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I. INTRODUCTION

In recent non-stationary time series applications, it has been extremely
common to mode] time series with roots near unity using the device of an
autoregressive root that is local to unity. Some early studies of near unit root
non-stationary time series include developments of local alternatives to unit
root specifications (Bobkoski, 1983; Phillips, 1987), derivations of power
functions and power envelopes of unit root tests (e.g., Cavanagh, 1985;
Phillips, 1987; Johansen, 1991), and the construction of confidence intervals
for the long-run autoregressive coefficient (Stock, 1991). More recent
research on near unit root non-stationary time series investigates the
efficient extraction of deterministic trends (Phillips and Lee, 1996; Canjels
and Watson, 1997), and the construction of point optimal invariant tests for
a unit root (Elliott, Rotherberg and Stock, 1996) and cointegrating rank
(Xiao and Phillips, 1999). For further examples, readers can refer to recent
surveys on unit root processes (e.g., Stock, 1994; Phillips and Xiao, 1998).

Like other parameters in econometric models, localizing parameters in
near integrated processes are not usually observable. But, implementation
of some methods in the aforementioned studies requires knowledge of the
localizing parameter or a consistent estimate of it. For example, it is well
known that efficiency gains in the estimation of deterministic trends can be
obtained by quasi-differencing the data using the unknown localizing
parameter {e.g. Phillips and Lee, 1996; Canjels and Watson, 1997). How-
ever, if we implement this procedure using inconsistent estimates of the
localizing parameter, then the limmt distribution of the resulting trend coef-
ficient estimator is highly non-standard, which introduces new difficulties,
for example, in constructing confidence intervals for the trend coefficient.
Largely because of this problem, Cavanagh, Elliott and Stock (1995) and
Canjels and Watson (1997) suggested the use of Bonferroni-type confidence
intervals, which are often very conservative.

Finding a consistent estimate of the localizing parameter is not straight-
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forward. Obvious procedures like the use of least squares are well known to
be inconsistent (Phillips, 1987); and, even in the simplest framework,
consistent estimation inevitably involves the introduction of additional
information. In view of its potential applications in both estimation and
inference, the problem of consistent estimation of the localizing parameter
in local to unity models poses an interesting problem with important
implications. Two recent studies that consider the subject are Moon and
Phillips (1998) and Phillips, Moon and Xiao (1998).

The main purpose of this paper is to investigate the asymptotic properties
of the Gaussian maximum likelihood estimators (MLE) of the localizing
parameter in local to unity dynamic panel regression models. The model we
consider here ailows for the panel to be generated with deterministic and
stochastic trends, and a common localizing parameter is assumed to apply
across individuals. Commonality of the localizing parameter is restrictive,
but is no more restrictive than the conventional assumption of common AR
parameters in stationary dynamic panels (e.g., Nickell, 1981). Two different
models are considered: a homogeneous trend model in which the determi-
nistic trends are homogeneous across the individuals in the panel; and a
heterogeneous trend model where the deterministic trends may vary across
individuals, much like fixed individual effects. In the homogeneous trend
model we show that the Gaussian MLE of the common localizing parameter
is v/ N-consistent and has a limiting normal distribution that is the same as
that in the case where the trends are known. In the heterogencous trends
model it i1s shown that the Gaussian MLE of the localizing parameter is
inconsistent.

The inconsistency of the MLE of the localizing parameter in the hetero-
geneous trend model is an instance of the so-called incidental parameter
problem originally explored by Neyman and Scott (1948). In this model, the
heterogenous trend coefficients correspond to incidental parameters whose
number goes to infinity as the cross-section dimension N — oc. Such
probiems frequently appear in panel data models with fixed effects, a well-
known example being the dynamic panel regression model with fixed
effects. In this case, the MLE of the lagged dependent variable coefficient
that is common over individuals is inconsistent if N — oo while the sample
size dimension, T, is fixed (Nickell, 1981). In most panel data situations this
incidental parameter problem disappears when 7 passes to infinity also
(e.g., Alvarez and Arellano, 1998; Hahn, 1998). A particularly interesting
aspect of the incidental parameter problem discovered in this paper is that
the inconsistency of the MLE of the localizing parameter does not disappear
even when both N and T tend to infinity.

The paper is organized as follows. Section 2 lays out the model and
assumptions, and shows that when the deterministic components are known,
the Gaussian MLE of the localizing parameter is consistent. Section 3
studies asymptotic properties of the Gaussian MLE of the panel regression
model with unknown deterministic trends. Section 4 reports some Monte
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Carlo simulations that investigate the magnitude of the inconsistency.
Section 5 concludes and offers some suggestions for dealing with the
inconsistency. Proofs and technical derivations are collected in the Appen-
dix in the last section.

Our notation is mostly standard. We use ‘—,” and ‘=’ to denote
convergence in probability and convergence in distribution, respectively.
The notation (N, T — oo) implies that N and T tend to infinity together,
while (N, T — 00)seq means that the indices pass to infinity sequentially
(first 7 and then N). Standard Brownian motion is denoted by W (7).

1. NEAR INTEGRATED PANELS: PRELIMINARY THEORY

We start by introducing a panel regression model where data z, are gener-
ated by deterministic trends Gi(#) and near integrated stochastic trends y;,
as follows:

%‘,t:Gi(r)+Yi,ta t:l,...,T;i=1,...,N, (1)

c c
Vit = QVir—1 + &y, a4 =€Xp (?) ~ (] + ..f)

The parameter ¢ in (1) is a local to unity parameter that is common to all
individuals in the panel. The main purpose of this paper is to investigate
asymptotic properties of the MLE of the localizing parameter c.

To provide some intuition, we first consider the simple case where
yir = zi, — Gi(?) is observable, abstracting from the problem of ﬁtting the
deterministic component in (1). Assume that the errors g, are i.a.d.
N(0, 02), and, for simplicity in this section, that o2 is known and that the
initial observations y;p = 0 for all i. Under these assumptions the standar-
dized log-likelihood function of the panel data ™7 = (311, ..., yn,7) is

T

R c 2
LN,T(yN*T§ c)=— "oIN Z Z (Ayg,g - ?yi,t—-l) + constant. (2)

=1 =1

Let ¢y denote the true localizing parameter, and assume that ¢, is an
element of the interior of a convex set of R. Define ¢ cp) =
Ay, — (co/ T)yis-1. Then, the MLE of ¢ is obtained by maximizing the
standardized log-likelihood

© Blackwell Publishers 1999
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Ly 7™ €) — Ly v (0™ 7; ¢o)

1 N T
3 oo
i=1

t=1

which is quadratic in c.
According to Lemma 6(c) and (d) in the Appendix, as (N, T — oc), we
have

1 1 d hr 2e9(r—s
SIN T2 Vi —m“oe s dr

and

1 1<
PEEY; > T > S agidco) =0,

It follows that

Lvs(™75 ¢) — Lu 7™ T; co)

1pr
=5 e — e (J || exetrnas dr) = i, o),
2 oJo

say for each ¢, as (N T — oc). Note that the objective function
Ly (YT ) — Ly, T( y™T, ¢p) is concave in ¢ over R and the limit func-
tion /(c, co) has a unique maximum at ¢y and is continuous and concave in
¢ over R Thus, the MLE ¢ is consistent for ¢y by standard theory for
extremum estimator (e.g., Theorem 2.7 in Newey and McFadden, 1994).

