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An asymptotic theory for stochastic processes generated from nonlinear transfor-
mations of nonstationary integrated time series is developed. Various nonlinear
functions of integrated sertes such as ARIMA time series are studied, and the as-
ymptotic distributions of sample moments of such functions are obtained and ana-
lyzed. The transformations considered in the paper inchude a variety of functions
that are used in practical nonlinear statistical analysis. It is shown that their asymp-
totic theory is quite different from that of integrated processes and stationary time
series. When the transformation function is exponentially explosive, for instance,
the convergence rate of sample functions is path dependent, In particular, the con-
vergence rate depends not only on the size of the sample but also on the realized
sample path. Some brief applications of these asymptotics are given to illustrate the
effects of nonlinearly transformed integrated processes on regression, The methods
developed in the paper are useful in a project of greater scope concerned with the
development of a general theory of nonlinear regression for nonstationary time
series.

1. INTRODUCTION

Nenstationary time series arising from antoregressive models with roots on the
unit circle have been an intensive subject of recent research. The asympiotic
behavior of regression statistics based on integrated time series (those for which
one or more of the autoregressive roots are unity) has received the most attention,
and a fairly complete theory is now available for linear time series regressions.
The resulting limit theory forms the basis of much ongoing empirical economet-
ric work, especially on the subject of unit root testing and cointegration modei-
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ing. The main elements of this limit theory as it is needed for linear regression
were reviewed in Phillips (1988), and a recent overview of the asymptotic sta-
tistical theory on which some of the literature draws was given in Jeganathan
{1995).

As in other regression contexts, linear models can be restrictive, and they elim-
inate many interesting cases of practical importance where there are nonlinear
responses to covariates, However, extension of the existing limit theory for inte-
grated processes to nonlinear models is not straightforward. This is because non-
linear functions of integrated processes often depend on fine-grain details of the
underlying process, most especially the sojourn time that the process spends in
the vicinity of certain points. These details need to be dealt with in the develop-
ment of a limit theory for the same functions that arise in regression.

The present paper seeks to provide some tools that will be useful in the analysis
of time series regressions that involve nonlinear functions of integrated pro-
cesses, Various nonlinear functions that commonly arise in practical nonlinear
statistical analysis are studied. The results show that the limit theory can be very
different from that for simple linear and polynomial functions of integrated pro-
cesses. The case of exponential functions is especially interesting, because here
the sojourn time that the process spends in the neighborhood of its extrema de-
termines the asymptotic behavior of the sample function. In consequence, the
convergence rate of sample moments of exponential functions of the process is
path dependent and relies on extreme sample path realizations of the time series,

2. ASSUMPTIONS AND PRELIMINARY RESULTS
We consider a time series {x,} generated by
X =X tw, 1)

where the error w, follows the linear process

w, = o(L)e, = >, ¢rery, 2)
k=0

in which {&,} is a sequence of independent and identically distributed (i.i.d.)
random variables with mean zero and for which ¢(1) # 0. The system (1) is
initialized at # = 0 with xy = O,(1). One of the following two assumptions will be
made throughout the paper.

Assumption 2.1, 2:L0k"?| @] < o0 and Eg? < oo,
Assumption 2.2.

(@) Z{lok|@i| < o0 and Ele,|” < oo for some p > 2.

{(b) The distribution of &, is absolutely continuous with respect to the Lebesgue mea-
sure and has characteristic function () for which lim,_,.,¢"¢(#) = 0 for some
r > (.



NONLINEAR TRANSFORMATIONS OF INTEGRATED TIME SERIES 21

For simplicity, assume ¢(1) =1 and E¢7 = 1, Other values simply have a scaling
effect in the subsequent analysis.
Construct the stochastic process

1 [}

D - —
Wi = — Z,l w;,
which takes values in D[0,1], the set of cadlag functions on the interval [0,1]. Phil-
lips and Solo (1992) showed that Assumption 2.1 is sufficient to ensure that wp
converges weakly to a standard linear Brownian motion W on [0,1]. In our con-
text, it is more convenient to endow D0, 1] with the uniform topology rather than
the usual Skorohod topology (see Billingsley, 1968, pp. 150—-152). It then follows
from the so-called Skorchod representation theorem (e.g., Pollard, 1984, pp. 71—
72) that there exists W, such that W, = W, in D[0,1], where £ signifies equiva-
lence in distribution and for which W, —, . Wuniformly on [0,1]. We shall use this
representation repeatedly in the proofs in Section 8 of the paper. Using strong ap-
proximation methods, specific rates of convergence for W, -+ W can be obtained
under moment conditions like those of Assumption 2.2(a). The following result
{Csorgd and Horvith, 1993, p. 4; Akonom, 1993) is especially convenient.

LEMMA 2.3, Let n — co.

(a) If Assumption 2.1 kolds, then supg= < |W,(r) — W(r}| = o(1) as.
(b) If Assumption 2.2(a) holds, then SUpo<,=1 |Wa(r) — W(r)| = o0,(n~10=2/%),

Qur development relies on the local time, L{¢,s), spent by the Brownian mo-
tion W at the spatial point s over the interval [0, r]. Here L(z,5) is a jointly con-
tinuous stochastic process and satisfies the equation (e.g., Chung and Williams,
1990, ch. 7)

|W(1) —s| = [W(0) —s| + Lr sgn(W(z2) — sydW(r) + L(z,5),

where sgn(y)=1,0,—lasy >0, =0, < 0, respectively. The following important
formula applies, relating temporal integrals of functions of Brownian motion to
spatial integrals involving local time.

LEMMA 2.4. (Occupation Times Formula) Let T be locally integrable. Then

IJT(W(r)) dr = fw T(s)L{t,5) ds
o -0

forallt € R.

The local time L(z,s) can be interpreted as a spatial occupation density in s for
the Brownian motion W. From the continuity of L(¢,-), Lemma 2.4 can be applied
with T(x) = 1{|x — 5| < e} to give
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L{t,s) = Hm iJ‘ 1{|W(r) — s| < &} dr, k)]
e=0 28 Jg

the representation that explains why L(-,s) is called the local time of W at s.
We define

1

0

and similarly

1
N(v,;a,b) =J Ha = v, W(r} = bldr, (3)
0
where a and b are nonrandom constants and v,, > 0 for all n. The following useful
result is due to Akonom (1993).

LEMMA 2.5. Let Assumption 2.2 hold. Then as n — oo

(a) E(Ny(2,;0,8) — Ny (v, k8,k + 1)8))% = c{8/nv,) (1 + (kd>nlog n/v2)) for some
constant ¢, and

(b) Nolrai0,my) = N(w;0,,) + 0p(n @P=130%¢) for a7, = p,n=20=05% and any
£>0,

It follows from (3) and (5) that (v,/7, )N (v,;0,7,) —., L(1,0) as n — co.
And from Lemma 2.5(b), (v, /@, )N, (v,;0,7,) = L(1,0) + op(1) for 7, =
vun”@PTDP*E with some & > 0. In this sense, an appropriately defined N, ap-
proximates L for large n. Also nN,(v,;a,b) is the number of visits of the process
v, W,(7) to the interval [a, #].

