta}$. The matrix $M_{xx} \to I_3$ as $T \to \infty$.

- (a) Find the asymptotic distribution of $\sqrt{T}(\hat{\theta} \theta)$ as $T \to \infty$.
- (b) Construct a Wald statistic for testing the hypothesis

$$H_0$$
: $\alpha\beta = 0$

and find its limit distribution as $T \to \infty$.

(c) Given x_{iT+1} , equation (1) is used to produce the forecast

$$\hat{y}_{T+1} = \hat{\alpha} x_{1T+1} + \hat{\beta} x_{2T+1} + \hat{\alpha} \hat{\beta} x_{3T+1}.$$

Find the asymptotic variance of the forecast error $y_{T+1} - \hat{y}_{T+1}$.

(d) If the true values of the parameters in equation (1) are $\alpha = \beta = 0$ (but this is not known to the econometrician), how are your answers to questions (a)–(c) affected?