In this particular case, the MLE has the closed form

¢=T(@-1),
where
N T sy o7
= (Zzyﬁ_ ) (ZZJ’:‘,:—U’:‘,:)-
i=1 =1 i=1 (=1

i© Blackwell Publishers 1999
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Using Lemma 6(a) and Lemma 6(c) in the Appendix, we can show that as
(N, T — )

0.2

[es)

Therefore, when y;,; is observable (i.e., when Gi(f) in model (1) is knoyg),
the Gaussian MLE ¢ of the common localizing parameter ¢ is v/ V-
consistent and weakly convergent to the normal distribution (3).

The question to be explored in the present paper is whether these
asymptotic properties (particularly, the consistency and asymptotic norm-
ality of the Gaussian MLE of ¢) continue to hold in panel models with
unknown deterministic trends. It is known from Moon and Phillips (1998)
that the OLS estimator of ¢ is inconsistent under these circumstances, viz.
when the deterministic trends are estimated and eliminated by prior regres-
sion.

Before proceeding further, we introduce the following three assumptions
which will be maintained throughout the paper.

VN(@E - )= N[0,

Assumption 1 (Error Normality). The ¢, are i.i.d. N(0, g3) across i and
over I,

Assumption 2 (Parameter Set)

(a) The localizing parameter ¢ and the variance parameter o? of g, take
values in a compact subset C X V of R2,

(b) The true localizing parameter ¢y and the true variance parameter G
are in interior of the parameter subsets C and V, respectively.

Assumption 3 (Initial Conditions). y,o = 0 forall i.

Assumption 3 on the initial condition is made mainly to simplify the
arguments that follow. When the initial errors y;o are random, the corre-
sponding log-likelihood is obtained by conditioning on the initial errors.
Some changes in the limit theory are to be expected in the case of distant
initial conditions, as in Phillips and Lee (1996) and Canjels and Watson
(1997), but otherwise this assumption has little bearing on the main results.

1. ESTIMATION WHEN THE TRENDS ARE UNKNOWN

This section studies the realistic situation of the panel model (1) when the
trend functions are unknown. The following two subsections investigate the
two cases of homogeneous deterministic trends and heterogeneous determi-
nistic trends.

© Blackwell Publishers 1999
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3.1. Homogeneous Trends

Suppose G;(7) in (1) is linear and homogeneous across i. Specifically, let us
impose the following condition.

Assumption 4 (Homogeneous Trends). G(t) = 6t.

The linear trend assumption is relevant for much empirical work and it
simplifies formulae and derivations. However, the main thrust of the theory
in this section continues to hold for general polynomial trends.

Let &y denote the true value of 6. Then the data z; ¢ are generated by

Ze = 0ot + i
c
Yir = (1 +3'2) Vij—1 + & .
Let zVT =(zy,, ..., zx,r)", and define y; (O) = z; — 8¢, and & (9, ¢) =

Vi) — (L + [c/ T]) Vii— 1(5) Let A, be the quasi-differencing operator,
A, =1~ aL, where L is the lag operator and a = 1 + (¢/ 7).

Under the Gaussian assumption, the log-likelihood function of the panel
data zV7 is

Ly r(c, 6, 0*; 27

NT P T -1\
i oo )

=1

It

Since the parameter ¢ is our main interest, we focus on the concentrated
log-likelihood. For fixed ¢ and 02, the log-likelihood Ly 7(c, 0, 02; z¥-T) is
maximized by 6(c), where

») — 1 i1
§ 3215 (e 0 - - e 2 00)
T 2

1

(4)

Substituting d(c) in Ly 7(c, 8, 62; zM7) gives the following concentrated
log-likelihood function:

© Blackwell Publishers 1999
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N T
LN T(C 6(0)5 , )

NI, , 1 &E A t—1\\’
= ——-logo —EE-Z-ZZ(ACZ,-,,~—6(C)(1—C - ))

i=1 =1
Maximizing Ly, r(c, d(c), 0%; z¥7), we find the MLE of 62 as

#0431 (s -1 5 )
N:l — c4i,f T .

Plugging 62(c) into Ly 7{c, &(c), o%; z¥7T) leads to the following concen-
trated log-likelihood:

Ly (e, 8(c), 63(c); 2T

NT 1M1 & r—N\\*\ AwT
= =5 log (ﬁz ?Z( cBt = a(c)( T )) ) Y

NT 1 & r—N\2\ NT
:—TIOg( E E ( eZit — ‘5("3)( I—c¢ T )))—7

=1 =1

NT

The MLE ¢ is obtained by maximizing the concentrated log-likelihood
Ly 1(c, 8(c), 6%c); zV°T), so that

Lyr(e, 8(2), 6%(2): 2%T) = max Ly s(c, 8(c). 6%(e)s 2T), (8)

which is equivalent to maximizing’

maxly.7(c, 8(c), 6%(c); z™7),
ce

where

In1lc, 8(c), 6%(c); 2V7)

_ —ﬁiZ(Ac% _ S(C)(l -

f— 1))2
i=1 =1 T

1 & -1\\’
ﬁZZ(Amzﬂ (3((:0)( P )) (6)

i=l 1=

I'Notice that the second term, (1/ MY ST (A, 20 — 8()(1 ~ ¢°[# — 1/TDY, in (6) below
is not a function of ¢.

© Blackwell Publishers 1999
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~

To investigate the consistency of the MLE ¢ as (N, T — oc), we
write

In.1(c, 8(c), 6%(c); 2¥T)

1 L& ( ¥i,£0¢)
= —— €;,((0o, co) — (¢ — o) =
N 2 2 7

I

2
3(6)—60)(1—cr;1))
1 & i 1\ 2
+ 2—22{&,:(50, Co)—(é(co)—éo(l - )} . (7)

i=1 r=I

PR

It then follows that as (N, T — o)

i
Ire, 8(e), 6% 27) = — 5 (e - Co)zj

J e?U=Sdsdr  (8)
0

0

uniformly in ¢. The proof of (8) is given in the Appendix. Note that
the limit function —Xc— co)? [} [ e ~9dsdr, is continuous and
concave over R and is uniquely maximized at the true parameter
¢ = ¢p. Therefore, the MLE ¢ that maximizes the objective function
Iv,7(c, 8(¢c), 6%c); z¥-T) is consistent for the localizing parameter cq as
(N, T — c0) by standard asymptotic theory (e.g., Theorem 2.1 in
Newey and McFadden, 1994). Summarizing, we have the following
result.