3. FUNCTIONS OF NORMALIZED INTEGRATED PROCESSES

We start by investigating the asymptotic behavior of functions of normalized
integrated processes. Such functions sometimes arise in models formulated with
nonlinear functions of standardized partial sums of stationary time series. Let T
be a measurable transformation in R. We will consider regular transformations T
defined as follows.

DEFINITION 3.1. A transformation T is said to be regular if and only if, on
every compact set C, there exist T,,T, and 8, > 0 for each & > 0 satisfying

I(x) = T{y) = T.(x) (6)
forall x,y € C such that |x — y| < 8, and

j;(fr - Is)(x} dx — 0: (7)

ase — 0.
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The class of regular transformations includes locally bounded monotone func-
tions and continuous functions. For a locally bounded monotone increasing func-
tion, forinstance, set T,(x) = T(x — &), T.(x} = T(x + &) and 8, = &. Likewise, we
set T.(x} = T(x) — e and T,(x) = T(x) + & for a continuous function with the
usual &, for the £, 6 formulation of uniform continuity. It is easy to see that
conditions (6) and (7) are satisfied for such choices. They work for any compact
set. It is also clear that finite sums of locally bounded monotone functions (and
hence functions that are locally of bounded variation) and piecewise continuous
functions are regular.

THEOREM 3.2. Let Assumption 2.1 hold. If T is regular, then

1 n xr) g J'l
- 2Tl—=}— | T(W(r))dr,
nz'l (ﬁ , (W(r)
as n — o,

Remarks 3.3.

{(a) Any regular transformation T is locally integrable. The local integrability of T guar-
antees that the limiting distribution is well defined. Indeed, T is locally integrable if
and only if

Pr{f T{Wi(r))dr exists for all t} =1
o

(see, e.g., Karatzas and Shreve, 1988, Proposition 6.27, p. 216). We need a stronger
condition to ensure that the limiting distribution is invariant across different data
generating processes,

(b) Given a transformation T on R, we define a functional IT7 on D[0,1] given by

1
Hrif'—*LT(.f(r))dr-

For T'defining a continuous [Ty on D[0,1], the resultin Theorem 3.2 follows directly
from the continuous mapping theorem (e.g., Billingsley, 1968, Theorem 5.1, p. 30).
Uniformly continuous 7 generate such a functional. If T is continuous, but not uni-
formly continuous, the corresponding ITr is assured of being continuous only on
C[0,1], a subset of D[0,1]. But the continuous mapping theorem still applies, be-
cause C[0,1]1s of Wiener measure one. Indeed, the proof of Theorem 3.2 shows that,
for any regular T, IT7 is continuous on a subset of 2[0,1] with Wiener measure one.
(¢) The functions

T(x) =loglx| and T(x)=|x|* for -1 <wx<0 (8)
are locally integrable and, therefore, f[,] T(W(r)) dr is well defined for such func-
tions. However, they are not regular and Theorem 3.2 does not apply.

To deal with such functions we may proceed as follows. Let T be locally inte-
grable with a pole or logarithmic type of discontinuity at a certain point, say, zero.
Define

Lx) =T@H|x] = e} + M) {o <x < ¢} + T(=e) l{-¢, <x <0} (9

Similar modifications can be made for transformations with discontinuities at points
other than zero.
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THEOREM 3.4, Let T be locally integrable. Suppose for a sequence {c,} such
that ¢, — 0 and ¢, = n~ 27173,

IT(x) = T(¥)| = wlc))x = yl,

with v(c,) = On'P=220) for all x,y € {z|z| = c,}, and T(xc,) =
O(n@=D3r%ey for some & > 0. If Assumption 2.2 holds, then

1 2 Xy 4 1
;ETH(E)—)J;T(W(r))dr,

asn— oo,
Remarks 3.5.

(a) The conditions in Theorem 3.4 require that the function 7 be Lipschitz continuous
on {x:|x| = ¢,}. Also, the value of the function T(*e,) around the discontinuity
point and the Lipschitz constant » (c,) may not grow too quickly with a.

(b) For the logarithmic function T{x) = log| x|, the conditions in Theorem 3.4 are sat-
isfied with ¢, = 8 for any & such that 0 < & = ( p — 2}/2p. For the reciprocal func-
tion T(x) = |x|* with —1 < x < 0, one may choose ¢, =n for0 < § < (p ~ 2)/
2p(1 — &) to show that the result in Theorem 3.4 is applicable,

(c) For any fixed n, T and 7T, are identical over any finite set of nonzero points, if we
take ¢, to be smaller than the minimum of their moduli. Therefore, if {x,} is driven
by an error process whose underlying distribution is of the continuous type speci-
fied in Assumption 2.2(b}, then T and T, are practically indistinguishable in finite
samples.,

4. ADDITIVE FUNCTIONALS OF BROWNIAN MOTION

The asymptotic behavior of functions of unnormalized integrated processes can
be quite different from the results in the previous section. In particular, the as-
ymptotics depend in a more critical way on the properties of the functions in-
volved. To illustrate the dependencies that arise, we first investigate the asymptotic
behavior of additive functionals of Brownian motion given by

Ar
f T(W(r))dr,
o

as A — oo, The results from this section will be applicable in the statistical analy-
sis of the data that are continuously recorded from Brownian motion, or in the
development of the asymptotics when the sampling frequency and the time span
of the data increase. Applications of this type occur with financial data in econo-
metrics (Phillips, 1987}. More directly, the limit behavior of these functionals
sheds light on the behavior of nonlinear functions of integrated processes and is
thereby useful in the development of an asymptotic theory for regression that
involves such nonlinear functions,

Three classes of transformation are explored here: integrable (/) functions,
asymptotically homogeneous (H '} functions, and explosive (E) functions. These
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will be referred to respectively as Classes (1), (H), and (E) in the paper and will
be denoted by 7(J), 7(H), and T(E). More explicitly we define these classes as
follows.

DEFINITION 4.1. A transformation T is said to be in Class (I}, denoted by
T € T, iff it is integrable.

DEFINITION 4.2. A transformation T is said to be in Class (H), denoted by
TeT(H),iff

T(Ax) = v(A)H(x) + R(x,A),
where H is locally integrable and R is such that

(a) |R(x, )| =alX)P(x), where im supy_,,a(A)/v(A) = 0and P is locally integrable,
or

(b} |R(x,A)| = B(XN)Q(Ax), where lim sup,_,.. b{A)/v{A) < co and Q is locally inte-
grable and vanishes at infinity, i.e., Q{x) = 0 as |x| — ce.

