89.3.4. Estimation and Testing in Linear Models with Singular Covariance Matrices, proposed by Peter C.B. Phillips. Consider the model

$$y_t = Z_t \beta + u_t, \qquad t = 1, \dots, T \tag{1}$$

where $\{u_t\} \equiv \text{i.i.d. } N(0, \Sigma)$, y_t is an n vector of endogenous variables, Z_t is an $n \times k$ matrix of exogenous variables, and β is an unknown parameter vector. The covariance matrix Σ is known to be singular and the data are known to satisfy

$$R'y_t = 0$$
, $R'Z_t = 0$ for all t

so that $R'u_t = 0$ with probability one for a certain (known) matrix R ($n \times r$) of rank r.

- 1. Find the likelihood function for the model (1) and by using the first-order conditions write down the estimating equations for the maximum-likelihood estimates of (β, Σ) .
- 2. Let $(\hat{\beta}, \hat{\Sigma})$ denote the least-squares estimates of (β, Σ) . Find the limiting distribution of $(\sqrt{T}(\hat{\beta} \beta), \sqrt{T}(\hat{\Sigma} \Sigma))$, stating any further conditions that you need to derive it.
- 3. Suppose k = n. Construct a Wald test of the null hypothesis

$$H_0: \beta' \Sigma \beta = 0$$

using the least-squares estimates $(\hat{\beta}, \hat{\Sigma})$ and give its limit distribution.

456 PROBLEMS AND SOLUTIONS

(i) Show that

$$M_{XX}^-\Sigma M_{MM}^-\underset{p}{\longrightarrow} \Sigma^+.$$

(ii) Find the limit distribution of

$$\sqrt{n}(M_{XX}^- - \Sigma^-)$$

and compare your result with that of part (3).