Theorem 1. Under Assumptions 1-4, ¢ —, cg as (N, T — c0).

Next, we derive the limit distribution of &. Since the log-likelihood
function Ly r(c, 8(c), 6%(c); z™T) is differentiable with respect to ¢ and
since ¢ is consistent for ¢g, a point in an interior of the parameter set C,
the MLE ¢ solves the following first-order condition with probability
one;

@ Blackwell Poblishers 1999
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dLy (2, 8(2), 63(2); 2¥TY | BLa r(2, 8(8), 62(2); 2N T)
N dc - dc

1 & 3 Zi—i gt 1 :
— EZZ{AZE,,—&&)—&( 80— )}]

0

-1

Zit—1l gt 1
Pl L
( -0 )} ©)
where the second equality holds by the Envelope Function Theorem.

Theorem 2. Under Assumptions 1-4,

1

VN —c) = N[0, —

-
O‘%J. J 220 de dr
0J0

as (N, T — o0).

In view of (4), the MLE of the homogeneous trend coefficient § is found
to be

86(2) = — = — % , (10)
1—o— )
(-7
and as (N, T — o¢), it is possible to show that
- 2
VNT(5(8) — 80) = N [ 0, —— 28 (11)

J (1 — cor)’dr
0

The proof of (11) is straightforward using the results in Lemmas 6 and 7
and the consistency of ¢ and is therefore omitted. Summarizing, we have:

© Blackwell Publishers 1999
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Theorem 3. Under Assumptions 1-4,

. 2
VNT(B(@) — 80) = N [ 0, — 28

J (1 — eqr)?dr
0

as (N, T — o0).

Remarks

(a)

(b)

When the trends in the panel regression model (1) are homogeneous,
the Gaussian MLE & is v/ N-consistent and has an asymptotic normal
limit distribution that is equivalent to the normal limit distribution in
(3), a result that continues to hold in a model with general polynomial
deterministic trends.

Since d(c) is a non-linear function of ¢ in general, it is not easy to
find a closed-form solution of the first-order condition (9). In this
case, to solve the first-order condition (9), it would be common to
employ an iteration involving the use of a preliminary v/ N-consistent
estimator, ¢, say, which leads to a second-stage estimator via suitable
numerical optimization, such as Newton-Raphson. In the model (1),
a natural candidate for the preliminary estimator would be

L& (Z' Lo =1 -
. IR ))
AR 3 Zigl g, 1
X (Z Z(Azf,,—a(c))(m’r——a(c)T)), (12)
=1 t=1

where ¢ is arbitrarily chosen. Then, using the first step estimator ¢,
we may construct the following second step estimator;

¥ Iz A | 2\
(5 s015)

i=1 =

S2S NETRRE N
X (2D B —d@) == - d®—) . (13

i=1 r=l

An important feature of the first step estimator ¢ is that it is
asymptotically as efficient as the MLE ¢, because

1

VN@E—co) = N[0, — (14)

r ?
G%J J &2 =) g dr
0J0

the proof of which is provided in the Appendix.

(€ Blackwell Publishers 1999
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(c) From Theorem 2 we see that the asymptotic variance of vV N(& — ¢;)
depends on the true parameter ¢y. Figure 1 graphs the asymptotic
variance of \/\/@& — ¢p). As is apparent in the graph, the asymptotic
variance of N(¢ — cg) decreases rather rapidly to zero as cg in-
creases.

3.2. Heterogeneous Trends

Here we study the asymptotic properties of the MLE of the panel regression
model (1) with heterogeneous deterministic trends specified as follows.

Assumption 5 (Heterogeneous Trends). G,(t) = 6;1.

Suppose that the true trend coefficients are {dg;: i =1, ..., N}. Then,
the data z; ; are generated by the following parametric model:

Z s = 0t + Vi
C
Vit = (1 +?0) Vit-1 + &z (15)

Let (3N’0 = (50,1, ey (SQ,N)' and ZN’T == (21’1, ey ZN,T),- Define y,-,,(d,-) =
z, — &t and & (0, ©) = yA0) — (1 + [¢/ TPy 1(S).
Under Gaussianity, the standardized log-likelihood function is

—4 -2 g 2 4

Figure 1. Graph of the Asymptotic Variance of the MLE ¢

r Blackwell Publishers 1999
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N,T
™)

Given c, the MLE for o; is

5;-(@:(2(1-#”)) (ZAcm( p TI)),

leading to the concentrated log-likelihood function

Ly.r{c, o)™, o2, 27Ty

NT 1 T < t— 1\’
= 77]0g0 Wﬁ;;(ACZi,t_di(c)(l_c T )) ’ (16)
where 8(c)¥ = (b1(c), . 5N(C))’

We seek to show that ¢, the MLE of ¢ maximizing Ly r(c, 6(c)N

a?; M T) is inconsistent. To do so, it is simplest to assume that the variance
of & ,, 0, is known. By definition

Aczi,t = 50,£Act + Acyi,r(a[),i) = 60,1'Act + Ac()yi,f(ao,i) + (Ac - Aco)yi,t(d{),i)

t—1 P, e
= 60’5 1 el ¥ ) '+" gi,t(ao’j,’ CO) _ (C _ CO) yl,f I( 0,1) ,
r T
S0 we can write

N

SILENT 8V, ) - LM V(e <o)

_ Sl 5 yzr 1(601)
— 202NZZ E”( OJ:CO)_(C T

i=1 t=1

2
— (i) - ao,f)(l - c"’Tl)}

N T

| .
Tog2N > Z{Eﬁr(aﬂ,ia co) — (di(co) — 0o,1) (1 — ¢co

i=l =l

’;1)}2. a7

Lemma 4 Suppose Assumptions 1-3 and 5 hold and that the variance of
&, + 0% is known. Then, as (N, T — 0),

iC; Blackwell Publishers 1999
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1 .
FLE"T 850, 0 - 1M 8, o)

1 el rAS
(¢ — c0)2J J (1 —er)(1— CS)J et g ds dr
0Jo 0

—

P

1
2J (1 - cr)dr
[}

1pr
2(¢c — Co)J J e — er)(l — cs)ds dr
0Jo

i
2J (1 — cr)’dr
0

1 pr

|
—=(c— CU)ZJ J 2= ds dr
2 0

0
= G{c; cp), say, uniformly in c.