Transformations T € 7( H ) with R satisfying conditions (a) and (b) will be said
to belong to T(H,) and T(H,}, respectively.

Remarks 4.3.

(a) If T € T(H}, T has an asymptotically dominating component that is homogenous.
All homogenous functions are of this type and therefore belong to T7(H ) as long as
they are locally integrable. If T is homogeneous of degree «, then we have H=T
and »{A) = A*, Examples of such functions include T{x) = x* for « > 0 and T(x) =
sgn{x).

{b) The finite order polynomial givenby T(x) =x*+ g x* '+ ... + g fork=1isin
T(H) withz(X) = A*and H(x) = x* Fora(A) = ¥ Ya, + ax/A + --- + ;. /A
and P(x) =1 + |x|*), we may easily show that |R(x,A}| = a(A)P(x). Clearly,
a(A}v(A) = Gas A — oo, and P is locally integrable for & = 1.

{c) The logarithmic function T (x) = log|x| belongs to 7(H,)}, with the homogenous
component given by #(A) = log A and H(x} = 1. The residual function then be-
comes R(x,A) = log|x]. To see that it satisfies the preceding conditions, set a( A} =
1 and P(x) = log|x|. lterated logarithmic functions and polynemials in logarithms
are also in 7{H), which can be shown similarly.

(d) The distribution function of any random variable belongs to class 7(H;), with the
homogeneous component specified by #(A) =1 and H(x) = 1{x = 0}. Clearly, H is
locally integrable. If T is such a function, the residual R(x, A) is bounded in mod-
ulus by @(Ax), where Q(x) = T(x) 1{x <0} + (1 — T(x)) 1{x = 0}. It is easy to see
that @ is locally integrable and vanishes at infinity. If, in particular, the underlying
random variable has finite expectation, then Q € T(7).

DEFINITION 4.4. A transformation T is said to be in Class (E), denoted by
T e T(E), iff

T(x) = E(x} + R(x),

with E and R satisfying the following conditions.
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(a) Eismonotone. If E is increasing (decreasing), then it is positive and differentiable
on R+ (R _). Furthermore, if we define G{x) = log E{x}on R+ (R ) with deriv-
ative G, then as A = o0, G{Ax) = (M) D{x) + o (¥ (X)) uniformly in a neighborhood
of x, where D is positive {negative) and continuous, and Av{A) — co.

(b) R is given such that for any x and y

Ar (DR (Ax)
E(Ay)

as A — oo, where R{(x) = SUpy<| .| | R{¥)|.
Remarks 4.5.

(a) For T € T(E), E denotes the exponential component that is asymptotically domi-
nating. The derivative of the exponent function of E is assumed to be asymptoti-
cally homogeneous with base function I and degree of homogeneity v. If we write
E(x) = exp(G{x)), then the condition A»{A) — oo ensures that G increases on &,
{or decreases on R _) faster than the logarithmic function, When there is such an
exponential component, all other components with polynomial orders become neg-
ligible. They satisfy our conditions for R, as one may easily check.

(b) The conditions for the exponential component E of T € T(E) obviously hold for
functions like E{x) = exp(x*) for k > 0, or E(x) = x~¢*{x > 0} for any finite . In
the former case, we have »{A) = A*" T and D{x) = kx*~'. For the latter, #(A) = | and
D(x)=1.

THEOREM 4.6. Let T € T(f). Then

%fo" W) dr s (fz T(s)ds) L(1.0),

as A — oo.

THEOREM 4.7. Let T € T(H} with H(-) as in Definition 4.2. Then

1 A% o
/\ZV(/\.) J; T(W(r)) dr i) foc H(S)L(f,j) dS,

as A — oo,

THEOREM 4.8. Let T € T(E) with v and D as in Definition 4.4. Then as
A—> o0

P(A)
AT (SuPoss =z, W(r))

Azr 4
f TW(r)dr % L{t, 5,
4]

1
D (Smﬂx )

or

v(A) AZ:T I | .
AT(infosrsAle(r)) 0 ( (r)) r— _D(Smin) (tssmin):
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depending upon whether the exponential component E is increasing or decreas-
ing, and where s, = SUPp<,=<1 W(r) and sp;, = infyo, -y W(r).

Remarks 4.9.

{a) Theorems 4.6—4.8 reveal that the asymptotic behavior of the three different types of
additive functionals of Brownian motion differs in fundamental ways. For integra-
ble functiens, only the local time spent by W in the vicinity of the origin matters.
This is not so for asymptotically homogenous functions, for which the local time of
W at all points contributes to the limit distribution. Finally, the local time that W
spends in the neighborhood of one of its extrema completely determines the as-
ymptotic behavior of an explosive function,

{b} The convergence rates for explosive functions are path dependent, i.e., they depend
not onty on the size of the sample but also on the actual path of the sample by virtue
of the fact that sup, W(r) and inf, W(r) influence the convergence rate.

5. FUNCTIONS OF INTEGRATED PROCESSES

Not surprisingly, the moments of functions of integrated processes asymptoti-
cally behave rather like the corresponding additive functionals of Brownian mo-
tion. We just need some extra conditions to make their limiting behavior invariant
with respect to the underlying data generating processes.

THEOREM 5.1. Suppose T € T(1) and Assumption 2.2 holds withp > 4, If T
is square integrable and satisfies the Lipschitz condition
IT(x) — T() = ejx =yl

over its support for some constant c and £ > 6/(p — 2), then

~ i T(x,) 5 (fm T(s) dS)L(LO)’

va .o
as n - co,
Remarks 5.2.

{2) Foran indicator function on a bounded set, the resultin Theorem 5.1 is applicable as
long as p > 4. The Lipschitz function with £ = 1 requires, in particular, that p > 8.

(b} The collection of transformations for which Theorem 5.1 applies is closed under
the operation of finite linear combinations. Thus, the result in Theorem 5.1 holds
for any piecewise function for which each piece satisfies the given conditions.

THEOREM 5.3. LetT€ T(H ) with H(-) regular. Also, assume that T is either
in T(H,) with P locally bounded or in T(H,) with Q bounded and vanishing at
infinity. If Assumption 2.1 holds, then

l n d [+ o)
o () g:] T(x,}) — J:OOH(S)L(I,S) ds,

asn— oo,
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Remarks 5.4,

(a) For Theorem 5.3, we only need Assumption 2.1. This is in contrast to Theorems 3.1
and 5.5 for functions in T{(I) and T(E), where the stronger Assumption 2,2 is in-
voked.

(b) The result in Theorem 5.3 is applicable to such functions as T{x) = x* for ¥ > 0,
T(x} =sgn(x), T(x) =x* + a,x* ' + . + g for k = 1, and to all “distribution
function”-like transformations.

