88.1.3 Structural Estimation under Partial Identification, proposed by P.C.B. Phillips. Consider the following single equation of a simultaneous system:

$$y_1 = Y_2 \beta_2 + Y_3 \beta_3 + X_1 \gamma + u \tag{1}$$

with reduced form

or

$$Y = XII + V. (3)$$

Suppose $\Pi_{23} = 0$, rank $(\Pi_{22}) = n_2$, $\beta_2 = 0$, and $K_2 \ge n_2 + n_3$. Assume that standardizing transformations have been carried out, so that the rows of

 $[y_1, Y_2, Y_3]$ are i.i.d. $N(0, I_n)$, where $n = 1 + n_2 + n_3$. Let $(\hat{\beta}_2', \hat{\beta}_3')$ denote the two-stage least squares (2SLS) estimator of (β_2', β_3') .

- (i) Find the distribution of $\hat{\beta}_3$. What happens to this distribution as $T \uparrow \infty$?
- (ii) Assuming that X'X/T tends to a positive definite matrix as $T \uparrow \infty$, how would you analyze the asymptotic distribution of $\hat{\beta}_2$? How do your results accord with conventional asymptotic theory?