According to this lemma, the standardized concentrated log-likelihood
function, (1/N)[L(z¥:T; (5N(c) c) — L(zMT; 6%¥, ¢4)], has the uniform
limit G{c; co) a function that is continuous on the parameter set C. Hence,
the MLE ¢ that maximizes (1/N)[L(z"""; o (c), €) = L(z™"5 8%, co)]
converges in probability to the point that maximizes the limit function
G{c; co). For the MLE ¢ to be consistent, the true parameter ¢g must
maximize G(c; ¢p); and, conversely, if some point ¢ £ ¢y maximizes
G(c; cp), then the MLE ¢ is not consistent.

We proceed to differentiate G(c; cy) with respect to ¢ and evaluate the
derivative at ¢ = ¢(. Since the true parameter ¢y is in an interior of the
parameter set C and the limit function G(c; ¢p) is differentiable, if ¢y
maximizes G{(c; ¢p), its first derivative at ¢ = ¢y must necessarily be zero.
However, direct calculation shows that

dG(c; co)

=7
dc ’

L pr 1
—j j e =1 — er)(1 — es)ds dr J (1 — crYdr
040 0
i 2
(J (1 - cr)zdr)
0

70 (18)

c=cp

- =3+ 2¢p
6(1 — co + Hco)?)

@ Blackwell Publishers 1999
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if ¢ 76 . Therefore, for all cp 7& 2 the limit function G(c; co) cannot attain
a max1mum at ¢ = ¢g. For ¢y = 2 we graph the function G{c; 2) in Flgure 2.
As the figure shows, the limit function G(c ) has a local minimum at
c= and s0 G(c; ¢p) does not attain a maximum at ¢ = ¢q for any value of
Cp.

In summary, we have the following result.

Theorem 5 (Inconsistency). Suppose Assumptions 1-3 and 5 hold. Then,
the MLE ¢ is inconsistent when (N, T — o0).

Remarks

(a) From (18), it is apparent that {dG(c; ¢p)/dc]|;=, tends to zero as |co|
increases to infinity. So when the absolute value of ¢y is large, we
may expect the limit function to be maximized at a value close to cj.
In such cases, the probability limit of the MLE can be expected to be
close to the true parameter ¢, even though the MLE is inconsistent.
To investigate, we present graphs of the limit functions G(c, 4) and
G(c, —8) in Figures 3 and 4, respectively. When the true parameter
co =4, the limit of the standardized concentrated log-likelihood
G(c, 4) is maximized around ¢ = 4.057, which is close to the true
parameter value, involving only a 1 percent bias. On the other hand,
when the true parameter ¢y = —8, G(¢, —8) is maximized around
c = —10.27, giving a 28 percent asymptotic bias. These results
indicate that we can expect the inconsistency of the MLE to be
greater when ¢ is negative.

(b) The inconsistency of the MLE ¢ in the above theorem is an instance
of the so-called incidental parameter problem (Neyman and Scott,
1948). Incidental parameter problems are known to arise in other
panel data regression models, the celebrated example being the

0.12
0.10
0.08
0.061
0.04 1
0.02

c

Figure 2. Graph of G(c, 3)
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c
3.6 37 38 39 4 4.1 42 43

0 + + } t » + i
—0.11 \

—-0.21

~0.3
—04]
0.5
0]
—0.7]

Figure 3. Graph of G(c, 4)

C

-6 -14 -12 -10 -8 -6 —4 2 0

~

Figure 4. Graph of G(c, —8)

dynamic panel regression model with fixed effects. In that case, the
panel data z; , are generated by the autoregression

Zi =0 +az 1+ &

where |a| <1 and the & are i.i.d. N(0, o2). The individual intercept
terms O; enter the model to account for individual effects in the panel
data z; ;. The main focus of interest in this model is the estimation of
the common parameter a, and the individual effects d; are incidental
parameters. For simplicity, assume that z9 = 0 for all ;. Then, the
MLE of a is equivalent to the within estimator, defined as:

C Blackwell Publishers 1999
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N T

PIPWCINEE D CFEES
T

Z Z(Zx‘,r—l — Ei,f)z

N T
Z Z(Zf,:fl —Z;, W&, —E.,)
i—1 =1
= a+ T , (19)
> D @ -7y
i=] r=1
where E,-_—(I/T)Zf_lz,f 6 Zj, —(1/T)Z, Zis and E =
(1 /DL r=1 &+ In this case, when N — oo for fixed T, we know that
a #p a, due to the correlation between z;, | —Z; _ and &, — ;. So,
in this case with ¥ — oo and T fixed, the MLE @ is inconsistent
(Nickell, 1981).

{c) An especially interesting aspect of the model (15) is that the
incidental parameter problem leading to the inconsistency of the
MLE ¢ continues to be present even though 7 — oo as well as
N — oc. In contrast, the incidental parameter problem that gives rise
to the inconsistency of a4 in (19) disappears if 77 — oc fast enough
when N — oo.

—_—

IV. MONTE CARLG SIMULATIONS

This section reports some simulations designed to explore the finite sample
properties of the maximum likelihood estimators studied in the previous
section, First, to investigate the homogeneous trend model, data z;, were
generated by the system

Zi: =00t + Yip, Op =3,

C
yi,.l‘ = (] + FO) yf,t—-l + Si,ta Co € {——49 _23 0) 2: 4}5 (20)

where the & , are 1.1.d. N(0, 1) across i and over ¢, and the initial values of
¥ip are zeros. Following the notation used in the previous section, we let ¢
denote the MLE of the localizing parameter and d(c) to be the MLE of the
homogeneous trend coefficient in (10). Also, let ¢ denote the first step
estimator in (12), and ¢ denote the second step estimator in (13).

The main goals of the simulation experiment with model (12) are as
follows: (i) to examine the finite sample properties of the MLE’s 6(¢) and &
by comparing their mean squared errors for various parameter configura-
tions; and (i1) to compare the asymptotic efficiencies of the three estimators
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considered in Section 3.1—the MLE ¢, the first step estimator ¢, and the
second step estimator & From the DGP (20), we gencrate panels of 16
different sizes, with N € {25, 50, 75, 100} and T € {25, 50, 75, 100}. The
estimates 6(2), &, &, and ¢ are computed and 1000 replications used to
calculate their mean squared errors. Table 1 reports the mean squared errors
of 6(¢) and &. The first column of the table contains the sample size, the top
element of each column contains the true parameter value, and the first and
second elements in the table are the MSE of 8(¢) and the MSE of 2,
respectively.