THEOREM 3.5, Let T € T(E) and v(A) = A" withm < (p — 8)/6p. If As-
sumption 2.2 holds, thenasn - @

v(Vr) - d
T - L 1, max
ﬁT(maXlSrsnxt) lgl (x{) D(Smax) ( : )
or
v (47} : d 1
T —y —— L 15 min/s
WT(minlﬁrSn Xy .f:El (xf) _D(Srnin) ( g )

depending upon whether the exponential component E is increasing or decreasing.

Remarks 5.6.

(a) The convergence rates are path dependent, as in Theorem 4.8, i.e., they depend
upon max x, or min x,, t = 1,...,#, respectively, for the increasing and decreasing
exponential component of the transformation in 7(E).

(b} The result in Theorem 5.5 is applicable for explosive functions such as
x“exp(x){x > 0}, as long as p > 8. However, we only allow functions to be
mildly explosive. Functions like T(x) = exp(x?)} are excluded. The asymptotic
behaviors of such functions may not be invariant and can be more dependent
upon the underlying data generating process.

6. NONLINEAR REGRESSION ILLUSTRATIONS
WITH INTEGRATED PROCESSES

In this section, we briefly show how to apply the preceding theory to develop
regression asymptotics for models with transformed integrated regressors. Let
{x,} be generated by (1) and (2) and consider the regression model

ye = eaf(x,) +u, (19)
fort = 1,...,n, where « is the regression coefficient, f is a transformation in R,

and {u,} are stationary errors. The least squares estimator &, of « in regression
(10) is given by
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Zf(x:)yr E Flx)u,
~ =1 =1
o, = =a+

glfzu,) ;l £

When f is the identity transform, regression (10) reduces to what is known as (a
linear) cointegrating regression. Such regressions have become very popular in
time series econometrics following the work of Engle and Granger (1987). How-
ever, it is not always clear that the relationship between y, and x, is linear, and
such considerations lead naturally to models of the form (10) (just as in the case
where y, and x, are stationary),

Let {#} be the natural filtration for {«,} and make the following assumption.

Assumption 6.1.

{a) {u,}is independent of {w,}, and
(b) (w,,F) is a martingale difference sequence with E(u?|F,_,) = ¢? for all ¢, and
sup, E(|u,|?| F ) < oo a.s. for some g > 2.

Assumption 6.1(a) is stronger than is needed but is made for simplicity to
highlight the effect of the nonlinear transformation on the regression asymptot-
ics. As before, we let 0% = 1, because it has only a scaling effect.

The lemma that follows gives the Skorohod embedding of a partial sum and a
strong approximation to its quadratic variation as in Phillips and Ploberger (1996).
It is useful in the derivation of the regression asymptotics in Theorem 6.3, which
follows.

LEMMAG.2, Let Assumption 6.1(b) hold. Then there exists a probability space
supporting a standard linear Brownian motion U and an increasing sequence of

stopping times {T,},=0 with 7o = 0 such that 1/N% Sh_, u, = U(r,/n) and

@.5.
—5 90,

sup

1=t=n

nt

asn — oo for any 8 > max(1/2,2/qg).

In view of Assumption 6.1(a), we may assume that W and I are independent
and defined on a common probability space.

THEOREM 6.3. Let T =f? and denote by V a standard linear Brownian mo-
tion independent of W. Suppose Assumption 6,1 holds,

(a) If T satisfies the conditions in Theorem 5.1, then as n — 0

V(D)
) /2"
f T(s)dsL(l,O))

‘m(an—a)ﬁ(
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(b) If T satisfies the conditions in Theorem 5.3, then as n —> 0

V) (@, — @) % AL

e /2"
(J- H(S)L(l,s)ds)

(c) If T satisfies the conditions in Theorem 5.5, then as n — o

/2
(ﬁT(P;-?é‘n"f)) 6 — oy Do) VD)
p{(¥m) o L(ky Se) 2

3

or

. 172
(\WIT(}IE}QHX,)) (,, )_{9 _D(smm)lmv(])
- a, — e
V(\f?l) " L(l,smin)l/‘2

depending upon whether the exponential component E is increasing or decreasing,

Theorem 6.3 shows that &, is consistent when the conditions in Theorems 5.1
and 5.5 are met for 7= 2 Also, it is consistent if T = f? satisfies the conditions
in Theorem 5.3 with A’»{A) — o0 as A — co. Thus, we may generally expect
consistency, in the same way as in other time series regressions under persistent
excitation. The limiting distributions are mixed normal, in the same way as for
cointegrating regressions (Phillips, 1991). The rate of convergence, however,
will vary depending on f. It can be faster than the convergence rate (n) for linear
cointegrating regressions, but it can also be slower than the v# rate for stationary
regression. When £ is explosive, as in the case of exponential functions, the con-
vergence rate for &, is dependent upon the entire sample path of x; and on the
sample size.

Because the sample path of an integrated process typically shows trending
behavior, it is interesting to compare (10) with nonlinear regressions on deter-
ministically trending regressions. To be explicit, consider the following two re-
£ressions:

i + (11)
= ——+yu
Vi lx:‘ﬁ '
and
o
»= I_,g +u, (12}

where 8 > 0 is a known constant and the other notation is defined as in (10). The
least squares estimators of & in (11) and (12) are denoted, respectively, by &, and
&,. Unlike &,, &, is not properly defined without some modification, because x,
may take values in the neighborhood of zero (or could even be zero with positive
probability in the case of discrete innovations w,) in which case the regression
function is singular. Therefore, we follow the convention introduced in (9) and
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assume that &, is computed from a regression on x,,, = x,{jx,] = ¢,} + ¢, {|x,| <
ca) (in leu of x,) with ¢, = n™% for 0 < § < (p — 2)/2p(1 + 28). See Remark
3.5(b) for our choice of ¢, here. We let Assumption 2.2 hold in the subsequent
discussion.

The asymptotic behavior of both &, and &, is critically dependent upon the
value of 8. For 0 << B < }, both &, and & are consistent and have limiting dis-
tributions given, respectively, by

p i 1 - 1/2
n" AN —a) S (f P dr) Vil
o |W(r)|*

and

4 1 1 -1/2
nl'lzg‘e(ﬁ,I —a)— (J; err) V(1).

If 8 > ;, however, the asymptotic behavior is very different.

When 8 = 3, (log n)'?(&, — a) =4 V(1) and &, from regression (12) is there-
fore consistent. The estimator &, becomes inconsistent if 8 exceeds the critical
value 3, because X1, 1/t%# < co for B > 1, and the excitation condition fails to
hold. Faulty intuition here might suggest that regression (12) with 8 = 1 is anal-
ogous to regression (11) with 8 = 1, because x, = O,,(v'_t). This might lead to the
conjecture that g, from regression (11) becomes inconsistent when 8 > 1. Inter-
estingly, however, &, from regression (11) is consistent for a/f values of 8, in-
cluding 8 > 1, as shown in the following proposition, which establishes the
validity of the excitation condition for the regressor in (11) for all 8.

