93.4.5. Nonlinear Testing and Forecasting Asymptotics with Potential Rank Failure, proposed by Peter C.B. Phillips. In the model

$$y_t = \alpha x_{1t} + \beta x_{2t} + \alpha \beta x_{3t} + u_t, \qquad (t = 1, ..., T),$$

the x_{it} (i=1,2,3) are nonrandom with positive definite sample second moment matrix M_{xx} and $u_t \equiv i.i.d.$ $N(0,\sigma^2)$. The parameters $(\alpha,\beta) = \theta$ in (1)

690 PROBLEMS AND SOLUTIONS

are estimated by maximum likelihood, giving the estimates $(\hat{\alpha}, \hat{\beta}) = \hat{\theta}$. The matrix $M_{xx} \to I_3$ as $T \to \infty$.

- (a) Find the asymptotic distribution of $\sqrt{T}(\hat{\theta} \theta)$ as $T \to \infty$.
- (b) Construct a Wald statistic for testing the hypothesis

$$H_0: \alpha\beta = 0$$

and find its limit distribution as $T \to \infty$.

(c) Given x_{iT+1} , equation (1) is used to produce the forecast

$$\hat{y}_{T+1} = \hat{\alpha} x_{1T+1} + \hat{\beta} x_{2T+1} + \hat{\alpha} \hat{\beta} x_{3T+1}.$$

Find the asymptotic variance of the forecast error $y_{T+1} - \hat{y}_{T+1}$.

(d) If the true values of the parameters in equation (1) are $\alpha = \beta = 0$ (but this is not known to the econometrician), how are your answers to questions (a)-(c) affected?