Several features of the results are notable. First, the MSE of ¢ is much
more sensitive to the sample size than the MSE of 6(2). Second, the MSE of
¢ decreases more as T increases than when N increases. For example, when
(89, co) = (3, —4) and the sample size changes from (N, T) = (50, 75) to
(N, T) = (50, 100), the MSE of ¢ decreases from 1.034 to 0.204. On the
other hand, when the sample size changes from (N, T) = (50, 75) to
(N, T) = (75, 75), the MSE of ¢ decreases from 1.034 to 1.021. A more
interesting feature is that when the sample size is small, increases in N
sometimes lead to a deterioration in the finite sample properties of ¢. For
example, when (Jq, ¢o) = (3, —4) again, and the sample size changes from
(N, T) = (50, 50) to (N, T) = (75, 50), the MSE of ¢ increases from 3.887
to 3.911., Third, when ¢cq =0, the finite sample performance of ¢ 1s

TABLE 1
MSE of 8(¢) and ¢
(do, co)

(N, T) 3, =4 (3, -2) (3,0 (3.2) 3.4

(25, 25) 0.010, 8.486 0.010,2.084 0.011,0.125 0.012,2.583 0.014, 9.411
(25, 50) 0.009, 3.779 0.009, 0.968 0.018,0.117 0.012, 1.160 0.012,4.042
(25, 75) 0.009, 1.064 0.009, 0.344 0.010,0.114 0.011, 0318 0.010, 1.032
(25, 100)  0.009, 0.421 0.009,0.249 0.009, 0.106 0.010,0.020 0.010,0.019
(50, 25) 0.009, 8.803 0.010, 2.189% 0.010,0.052 0.010,2.380 0.012,9.146
(50, 50) 0.009, 3.887 0.009, 0.971 0.009,0.046 0.010, 1.079 0.010, 4.038
(50, 75) 0.009, 1.034 0.009, 0.290 0.009, 0.049 0.010, 0.282 0.009, 1.019
(50, 100)  0.009, 0.204 (.009,0.116 0.009,0.047 0.010,0.012 0.009, 0.017
(75, 25) 0.009, 8.817 0.009, 2.184 0.010,0.036 0.010,2.361 0.011,9.142
(75, 50} 0.009,3.911 0.009, 0.974 0.009, 0.034 0.010, 1.061 0.010, 4.034
(75, 75} 0.009, 1.021 0.009, 0.273 0.009, 0.030 0.010,0.273 0.009, 1.017
(75, 100)  0.009, 0.145 0.009, 0.081 0.009, 0.032 0.009, 0.009 0.009, 0.016
(100, 25)  0.009, 8.920 0.009,2.224 0.009,0.023 0.010, 2.3 12 0.010,9.078
(100, 50)  0.009, 3.981 0.009,0.999 0.009,0.022 0.010, 1.033 0.010,4.014
(100, 75)  0.009, 1.047 0.009,0.280 0.009, 0.023 0.010, 0.264 0.009, 1.013
(100, 100) 0.009, 0.107 0.009, 0.059 0.009, 0.022 0.009, 0.008 0.009, 0.016
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apparently far better than it is for ¢y < 0. Also, as implied by the form of the
asymptotic variance (see Theorem 2 and Remark (c) following Theorem 3),
the MSE of ¢ decreases as ¢ increases.

Table 2 reports the mean squared errors of the first step estimator ¢ and
the second step estimator ¢. The simulations cover the same 16 panel data
sizes and use the same number of replications as before. The layout of the
table is the same as Table 1. To calculate ¢ we use ¢ =0 for quasi-
differencing the data. This experiment focuses on comparing the finite
sample properties of three asymptotically equivalent estimators, the MLE &,
the first step estimator ¢, and the second step estimator ¢ As is apparent
from comparison of Tables 1 and 2, there are apparently no major
differences in the mean squared errors of the three asymptotically equiva-
lent estimators. So, finite sample effects are not important in this case.

The next simulation experiment involves the heterogeneous trend model,
for which the generating process is taken to be

Zip=0git+ ¥, Oo; ~ iid. Uniform [0, 4],
o
Vit = (1 +?) Vi1 + &1 cg € {—4,0,4}, (21)
TABLE 2
MSE of ¢ and ¢
(6(], CU)

(N, T) (3, —4) (3, -2) 3,0 (3,2) 3,4)

(25, 25) 8.505, 8.486 2.086,2.084 0.125,0.125 2.585,2.583 9.449,9.412
(25, 50) 3.825,3.780 0.972,0968 0.117,0.117 1.173, 1.161 4.157, 4.042
(25,75 1.098, 1.064 0.346,0.344 0.113,0.114 0.336,0.318 1.124, 1.034
(25, 100)  0.398,0.412 0.242,0.249 0.105,0.106 0.022, 0.020 0.056, 0.012
(50, 25) 8.812, 8.803 2.190,2.189 0.052, 0.052 2.381, 2.380 9.169, 9.147
(50, 50) 3.906, 3.887 0.973,0.971 0.046, 0.046 1.085, 1.079 4,090, 4.038
(50, 75) 1.054,1.034 0.292,0.290 0.045,0.049 0.291, 0.282 1.062, 1.019
(50, 100)  0.200,0.204 0.115,0.116 0.047, 0.047 0.012,0.012 0.025,0.017
(75, 25) 8.822, 8.817 2.184,2.184 0.036,0.036 2.362,2.361 9.156, 9.142
(75, 500 3.926,3.911 0.975,0.974 0.034,0.034 1.065, 1.061 4.068, 4.034
(75, 75) 1.034, 1.021 0.274,0.273 0.030, 0.030 0.279,0.273 1.046, 1.017
(75, 100)  0.143,0.145 0.080,0.081 0.032, 0.032 0.010, 0.009 0.020, 0.016
(100, 25)  8.924,8.920 2.224,2.224 0.023, 0.023 2.313,2.312 9.087,9.078
(100, 50) 3.991,3.981 1.000,0.999 0.022, 0.022 1.036, 1.033 4.039, 4.014
(100, 75)  1.057,1.047 0.281,0.280 0.023, 0.023 0.268,0.264 1.034, 1.013
(100, 100) 0.106,0.107 0.058,0.059 0.022, 6.022 0.008, 0.008 0.018, 0.016
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where g, are i.i.d. N(0, 1) across 7 and over ¢, and y;o = O for all i. The
main purpose of this simulation is to explore the finite sample manifestation
of the inconsistency of the MLE ¢. For this, we generated a panel data set
with size dimensions N = 300, T = 300, and found the Gaussian MLE ¢ by
a gnrd search method. The grid used in the simulation is 0.075; 1000
replications were employed. Estimated density functions of the Gaussian
MLE ¢ of the panel models with ¢y € {—4, 0, 4} are shown in Figures 5-7.