PROPOSITION 6.4. Ler Assumption 2.2 hold. Then

n
E [x,]* 5 co,
=1

asn — oo, for any k ¥ —oo,

7. CONCLUSION

The examples given in the previous section involve models that are linear in the
parameters and nonlinear in the regressor, Such models are obviously very simple
examples of regressions that involve nonlinear functions of integrated processes,
and our theory therefore provides only a basic extension of cointegrating regres-
sion asymptotics even though its methods are quite novel. In spite of their sim-
plicity, however, the models do illustrate some important features of more general
nonlinear cointegrating regression problems.

First, it is apparent that the signal emanating from a nonstationary regressor
can be substantially altered in strength by nonlinear transformations. Moreover,
as the strength of the signal is moditied, the corresponding rate of convergence of
the regression coefficient is affected. Our simple examples show that nonlinear
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transformations can decrease the rate of convergence over that of a linear cointe-
grating regression and also increase this rate. Second, the rate of convergence
may in some cases be path dependent, in the sense that the rate itself is stochastic
and depends on properties of the process such as its maximum or minimum.
Finally, the limit theory in all cases considered turns out to be mixed normal, as
in linear cointegrating regressions. Indeed, if a Gaussian likelihood approach
were adopted, the likelihood would turn out to be in the locally asymptotically
mixed normal class, so that an optimal theory of inference can be developed, as
in Jeganathan (1995) and Phillips (1991).

With these new methods in hand, we are ready to undertake the general task of
developing a theory of regression for nonlinear functions of nonstationary re-
gressors in which the parameters also enter in a nonlinear fashion. This task is
inevitably more complex and of broader scope than what has been completed in
this paper. Nevertheless, the results rely intimately on the methods we have in-
troduced here. The results of the broader investigation will be reported by the
authors in a later article (Park and Phillips, 1998).

8. PROOFS

Proof of Lemma 2.3. Parts (a) and {b) are, respectively, Theorem 3.4 of Phil-
lips and Solo (1992) and Theorem 3 of Akonom (1993). u

Proof of L.emma 2.4, See, e.g., Corollary 7.4 of Chung and Williams (1990).
|

Proof of Lemma 2.5, In what follows, let N,{(a,h) = N,(v,;q, b} to simplify
notation. For the proof of part {a), we first deduce from Lemma 4 of Akonom
(1993) that

! : 3 ké%nlogn
E Nn(O;S) - _Nn(a,(k + 1)6) =¢c— 14+ — ,
k niy, L’g’
and similarly
1 2 8 k81
E(N"(k’(k + 1)5) - ENn(ﬁg(k + 1)3)) =c— (l + —?1 Zogn)’
ryy, vy

where ¢ is some constant depending only upon the distribution of {g,} and {¢;}.
The stated resuilt now follows immediately because

E(N,(0,8) — N, (k8,(k + 1)8))*

= Q(E(Nn(0,8) - %Nn(a,(k + 1)6))2

+ E(N,,(k,(k + 1}8) — %NH(S,(k + 1)6))2).

Part {(b) is due to Akonom (1993), Theorem 4. n
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Proof of Theorem 3.2, Assume temporarily that x, = 0, and, using the Skoro-
hod representation, write

= |-
V=
M]
E
Es
—
1ES

|
= f T(W,(r)) dr.
0

Let C=[5mia — 1, Smax + 1], where s.;, and s, are defined as in Theorem 4.8. As
a result of Lemma 2.3(a), we may take r sufficiently large so that sup|W,(r) —
W(r)| < &, for any 8, > 0 and so that both W, and W are in C a.s. (Note that C is
path dependent on W by construction.) Therefore,

T(W(r)) = T(W,(r)) = T,(W(r)) (13)

for large n because of (6). However,

f (T.— TYWI(r) )dr-—f (T, — T)(s)L(1,s) ds

= (sup L(L,s)) f (T - T.)(x) dx

a.5.

2250, (14)

as £ = 0, due to (7). The stated result now easily follows from (13) and (14). For
the case x, # 0, simply replace W, with xo/v# + W, in the preceding proof. W

Proof of Theorem 3.4. Again, temporarily assume x, = 0, and write

1> xl,)
—_ T —_
2n(%

as in the proof of Theorem 3.2. We define

[l

1
fo T OW,(1)) dr,

1 1
A, = UD T (W.(r))dr —fu T(W(r)dr

1

1
B, = ’J;I T.(W(r)) dr —fo T(W(r)) dr

and show

1

1
T.(W,(r))dr —f T(W(r))dr| = A, + B, = 0,(1)
9 0

subsequently.
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Given the conditions on the orders of »(c,,) and T(xc¢, }, we may easily deduce
from Lemmas 2.3(b) and 2.5(b), setting 77,,/v, = ¢, in the latter, that

A= vicy) fo IW,(r) = W) dr + [T ()

1 1
<| [ 1w <elar- [ ol <atal =00, as)
0 o
Therefore, it suffices to show that
1 1
B, = H{|W =c,}— | T(W(r)d
: ’ [ roveniwin = e [ rwenar
|
+|T(ic,,)!f HIW(n| <c,tdr=0(1) as. (16)
[¥]

It follows from (3) that
1
T(tcn)f H{[W(r)| < ¢,}dr = ¢, T(£,)(L(1,0) + 0(1)) =5 0,
0
because T'is locally integrable and therefore ¢, T{xc,} — 0 for ¢, = 0. Moreover,

fo T(W(r)H{[w(ir)| = cn}dr=fw T(s)1{|s| = c,} L(1,s) ds

—co

N fm T(s)L(1,5) ds

I
= f T(W(r))dr,
0

by dominated convergence and repeated applications of Lemma 2.4. Notice that
T(-AI-| = ¢,} — T(-) pointwise except at zero, which is of Lebesgue measure
zero. The stated result now follows from (15) and (16).

When x, # 0, we may define

S R .7} )

A,,—L Tn(\m+W,,(r))dr J;T,,(\m+W(r))dr,
Y Y [

Bn—J; T,,(ﬁ-O-W(r))dr fOT(W(r))dr,

instead of A, and B, and the stated result holds in the same way. u

Proof of Theorem 4.6. See Proposition 2.2 in Chapter XIIE of Revuz and Yor
(1994). ]
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Proof of Theorem 4.7. We have

IA rT(W(i"))dr L IT(W(Azr))afr
0 0

Ar(A) v(A}
« L[
4 V(A)JOT(AW(r))dr
=f H{W(r))ydr+ "m !R(W(r),f\)d"-

Because H is assumed to be locally integrable,

3 [e2]
f H(W(r))dr = f H(s)L(t,s) ds,
0 —o0
by Lemma 2.4, Therefore, it suffices to show that

l fr a.5
— | R(W(r),Aydr —0
v(A) Jo
to finish the proof.

