90.4.7. Geometry of the Equivalence of OLS and GLS in the Linear Model—Solution, proposed by Peter C.B. Phillips.

Proof of the Lemma

Part (a): $[\mathcal{M}_{\Omega}^{c} = \Omega(\mathcal{M}_{\Omega}^{\perp})]$. (\Rightarrow) If $\eta \in \mathcal{M}_{\Omega}^{c}$ then by definition we have $\eta'\Omega^{+}\epsilon = 0 \ \forall \epsilon \in \mathcal{M}$. Thus $a'\epsilon = 0$ where $a = \Omega^{+}\eta$ and since $\Re(\Omega) = \Re(\Omega^{+})$ we have $a \in \mathcal{M}_{\Omega}^{\perp}$. It follows that $\Omega a = \Omega\Omega^{+}\eta$. But $\eta \in \Re(\Omega)$ and $\Omega\Omega^{+}$ is the identity on $\Re(\Omega)$ so that $\eta = \Omega a$. Thus $\eta \in \Omega(\mathcal{M}_{\Omega}^{\perp})$.

(\Leftarrow) Now take $\eta = \Omega a$ with $a \in \mathcal{M}_{\Omega}^{\perp}$. Then for all ϵ ($= \Omega b$, say) in \mathcal{M} we have $\eta'\Omega^{+}\epsilon = a'\Omega b = a'\epsilon = 0$. It follows by definition that $\eta \in \mathcal{M}_{\Omega}^{\epsilon}$.

Part (b):
$$[[\Omega(\mathcal{M}_{\Omega}^{\perp})]_{\Omega}^{\perp} = \Omega^{+}\mathcal{M}]$$
. By part (a), we have

$$\Omega(\mathcal{M}_{\Omega}^{\perp}) = \{ \eta = \Omega x | \eta' \Omega^{+} \epsilon = 0 \ \forall \epsilon \in \mathcal{M} \} = \{ \Omega x | x' \Omega \Omega^{+} \epsilon = 0 \ \forall \epsilon \in \mathcal{M} \}.$$

Hence

$$(\Omega(\mathcal{M}_{\Omega}^{\perp}))_{\Omega}^{\perp} = \{\Omega^{+} \epsilon \mid \epsilon \in \mathcal{M}\} = \Omega^{+} \mathcal{M},$$

as required.

Proof of the Theorem: [OLS = GLS iff $\Omega^+ \mathcal{M} = \mathcal{M}$ iff $\Omega \mathcal{M} = \mathcal{M}$].

We write $\Re(\Omega) = \mathbb{M} \oplus \mathbb{M}_{\Omega}^{\perp} = \mathbb{M} \oplus \Omega(\mathbb{M}_{\Omega}^{\perp})$. Then OLS and GLS estimates of $X\beta$ in (1) are obtained by projections on \mathbb{M} along $\mathbb{M}_{\Omega}^{\perp}$ and $\Omega(\mathbb{M}_{\Omega}^{\perp})$, respectively. Thus, OLS = GLS iff $\Omega(\mathbb{M}_{\Omega}^{\perp}) = \mathbb{M}_{\Omega}^{\perp}$ iff $(\Omega(\mathbb{M}_{\Omega}^{\perp}))_{\Omega}^{\perp} = \mathbb{M}$ iff $\Omega^{+} \mathbb{M} = \mathbb{M}$ iff $\Omega \mathbb{M} = \mathbb{M}$. The final "iff" follows because: $(\Rightarrow) \Omega^{+} \mathbb{M} = \mathbb{M}$ implies $\Omega\Omega^{+} \mathbb{M} = \Omega \mathbb{M} = \mathbb{M}$ since $\Omega\Omega^{+}$ is the identity on $\Re(\Omega)$ and hence \mathbb{M} ; and $(\Leftarrow) \Omega \mathbb{M} = \mathbb{M}$ implies $\Omega^{+}\Omega \mathbb{M} = \Omega^{+}\mathbb{M} = \mathbb{M}$ since $\Omega^{+}\Omega$ also keeps elements of \mathbb{M} invariant.

Discussion

The innovation in the above treatment is part (a) of the lemma. This characterizes the Ω -conjugate subspace \mathcal{M}_{Ω}^c as the image of $\mathcal{M}_{\Omega}^{\perp}$ under the mapping Ω . OLS and GLS are equivalent when projections onto \mathcal{M} along \mathcal{M}_{Ω}^c are orthogonal projections. This will occur when and only when the orthog-

onal complement of \mathcal{M}_{Ω}^c in $\mathcal{R}(\Omega)$ is \mathcal{M} . Part (b) of the lemma tells us that this occurs when $\Omega^+\mathcal{M}=\mathcal{M}$ and the Kruskal [1] condition $\Omega\mathcal{M}=\mathcal{M}$ then follows directly.

REFERENCES

- 1. Kruskal, W. When are Gauss Markov and least squares estimators identical: A coordinate free approach. *Annals of Mathematical Statistics* 39 (1968): 70-75.
- 2. Malinvaud, E. Statistical Methods of Econometrics. Amsterdam: North Holland, 1980.