As is apparent in Figures 5 and 6, the density of ¢ is concentrated in a
region substantially removed from the true parameter value when ¢ = —4
and ¢ = 0. On the other hand, in Figure 7, when ¢y = 4, the density of the &
appears to be concentrated around 4.16, a value that is quite near the true
value. This outcome corroborates the asymptotic analysis of the previous
section, where it was shown that when ¢y = 4, the standardized Gaussian
log-likelihood converges in probability to the limit function G(c, 4) whose
maximum is close to the true value ¢g = 4.

V. CONCLUSION

This paper explores the asymptotic properties of the Gaussian maximum
likelihood estimator of the localizing parameter in a panel model with

0.0998 +

0.0990 -

0.0982 ¢

0.0974 . - : : - : ' .
—7.6 —17.2 —6.8 —6.4 —6.0 —56

C

Figure 5. Density of ¢ when the true ¢g = —4
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Figure 6. Density of ¢ when the true ¢y = 0
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Figure 7. Density of ¢ when the true ¢y = 4
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deterministic and stochastic trends. Several new findings emerge. First,
when the trends are homogeneous across individuals in the panel, the
Gaussian MLE of the common localizing parameter is v/N-consistent and
has a limiting normal distribution that is equivalent to the asymptotic
distribution of the Gaussian MLE of the model in which the deterministic
trends are known. So, in this case, trend elimination carries no cost in the
limit, just as in the case of a stationary autoregression with trend. However,
when the trends are heterogeneous across individuals, the Gaussian MLE of
the localizing parameter is shown to be inconsistent. The inconsistency is
due to the presence of an infinite number of incidental parameters for the
individual trends. Procedures for resolving this manifestation of the inci-
dental parameter problem in panel regression are now being explored by the
authors and will be reported in later work.

University of California, Santa Barbara
Cowles Foundation for Research in Economics, Yale University
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APPENDIX

Lemma 6. Suppose that C is a compact subset of R. Assume that, for
k=1,..., K, l(c, ¢) is a real-valued continuous function on C X C with
h(c,c)=0, and L(x,y) is a real-valued continuous function on
[0, 1] X [0, 1]. Also, assume that f(x, ¢) and g(x, ¢) are continuous func-
tions from [0,1]XC to R such that f(x, c)g(y, ¢) - f(x, &)g(y, ¢)
= folhk(c, Mi(x, ¥). Suppose that y;; = exp(co/T)y; -1 + &, Where
&, are i.i.d. (0, a}) across i and over t and y;y = 0. Then, as (N, T — o0),
the following hold.

@ = 5> Y1~ G%J J e29r = ds dr.

1L 1 & t e t
(b) ”ﬁ; JT 2 8;',:f<?, C) T—ﬁ;%‘,:—lg(?s C)

1
p GSJ I e g(r, ¢)f (s, c)d uniformly in c.
0Jo
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(c) %g (T—l-ﬁg%‘,r—lf("}s C)) (}lﬁg%,mg(%, c))

rAs

1l
—p U(ZJJ J f(r, e)g(s, C)J e tS2P) dp ds uniformly in c.
odo 0

SO AMRC) [CHMRCE)

11
—p G%J J f(r, 0)g(s, c)dsdr uniformly in c.
0Jo

Proof
Part (a). This holds by Lemma 9(a) in Moon and Phillips (1998). [

Part (b). First, using Corollary 1 in Phillips and Moon (1999), we estab-
lish Part (b) for fixed ¢ (pointwise convergence). Note that

1~ 1 & / 1 Z ;
F; (ﬁ; Ei,tf(']-.,, C)) (T—ﬁ;yi,r—lg(?, C))
] & 5 1 1
= ﬁ;ao (Lf(ss C)dWi(S)) (J g(r, C)Jc,,-(r)dr)

]

as T — oo for fixed N and ¢

1 pr
~p 05] J eV oy ) f(s, c)dsdr as N — oo for fixed c.
pJo

According to Corollary 1 in Phillips and Moon (1999), this sequential limit
becomes the joint limit if

T T
0.7(c) = (%le & f(1]T, c)) (T#ﬁ;yf,mg(r/n c))

ts uniformly integrable in T for fixed ¢, which holds if
1 & t :
i =\ —F= E & e C
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& :
Orr(c) = (T—\/T; y;,;_lg(%, c))

are umformly integrable in T for fixed c¢. Notice that O ;r(c) =

Ql 1(C) oo(fof(r C)dW(V))z and EQL i T(C)“ OO(I/T)Z;: 1f(t/T 6)2

0“[Of(r ¢)ldr= EQic) as T—oc for all i. Then, by Theorem 5.4 in
Billingsley (1968), O ;r(c) are uniformly integrable in T for fixed ¢. By
similar fashion, Oy;r(c) is also uniformly integrable in T for fixed c.
Therefore, Part (b) is just estabhshed for fixed c.

Next, define Ry 7(c) = (1 / N)ZI 1Qi.7(c). To complete the proof, we
need to show that Ry r(c) is stochastically equi-continuous, that is, for
given £ > 0 and # > 0, there exists 0 > 0 such that

lim sup P sup |Ry.7(c) — Ry 7(&) > e <n.
(N,T—0c) lc~¢| <d,0,c e C

Then, since the index set C is hypothesized to be compact, the pointwise
convergence of Ry r(c) and the stochastic equi-continuity of Ry r(c) imply
uniform convergence.

To show the stochastic equi-continuity of Ry 7(c), first observe that

sup | Ry, r(c) — R, 7(€)|

le—E|<d, e, 2€C

= sup

sup
le—g|<d,c,6€C

1
= sup sup (e, E)|—Z

IsisK [¢—F|<d,c,2eC N i—1

{3u(39)

Since Ai(c, ¢) 1s continuous on a compact set with 7;(c, ¢) = 0 for all
k=1,..., K, we can make Sup;=<i=<gSup|c_ ¢ <s,cczc|Fr(c, €)| arbitrarily
small by choosing a small 6 > 0. Also, under the assumptions in the lemma,
it is not difficult to show that
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= 0,(1).

1 X1 LT K F
ﬁ; ‘T—zz Z &t Vis—1 { 2 Iy (?, *I-,) }

t=1 s=1

Therefore, Ry r(c) is stochastically equicontinuous. n

Part (c) and Part (d). The proofs of Parts (c) and (d) are similar to that
of Part (b) and they are omitted.

Lemma 7. Suppose that f(x, c) and g(x, ¢) are continuous functions
SJrom {0, 1] X € to R. Assume that y;, = exp(cy /T)¥ii-1 + &, where £ ¢
are .i.d. (0, cr%) across i and over t and y;9 = 0.

Then, as (N, T — o00), the following hold.

. 1 N 1 T ¢ ) 1 5
(a)—NZ-—TZsi,,f(l—r,c) = N{o, GUJOf(r) dr ).

”TM er+5-20) gy f(r)f(s)drds)-

I N T 1 pr
(c) ﬁZ%Z &;=> N (0, aﬁj J ezc"(r‘“‘)dsdr).