If T € T{{H,), it is immediate that

’ a(/\) ! a.s.
—Mfo |R(W(r),A)| dr = mJ;P(W(r))dr—-)O,

because P is locally integrable. For T € 7{H-), we have from Lemma 2.4

1 Tt
o fo ROW(r), ) dr = —(-5 0w d

_ bW
»(A)

Becanse ( vanishes at infinity, Q(As) — O for all s except s = 0, which is of
Lebesgue measure zero. We may assume w.l.o.g. that Q is monotone decreasing
(increasing) as x — oo {x — —oo), by considering Q., Q.(x} = sup,= |, Q{y), in
place of @, if necessary. Now, for all A =1, Q(A-) is bounded by Q(-} which is
locally integrable. Because L{t,-) has compact support for any fixed ¢, we have

Q As}L(t, s) ds.

f Q(As)L{t,5) ds =50, (17)
by dominated convergence. |

Proof of Theorem 4.8. We let £ be increasing. The proof for the decreasing E
is quite similar and is omitted. In the proof, we let sy, = § and spip = s for
notational simplicity. Notice first that
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{A) At Av(A) !
/\T( slt)lp W(r)) f T(W(r)dr = T( supVW(/\zr)) fo T dr

O=r=A ’t O=<r=¢

(/\)

7 AW(r)) dr,
for all A. However, we have

Avi(A)
T{A%)

IT(AW(r)) dr = f T(AW(r)tdr(1 +0(1)) a.s.

= f E(AW(r))dr(1 +0(1)) a.s. (18)

because for s,, = max(5,—s)

RO _ Ridsy) o

E(A35) — E(AD
Av(A) _

f |R(AW(r)) | dr = mR(/\s ) =25 0,

Av(A)
E(/\ )

by the condition on R.
It follows from Lemma 2.4 that

BN saweyar = 20 [ oLt a
EOg) J, EAWdr=poe | EQs)L{ts)ds
= 21;,(\/3 DwE(/\(E—s))L(t,E—s)ds. (19)

Now we choose a function s{A) = 0 of A such that
s(A) >0 and Aw(A}s(A) = oo, 20

as A — co, Tt will be sufficient in what follows to set s(A) = (Ar(A)) ™7 for some
small 7 > 0. As a result of (18) and (19), it suffices to show that

Avld) [ E(AMF—sNL(1,5— s)ds =5 0, 1)
E(AS) Joa

ACUN E(A(F— s)L(1,5 — 5) ds — *I— L(1,5) (22)
E(A5) Jy ' D(5)

to finish the proof. Note for 0 = 5 < ¢(A)} that
G(A(5 = 5)) — G(AF) = —AsG(A(5 — 50 (A))
= —Av(A)s(D(5) + 0,,.(1)), (23)
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uniformly in s for large A, where 0 = 55(A) = s{A). By (20), s{A),50(A) = O as
A—> o,

Subsequently using the fact that E is increasing and [Z L(z,s) ds = ¢, along
with {23), we have

M) [ pAG - L5 - 9)d
EGD Jon (AGG—s)L(t,§ —5)ds
< W) E(A(5—5(A))

E(A%)
= Av{A)1exp(G(A(5 — 5(A))) — G(A5))
= Av(A)rexp(— A (Ds(AHD(E) + 0(1))) = 0,
as A — oo, because P(5) > 0 and
Av(A)exp(~Ar(A)s(A)) = Av(A)exp(—(Ar(A)) ") =0,
by (20). This shows {21). Now, by (23) again,

Av(A) 5
E(AS) Jo

E(A(F — sNL{1,5 — s)ds
s(A)
= /\V(/\)f exp{—Av(A)sD(S)(1 + o (IN)L(t,5 — s) ds
0
s{A)
= L(r,i))lv(/\)f exp(—Ar(A)sD(5)) ds(1 + o(1))
0

Av(A)s(A)
= L(t,E)J‘ exp(—sD () ds(1 + o(1})
0

a.s.

1
Lit,5),
DG) (£,8)
and this proves (22). [ ]

Proof of Theorem 5.1. Assume x, = 0 and write

12 1
- ET(x,) =4 WJ; T(vAW,(r)) dr.

If x, # 0, then we may consider the function T'{+ + xo) in place of T'(-). It is easy
to see that all the proofs go through under this replacement.
Now let

k,=n% and 8,=n"" Q4
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for a,b > 0 satisfying

a—(1+ )b <0, (25)
6b—1)p+2<0, (26)

2a—1<0, (27
dg —4b—1<0, (28)
(@a=b)p—1>0 (29)

and define T, 7,;, and T,," by

Li(x) = T(x) 1{—k,8, = x < x,8,},

Ii{x} = T(x)1{x = x,6,},

L/(x) = T(x) 1 x < - «,8,},

sothat T =T, + T, + T,”. We will show that

1 oo
\]ﬁf T, (vaW, (r))dr = (f T(s)ds)L(l,O) + o,(1), (30
4] —ng
and
!
@ [ Taw, )y ar = o), (1)
0
1
i [ 1w ) dr = o,0), 32)
o

from which the stated result follows directly. For notational brevity, set v, = vn
andletN,(a,b) = N,(v,;a,b) and N(a, b) = N(»,:a, b} in what follows, for N, and
N defined in (4) and (5).
To show (30), we first define

x,—1
Tpx)= 2 Tk8,)1{ké,=x< (k+1)8,}

k=—k,
It follows from the Lipschitz condition for T that sup|T,{x) — T; (x)] = c8f, and
therefore,

1 1
\fﬁf L, (vaW,(r)) dr — w‘ﬁf Ts (NrW, (r)) dr
0 0
VR
KO,
given the conditions for «, and §, in (24) and (25). Note that
Vi

K6,

i: CIKHSI}+P( Nn(—Kn8n7Kn6rx)) = OP(KHS'?I+€) = OIJ(I)’ (33)

Nn(‘KnSri.aKnan) = 2L(170) + Op(l)’

under condition (26}, as a result of Lemma 2.5(b).
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Now,

K,—1

1
mf Ts (VAW (r) dr = i X, T(k8,)N,(k8,,(k +1)8,)
G

k=—g,
*x,—1
= W( > T(kﬁn))Nn(O,é,,) + R, (34)
k=—-x,

where

Kp—1

Rrr = +n E T(kan)(Nn(kSJv(k + I)Sn) - Nn(Oyan))

k==,

It follows from the Cauchy-Schwarz inequality and Lemma 2.5(a) that

w1 K,
E(R;‘l)sn( > T(kﬁn)z) > E(N,(0,8,) — N,(k8,,(k + 1)8,))?
k==K, k=—rx,

- K, kid2logn
= Ts(s)ds || ¢ ﬁ + ¢, T = (1),

because of the conditions for «, and 8, in (24), (27), and (28), and where ¢, and
¢, Are some constants,
However, we have

ﬁ( Ki T(kan))Nn(O-lSn) = (fm H,!(s)ds) ?N,,(O,‘o‘n)

k=—k, "

= (fw T(s) ds)L(l,O) + 0,(1), 35)

as a result of (26) for ,, and &, in (24). Notice that

?M(o,aﬂ) 25 L(1,0),

under condition (26), by Lemma 2.5 (b). Moreover,

f Ts (s)ds = f T.(s)Yds + o(k,82),
—o -

J:Z T,(s)ds = J‘w T(s)ds + o(1).

