90.2.6 Joint Estimation of Equilibrium Coefficients and Short-Run Dynamics, proposed by P.C.B. Phillips. Consider the model

$$y_{t} = x'_{t}\beta + z'_{t}\gamma + u_{1t},$$

$$z_{t} = u_{2t},$$

$$x_{t} = x_{t-1} + u_{3t},$$
(1)

where $t=1,\ldots,n$, $x_0=0$ and $u_t'=(u_{1t},u_{2t},u_{3t})$ is strictly stationary and ergodic with zero mean and covariance matrix Σ . The vector z_t in (1) is strictly exogenous (i.e. $E(z_tu_{1s})=0$ for all t and s), and u_{1t} is a martingale difference sequence with respect to the filtration $\mathfrak{F}_{t-1}=\sigma(u_{1t-1},u_{1t-2},\ldots;(u_{2s},u_{3s})_{-\infty}^{\infty})$, i.e. $E(u_{1t}|\mathfrak{F}_{t-1})=0$, and u_t satisfies the invariance principle $n^{-1/2}\Sigma_1^{[nr]}u_t\to_d B(r)\equiv \mathrm{BM}(\Omega)$ where

$$\Omega = \begin{bmatrix} \omega_{11} & 0 & 0 \\ 0 & \Omega_{22} & \Omega_{23} \\ 0 & \Omega'_{23} & \Omega_{33} \end{bmatrix}.$$
(2)

Let $\hat{\beta}$ and $\hat{\gamma}$ be the OLS estimators of β and γ in (1). Find the limit distributions and joint limit distributions of these estimators. What do you conclude from these results about the nature of the dependence between estimators of the long-run equilibrium coefficients β and the short-run or stationary dynamic coefficients γ ?