0J0

Proof. The proofs verify the conditions of Theorem 3 in Phillips and Moon
(1999).

Part (a). Following the notation in Phillips and Moon (1999), we let
e (7)
T=—= )Y & =1
Our = 7= le S\ 7
Then, Q; r are i.i.d. (0, Z7) across § with
1= ./ \?
e -
Sr = aOT;f(T) .
Since Qir = Oy =09 [y (NAWi(r) and E(Q},) =3y — = E(Q?) =
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03 [§ f(rPdr>0as T — oo for fixed i, it follows that O; r are uniformly
integrable in T. Then, by Theorem 3 in Phillips and Moon (1999), we have
the desired result. |

Part (b). By similar fashion, we let

1 < t
Oir= Tﬁ; yf,rflf(?)

and
1

Q= UOJOf(F)JCD,f(r)dr.

Then, we know that O; r = (J; and

E(Q}) = E (}“}ﬁi it f (_;))2
2 ()

=1 s=1

2 o co{r+s5-2p) _
~ai| ]| dp (P f(s)dsdr = E(QD),

oJoJo
as T — oo for all i. Therefore, O}, are uniformly integrable in 7, and by

Theorem 3 in Phillips and Moon (1999), we have the desired result. [
Part (c) holds by the similar fashion, and we omit the proof. |

Lemma 8. VNVT(3(c) — bo) = O,(1) uniformly in ¢ as (N, T — o0),
where 0(c) is defined in (4).

Proof. By definition,
VNVT(S(c) — d)

VOB (BF
I(i-e5Y)

=1

) (81',:(50, co) — (¢~ Co)&f%ao))
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Then, we have

sup| VNVT(8(c) — 89)]

ecC

) (Ei,r(éo, ¢g) — (¢ — o) &;ﬁf})‘

First, note that

Next, note that
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ilelg LN;—I?,Z;:(I — ct}l) (81',!(60: co) — (¢ — Co)ﬁ’—réﬁ)‘
1 N 1 T
< ’ﬁgﬁ; & (o, co)
A e
+ §2£|c| \/N;\/T; 7 €00, C0)

+ suplc(c Co)|\/—z \/—Z 7 yrt 1(60).

eeC

Recall that sup.cc|c/| is finite. In view of Lemma 7(a) and (b), each term in
the above display is O,(1) as (N, T — co). Therefore, we have

sup.ec|VNVTB(c) — o) = Op(1) as (N, T — o0). -
Derivation of (8). Recall that

In1(c, 8(c), 5(c); 2MT)

| MT .z
M—I_V'—Z Z (Si,t(a(]; co) — (¢ — co) Yt 11,,( 0)

i=1 =1
2
__(8((:)——(50)(1 _cr;1>)

1 Sh . F— 1\ 2
+ﬁ22{8@t(60, CO)—(CS(C())—CS())(I—CO 7 )} .

i=1 =1

[

In view of (4), we have
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1 N T - S . B 2
TZZ{E:‘,:((SO, CO) - (C - Co)y’ zl,( 0) — ((5(0) — 50)(1 — ct T 1)}

N T . 2
= WZNZZE, ;(60, C(j) +2T((§(C) (50)2 ! Z(l — Ct A 1)

=1 =l =1

1 L 5 SNV
ﬁz Z{&-,:(@o, co) — (0(co) — 60)(1 CoTr )}

=y}

M| =

1 N T 1 N T
=3 2 2 o, co)’ — 5 T(8(co) — 80 Z( — o~
i=1 =1 =1
which yields

Iv,r(c, 8(c), 6%(e); 2°T)

T 2 N o7
= 175G} &0 7 Z(l B ct;l) — Yc - o) (%Z I ZJ’:: 1{00) )

=]

t=1
1 L1
+ (¢ — ) (N Z Z Vi,1-1(00)&; (09, Co))
i=1 t=1
) 2
— 3T (0(co) — 80)? —Z( e ) :

Note by Lemma 8 that v/7(d(c) — 0o) = 0,(1) uniformly in ¢, and by
Lemma 6(a) and Lemma 7(c) that

T 2 1 ¢
Z Y- 1(60) %J j e2co(r—s)ds dr

odo
and
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T

11
ﬁZ?Z Vi, 0-1(80)&:,1(0, co) = 0,(1),
i1

=1

respectively. Also recall that parameter set C is compact. Therefore, as
(N, T — o),

Iy,1(c, 8(c), 32(c); 2%T)
1 1= 3o 1(00)
= e e’ (ﬁZfZ%) +op(1)

1 pr
—p — (o%/Z)(c — CO)2J J 2= ds dr uniformly in c.
oJo

Proof of Theorem 2, By the first-order Taylor expansion of the first-order
condition (9) around the true parameter ¢y, we have

dL(c, 8(c), 6%(c); V1) {dZL(c*, 8(c*), 62(c*); 2N T)
= +
dc dc?
where ¢* lies between ¢g and é. From this, we write

Dyook Reoky AZeKy. NIV L
VR — c) = (d L(c*, d(c ;; (c*); 2 ))

0

}(& - CO)s

s ( /57 dLteo, 8ea), 62(co) zf”)),

T (22)
Define
Sop=L3 ] (A & (1 ’_1))2
QN,T(C, (C)) = 'R'/: 2 F!z:; cZip — (C) —-C T .
Then, (22) is written as
VN(& — co)
. N -1
d?Qn r(c*, 0(c™)) dQOn,r(c*, 0(c™))
_ _ d’c_ _ de_
On,r(c*, 6(c*)) On,r(c*, 0(c*))
/v $nr(eo, 8(co))
X de . (23)

Ow.r(co, 8(co))
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Note that

mdQN,T(;z, (co))

= —-NZ ?Z Yit—1(80)&; (30, cp)

7

N —
— VNVT(0(co) — 50)%22,—1”\/?2%,:—1 (1 — ¢p ! T 1)
i1 pasy

— VNVT(b(co) — 50)NZ\/—Z=zt_l

. 1 i1 f—1
+ NT(3(co) — o) > (1_, )
(0(co) — Oo) NI T Co—

1 1
= ——= > =3 ¥,1(00)& (b0, co) + 0,(1),
FLTL P
where the last line holds because

VNVT((co) — d) = O,(1) by Lemma 8,

1 1 t—1
ﬁZﬁZm_l (1 TOTT ) = 0p(1) by Lemma 7(b)

¥rom Lemma 7(c), as (N, T — oo) we have

1 N 1 T 1pr
< D7 2 eni(O0k (o, co) > N | 0, o3 [/ eatrasar ),
\/NZ TZ =10 )i AV, C6 0 )

0

741
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d@y.r(co, 3(c gl
JN NT(dOc ( 0)) = N(O, O‘%J J ech(r_S)der)- (24)
0J0