—

We now have (30) from (33), (34), and (35).
Next we show (31) and (32). Let

&, = sup [W,(r) — W(r)|. (36)
O=r=1
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By taking » sufficiently large, we may assume that 7, and T, are monotone
{decreasing and increasing, respectively} on their supports. This causes no loss in
generality, because we may always bound 7, and T’ by such functions if T is
integrable. Therefore,

(AW () = TEAR(W(r) — e ) H{Va(W,(r) + &,) > Kk,8,},
T (AW, (r)) = TVA(W(r) + e ) H{VE(W,(r) — &,) < —K,8,}.

It follows that

1
v f LW, (1)) dr
0
1
< 7 | TCRW() — e ) HEWG) + ) > k,8,}dr
0
= ﬁjm T{(va(s — e, N 1{vn(s + &,) > «,8,}L(1,5) ds

= )
=f T(s)1{s > xnﬁn—2\fﬁsn}L(l,— +a,,) ds 50,
— Vr
because ,8, — 2Vig, —, o0, as a result of (24) and (29). Similarly,

1
\fﬁf T, (vaW,(r)) dr
0

= \fﬁf T(Va(W(r) + &, H{va(W(r) — &,) > «,6,}dr
0

ﬁfm T{vals+e,)) {va{s — e,) > k,8,}L(1,5) ds

I

f T{s){s < —k,8, + Zﬁsn}L(l, S 8,,) ds %50,
Cw N

because —«, 8, + 2Vne, —, —oo, again because of (24) and (29). The proof is
therefore complete, ' u

Proof of Theorem 5.3. Again let x, = 0 for simplicity. The proof for x, # 0 is
the same with only W, () being replaced by xy/vn + W, (r) in what follows. Write

1 " P 1 1
s ZT(X:) < T(NaW, (7)) dr
i 1 1
= fo H(W () dr + 20 fo R(W,(r),vn)dr.
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Because H is regular, it follows that

1 1 [+5]
fH(w,,(r))dri)f H(W(r))dr=f H(s)L(1,5) ds.

Tt therefore suffices to show

1
V(NITI)J; R(Wn(r)yﬁ)dri) 0

to complete the proof.
If T € T(H,), it follows immediately that

I a(vn) (! as,
s | 1ROl ar= S [ pw a2,

because P is locally bounded. For T € 7(H,), we need to show

L bE) [
o | ROl ar= 28 [ g oy ar 20

291

(37)

where ( is bounded and vanishes at infinity. We may assume w.l.o.g. that Q is
monotone decreasing (increasing) for x > 0 (x < 0), as noted in the proof of
Theorem 4.7. We may thus write Q = @, — 0, with both @, and O, bounded and

nondecreasing and let £, be defined as in (36). Tt follows that
Q(VR(W(r) — 8,)) — Q2(Vr(W(r) + &,))

= Q(VrW,(r))

= Q,(vr(W(r) + &,)) — G (Va(W(r) — &,)).

However,

1 o
[ owawer=epar= [ o = e 01,5 ds
0 — o
= J-m Q;(\‘T’U)L(I,S 1 Ert) dS

= Jm O;(Vas)L(1,8) ds(1 + o(1)) a.s.,

because the ;s are bounded and L(1,-) is continuous. Therefore,

1
fo (O (AW F 6,)) = O (WA(W(r) = 8,))) dr
= [ @5 % 5,0~ Q:(H(s £ e, NL(15) ds

= J.m Q(Vns)L{1,5) ds(1 + o(1)) a.s.

Now (37) follows easily from (38) and (39), as a result of (17).

(38)

(39)
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Proof of Theorem 5.5. Let E be increasing and let 5, = sup W,(r) and § =
sup W(r). For simplicity, assume x, = 0. For the case x, # 0, we replace W,(r)
and 5,, respectively, by W,(r) + xo/vh and §, + xo/¥n in what follows. All the
proofs go through with this replacement. Write

( d vy V’TT) J.
——— ——————— d
W(f‘;‘?i‘,,xs) 2 T = Ty Jo TN
and notice that
iy (i} _ ﬁv(xfﬁ)j’
Tas) Jo T(Waw,(r)) dr = EGms) E(NaW, (7)) dr(1 + 0,(1)), (40)

which we can show in the same way as (18} in the proof of Theorem 4.8,

Let », = ¥av(yn) and let s, be a sequence of numbers such that s, — 0 and
v,s, — o. Because §, —, 5 and 5, — 0, we have similar to (23) in the proof of
Theorem 4.8

G(Vi (5, — 5)) — G(¥n3,) = —v,s(D(5) + 0,(1)), (41)

uniformly in 5 € [0,s,], for sufficiently large n. Therefore, if we write

1
By J; E(NaW,(r))dr=A, + B,, (42)

where

Vo !
A, = E(\/ﬁfn)f E(NaW, (rD W, (r) =5, — 5, dr,

yn
B =
" E(vns,)
then it follows from (41) that

1
f E(ﬁwn(r))l{wn(r) <5, — S,,}d]‘,
1}

1
A, = ano exp(— v, D(5)(5, — W, (1)) dr(1 + 0,(1}),

B, = o0,(1),

in parallel to (21) and (22) in the proof of Theorem 4.8.
Define W, and W' by

Wi(r)=5,— W, (r) and W'(r)=5— W{(r),

i.e., Brownian motion reflected at the supremum and its sample analogue. Denote
by I’ the local time of W', Furthermore, we define N, and N’ for W, and W' in the
same way as N, and N for W, and W given in (4) and (5), respectively. Write
Ni(a,b) = N,)(v,;a,b) and N'(a,b) = N'(v,;a,b) for short, Though we do not
provide the details, it is obvious that all the results in Akonom (1993), and there-
fore our Lemmas 2.3 and 2.5, hold for W, and W, and also for W, and W.
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Now we write

1
A, = an F(v,W,(r))dr(l + 0,(1)),
U]

with
F(x) = e P x =0}

To analyze A,, we define «, and 8, as in (24) with a and 6 satisfying

a—2b<0, 43)
2a+m—1<0, (44)
4a—ab—m—1<0, (45)
(6b+3m—1p+2<0, (46)
2a—-2b—mlp—2=>0 (47)

and let v, 5, = k,6,. It is tedious but straightforward to check that @ and b satis-
fying all (43)—(47) exist, given our conditions on m and p,
We decompose F into F, and F,, where

Fo(x) = e *PI1{0 =x < k,5,},
Fo(x) = e P91{x = ,8,}.

