92.3.4. Generalized Inverses of Partitioned Matrices, proposed by Peter C.B. Phillips. The covariance matrix Σ of the *m*-vector $x'_t = (x'_{1t}, x'_{2t})$ is partitioned conformably with Σ as

$$\Sigma = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}.$$

Suppose Σ_{11} and $\Sigma_{11\cdot 2}=\Sigma_{11}-\Sigma_{12}\Sigma_{22}^+\Sigma_{21}$ are nonsingular where the affix "+" signifies the Moore Penrose inverse of a matrix. Define $\Sigma_{22\cdot 1}=\Sigma_{22}$ – $\Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12}$.

(i) Prove that

$$\Sigma_{22+1}^+ = \Sigma_{22}^+ + \Sigma_{22}^+ \Sigma_{21}^- \Sigma_{11+2}^{-1} \Sigma_{12}^- \Sigma_{22}^+.$$

(ii) Show that

$$\Sigma^+ = \begin{bmatrix} \Sigma_{11+2}^{-1} & -\Sigma_{11+2}^{-1} \Sigma_{12} \Sigma_{22}^+ \\ -\Sigma_{22}^+ \Sigma_{21} \Sigma_{11+2}^{-1} & \Sigma_{22+1}^+ \end{bmatrix}.$$

 $\Sigma^{+} = \begin{bmatrix} \Sigma_{11\cdot 2}^{-1} & -\Sigma_{11\cdot 2}^{-1} \Sigma_{12} \Sigma_{22}^{+} \\ -\Sigma_{22}^{+} \Sigma_{21} \Sigma_{11\cdot 2}^{-1} & \Sigma_{22\cdot 1}^{+} \end{bmatrix}.$ Now suppose that $\Sigma_{11\cdot 2} = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{+} \Sigma_{21}$ and Σ_{11} may be singular. Define $\Sigma_{22\cdot 1} = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{+} \Sigma_{21}$ $\Sigma_{22}-\Sigma_{21}\Sigma_{11}^{+}\Sigma_{12}.$

(iii) Show that

$$\Sigma_g = \begin{bmatrix} \Sigma_{11+2}^+ & -\Sigma_{11+2}^+ \Sigma_{12} \Sigma_{22}^+ \\ -\Sigma_{22}^+ \Sigma_{21} \Sigma_{11+2}^+ & \Sigma_{22}^+ + \Sigma_{22}^+ \Sigma_{21} \Sigma_{11+2}^+ \Sigma_{12} \Sigma_{22}^+ \end{bmatrix}$$

is a generalized inverse of Σ . Is Σ_g a Moore Penrose inverse?

- (iv) Show that Σ_g is a generalized inverse of Σ if we replace the Moore Penrose inverses in its definition by arbitrary generalized inverses.
- 92.3.5. Efficiency of Maximum Likelihood, proposed by Peter C.B. Phillips. In the linear model

$$y_t = bx_t + u_t, \qquad (t = 1, \dots, n)$$
 (1)

the parameter has true value $b_0 \neq 0$ and $u_t \equiv \text{i.i.d. } N(0,b_0^2)$. The x_t are nonrandom and $n^{-1} \Sigma_1^n x_t^2 \to m_x > 0$ as $n \to \infty$.

- (i) Derive the asymptotic properties of the maximum likelihood estimator \tilde{b} of b_0 in (1).
- (ii) Compare the limit distribution of \tilde{b} to that of the OLS estimator \hat{b} of b_0 in (1). Is OLS asymptotically efficient?