Use the Kalman filter technique to obtain the analytic expression for the exact log-likelihood function of $(x_1, x_2, \ldots, x_t, \ldots, x_T)'$.

85.1.4 A Nonnormal Limiting Distribution, proposed by Peter C. B. Phillips. In the structural equation

$$y_1 = y_2 \beta + Z_1 \gamma + u,$$

 y_1 and y_2 are $T \times 1$ observation vectors, Z_1 is a $T \times K_1$ matrix of observations of exogenous variables and u is a $T \times 1$ vector of random disturbances. The reduced form equations for (y_1, y_2) are

$$(\mathbf{y}_1, \mathbf{y}_2) = Z_1 \Pi_1 + (v_1, v_2) = Z_1 \Pi_1 + V$$

Note that β is not identifiable with this reduced form. If $H = [Z_1 : Z^*]$ is a matrix of $K_1 + 1$ instruments of full rank, the instrumental variable estimator of β is given by

$$\begin{split} b &= [y_2'(P_H - P_{Z_1})y_2]^{-1}[y_2'(P_H - P_{Z_1})y_1] \\ &= (y_2'cc'y_2)^{-1}(y_2'cc'y_1) \\ &= X_1/X_2, \end{split}$$

where $P_A = A(A'A)^{-1}A'$, c is the (orthonormalized) latent vector that spans the range space of $P_H - P_{Z_1}$ and $X_1 = c'y_1$, $X_2 = c'y_2$.

1. If (X_1, X_2) has a uniform distribution over the rectangle $[-a, a] \times [-a, a]$ show that the probability density of b is

$$pdf(b) = \begin{cases} \frac{1}{4} & -1 \le b \le 1\\ 1/4b^2 & |b| > 1. \end{cases}$$

- 2. If the rows of V, that is (v_{1t}, v_{2t}) have independent uniform distributions over the rectangle $[-a, a] \times [-a, a]$ show that the limiting distribution of b is Cauchy.
- 3. Does the result in Problem 2 hold under more general conditions?