It will be shown that

1 o
v,,f F,(v, W, (r))dr = (f F(s)ds) L'(0,1) + 0,(1), (48)
0 —co

1
vnf F v, W, (r))dr = 0,(1), (49)
0
from which we may easily deduce the stated result, upon noticing that
« 1
fmF(s)ds = ﬁ and L'{1,0) = L(1,5),

together with (40) and (42),
To show (48), we first introduce

Kp—

Fs (x) = 2, e *PO1k5, = x < (k+1)8,)
k=0

and notice that

1 1
o | EGaWiar =, [ By Wi ar sKnas( i N,:(o,x,,a,,))
4] 0

Knan

= 0,(x,87) = 0,(1), (50)
under conditions (43) and (46). Note that
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N;(O:Knan) = L’(Oal) + Op(]),
Knan

under condition (46) by Lemma 2.5(b).
Second,

1
f Fs (v, W,(r))dr = v, 2 RPN kS, (k+ 1)8,)

k=0

( > e"‘ﬁn’)“’)N,;(O,rSn) + R}, (51)

k=0
where

&, 1

R, =v, > e *=DO(NI(kS,,(k+1)8,) — N;(0,5,)),
k=0

and therefore,

K, 1 Kp—1
E(R?) = ( > e D(‘)) > E(N,(k8,,(k+1)8,) — N;{(0,8,))°
k=0

o v, K, 8ikllogn
= FZ(sYds )| e + ¢y -0,
o n v

n

by conditions (44) and (45), where ¢, and ¢, are some constants,
Third,

x,—1 =]
vn( > ekanﬂ(f))N,:(o,an) = ( f Fa,,(s)ds) (?N,:(o,sn))
k=0 -0 "

= (J-m F(s) ds) L'(1,0) + o,(1). (52)

Notice that

fo; Fs,,(.s) ds = f: F,(s)ds + O(x,82),

f F,(s}ds =f F(s)ds + O(e%5),
Also, by Lemma 2.5(b)

5 Val0.8,) = L'(1,0) + 0, (1),

n

under condition (46). Then (48) follows from (50}, (51), and (52).
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Finally, for &, defined in (36)

1
v [ K, Wi ar
Q

1
< v, [ FO,010) = e LW/ (r) 4 £,) >
Q

[ F s = e Una(s+ ) > 8,02 (115) ds

f F(s}l{s > k,8, — v,e,}L (1, 4 e,,) ds 50,
o VR

because x,8, — v, &, —, oo under condition (47), which proves (49). The proof is
therefore complete, ]

Proof of Lemma 6.2. By Theorem Al, page 269 of Hall and Heyde {1980),
there exist a probability space ({2, P, F} supporting {U,}, U, = 2=, u,, a Brown-
ian motion U with variance o2, and a time change {r,} such that

(a) 7,is F;-measurable,

(b) E{(a7,) | Fim1) = E(Ju,)*"| F-y) a.s. for r = 1, and

(c) E{A7,|Fy) =1,

where F, is the o-field generated by (U)j—; and U(r) for0 = r = 1,.
Let 1 = r = min(2,4/2). Then we have

E(jar, —1[7|F-y) = csupE((u, 19| Fm)) < oo as.
r=1

for some constant ¢. Therefore,

Dt PE(Ar, 1 Fo) <o as.

=

because rd > 1, and we have from Theorem 2.18 of Hall and Heyde (1980} that

as t — oo for 8 > max (3,2/g). Therefore, for any & > 0 given, there exists n’ such
that |7, — ¢|/t® < g for all # > n". Choose n = n’ such that n > (max, <,,/|7, —
t|/€)78. It is easy to check

T, f

nt

< g 4as.

sup

I=isn

as was to be shown. |
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Proof of Theorem 6.3. To prove part (a), construct the process

o3 o ) o)
¥ w(ﬁ%(f))(”m - U(I’;—')) (53)

for 7 /n < r=m7/n, k=1,...,n Note that M, is a continuous martingale such
that

1 & d (Tn)
iz =M.\ — )
ﬁ;f(xr)ur n

in view of the construction in Lemma 6.2. The quadratic variation process [M,]
of M, is given by

s -5 w222 m ()2

_ mJ:fz(\lﬁW,,(s)) ds + 0, (1),

because

(E 1',_1) 1
n n R

as a result of Lemma 6.2. Therefore,

sup
l=t=n

=o(1) as.,

M,] 5 ( f - T(s) ds) L(r,0), (54)

as shown in the proof of Theorem 5.1. Moreover, if we denote by [M,, W] the
covariation process of M, and W, then

[M,,W], =0, (55)

for all » € [0,1], because of the independence of &/ and W. The asymptotic dis-
tribution of the continuous martingale M, in (53) is completely determined by
(54) and (55), as shown in Revuz and Yor (1994, Theorem 2.3, p. 496).

Now define the sequence of time changes

palr) = inf{s|[M,], > r}
and subsequently set
Va(r) = M, (p,(r)).

The process V, is the DDS {or Dambis, Dubins—Schwarz) Brownian motion of
the continuous martingale M, (see, e.g., Revuz and Yor, 1994, Theorem 1.6,
p. 173). Tt follows that {V,, W) converges jointly in distribution to two indepen-
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dent standard linear Brownian motions {V, W), say. Therefore,

MH(E) = M, (1) + 0,(1)
n

N V(fw T(s)dsL(l,O)),

which gives the result stated in (a). The proofs for (b) and (c) are similar and are
therefore omitted. u

Proof of Proposition 6.4. The case k = 0 is straightforward because

n - w/2 2 ‘xrlx = _
by Theorem 3.2, because T(x) = |x|* is regular, In the case where —1 < x < 0

Theorem 3.4 is applicable and (56) again vields the stated result. For the case « <
-1 we use a different argument. Bound X\_,|x,|* below as

$inire $lamif sl )

=1 = n ﬁ

(1+;x1)21{'x‘m bl

1
d
=n(l+ " 14 |W = dr.
0+ b [ 1w A ar
Then, from Lemma 2.5(b)

\’_f {]W(r }dr-—y’?zjl {IW(r)lSé}dr+op(l)

= 2L(1,0) + 0,(1),

n x!

f [W(r)|* dr, (56)

and thus for any 6 > 0

Fd
p-1/2+8 E |x1|x Ly p
=1
thereby establishing the stated result. a
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