Also, since d(cp) is consistent for 8y, we have

A LA twl 2 ,
Ow,r(c, 6(6))27\?2?2( eZit — d(c) 7 —p, 05 (25)

i=1 =1

Combining (24) and (25), as (N, T — o0), we have

\/N-dQN,T(Cos d(cq)) .
de = N(O, —2J J ezcﬂ(’_’)dsdr). (26)
Onw,r(co, 0(co)) o5 Jodo

Next, by the envelope function theorem and the chain rule, it follows that

P Qu.1(c, 8() _ PQnrie, 8e)) | PQu.r(c, 8(c)) do(e)

d?c o dc? Ad0c de (27)

A short calculation yields

& Qn.r(ck, 8(c*)
¢t

1951 &
= W;ﬁ;)’ir—l(do)

—2VT(8(c*) — 68) IZT Z 1:—1(50)—

Since \/—(6(0 — ) = 0,(1) uniformly in ¢ by Lemma 8 and ¢* — ¢y, it
follows that v/ T(8(c*) — 8g) = o,(1) as (N, T — 00). Also, we know

IN
—NZ Zym( 0" = 0,(1) as (N, T — o0)

From these and Lemma 6(a), we have
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Oy (e, 8(c*))

dc?
1 N 1 T 1 pr
= 72732 V(00 + o(1) —, oﬁj J e dsdr. (28)
i=1 1=l 0o

In similar fashion, using the facts that /7T (3(0*) — dg) = 0p(1) and
c* — €0, and the results in Lemmas 6 and 7, it is not difficult to show that

I PO r(c*, 8(c*)) ﬁdé(c*)~0(l) (29)
’ de 7

VT 00 Oc

Since

Ow,1(c*, 8(c*) —, o2,

the first term in the numerator of (23)

d*Qy 1(c*, 8(c*))

l pr
dic_ - J J 20 =5) g g, (30)
QN,T(C*: (5(0*)) 0J0

For limits of the second term in the numerator of (23), notice that
dQw,r(c™, 8(c*) _ 0Qwr(c*, 8(c*) _
de - Jdc

as (N, T — o) since ¢* —, ¢o and 8Qw, r(c, 8(c))/Bc = Op(1/+/N) uni-
formly in ¢. Therefore,

5 0

dQw r(c*, 8(c*))

de
= —, 0. 31
Ovr(c*, 8c*) ) 7 Y
From (30) and (31) we have
dzL(ZN’T; 8(C*), C*)) 1pr 2en(r—s)
B ( dc? _%p,[o‘l‘oe dvdr,

and combining this with (24), we have the desired result,

1

VN@—co)= N[0, —;

>
a3 | eroasar
0Jo
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Proof of (14).
By definition, we have

VN(E — co)

y i— -1 i, f— - -1
1sz{(Az,, 6(c))(z‘ b0 ) —co(z'T‘ —-a(c)——)z}

1=1 =1

First, note that

1 pr
= EZ—T-EZ)&;;A(@@)?‘ + Op(l) —p O%J J e"‘c"("'s)dsdr.
i=1 0J0

t=1
where the last equality holds because /7' (8(6) — d¢g) = 0p(1) and

1 N

I t—1
EZT_’\/T; }’i,r—l(ao)"T— = o,(1).

i=1

Next, for the numerator, we write
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| NT 1 Zid o« t—1)?
ﬁ;;{(Az,; — (e ))(—‘3—1—6( )_) —co( - ‘ —é(c)T) }
Eon AN CRE RN CEREY

—VT((c) - ao)%g% :1 Yi-1(00)

—VT(5(c) - 60)\/%§ —\}?; (Co z ””f'”) + £,40, Co)) -

I

+ VNT(o(c) — 80)* — I Z

+ 2¢0vVT(5(c) —~

T
Z Vi :—1('50)

*ﬂ
T Mz
- %I

—

— coVTT(8(c) - 69)2 —

3| —
1M

=1+0+HI+1V+V+ VI, say.
Recall that VNv/'T (3(::) d0) = O,(1) by Lemma 8. Then, in view of

Lemmas 6 and 7, it is not difficult to find that I/, 117, IV, V, VI = 05(1).
For /, we have

1 r ~1 it t—1\?
—ZZ (AZzzhao)( T )—Co( ,T — &y 7 )
i=1 =1

1 N V- ((5) yl! (6)
L
VN 4

=

NI
Z Zﬁ,:—l(do)fi,:(aos co)

..<
I
-
ey,
Il
-

1 pr
= N(O, agj J e2eolr=9) g dr)
0Jo

(© Blackwell Publishers 1999



746 BULLETIN

as (N, T — o0). Then we have the desired result. [

Proof of Lemma 4. In view of

VT(di(c) — i)

=) (-

T
— (c— co)—l—TZ(l L _T 1) y*'”‘\‘/(_f“"')}, (32)

=1

we write (17) as

LEYT; 8(e), ) — Lz™T; 8" (<o), co)

1 N

f—1\?
=5w2 (a(c) 80.) TZ( e T)
——(c?co)z( i: i%tfl (00,1) )
i=1

t"l

I e
+ (¢ — <o) (ﬁ Z?Z ¥i,1-1(00,1) €1, (00,1, Co))
-1 4=

=]+ I+ I+ 1V, say.

Now we find limits of 7, I, III, and I¥. In view of (32) and by Lemma 6,
and Assumption 2, we have
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-1
1 t-1\°
I=1= -
(F5(-))
1 I t— 1\ &S, i co)

X —— 1 — ’ ’

v (1 et

1 (- =1 ;.;,,._1(601-))2 1(
—{c—co)= (1- ) : : — =
’ T; T VT 72

1

| -1
J (1- cr)zdr)
0

1 §
J (1 cr)*dr —2(c — C’o)J J et — )1 - cs)dr ds
« 0 0Jo 33)

1el rAs
+{c — co)zj J (1—cer}(l — CS)J et~ g ds dr
0Jo 0

uniformly in ¢ as (N, T — oc). Similarly, using Lemma 6(a) and Lemma
7(c), we can show that, as (N, T — o0)

IO 1 =y 160,
S YO Nl W WP 4 Y et A
= —Lc—c) (N;T; T

1pr
— ,—e- CO)ZJ J =% ds dr uniformly in c, (34)

0Jo
and
1 &1 d
I = (¢ — cp) N 2 ?; Vi,i-1(80,1)€:, (005, o) | —, O uniformly in c.
(35)
Also, it is not difficult to derive that as (N, T — oc)
WS e o h (10 ) Sk g
- 2N g 0 0 0,3 T 0 T r 2

Combining (33)—(36), we finally have the desired resuit.
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