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Abstract

The current practice for determining the number of linearly independent cointegrating
vectors, or the cointegrating rank, in a vector autoregression (VAR) requires the investi-
gator to perform a sequence of cointegration tests, However, as was shown in Johansen
(1992), this type of sequential procedure does not lead to consistent estimation of the
cointegrating rank. Moreover, these methods take as given the correct specification of the
lag order of the VAR, though in actual applications the true lag length is rarely known.
Simulation studies by Toda and Phillips (1994) and Chao (1995), on the other hand, have
shown that test performance of these procedures can be adversely affected by lag
misspecification.

This paper addresses these issues by extending the ana1y51s of Phillips and Ploberger
{1996) on the Posterior Information Criterion (PIC) to a partially nonstationary vector
autoregressive process with reduced rank structure. This extension allows lag length and
cointegrating rank to be jomtly selected by the criterion, and it leads to the consistent
estimation of both. In addition, we also evaluate the finite sample performance of PIC
relative to existing model selection procedures, BIC and AIC, through a Monte Carlo
study. Results here show PIC to perform at least as well and sometimes better than the

other two methods in all the cases examined. © 1999 Elsevier Science S.A. All rights
reserved.
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1. Introduction

Since the pathbreaking work of Engle and Granger (1987), research in
cointegration has become a rapidly expanding industry. Much of the effort
has been directed at procedures which will enable the empirical investigator
to determine the number of linearly independent cointegrating vectors, or
the cointegrating rank, in a general vector autoregressive process. Toward
this end, several tests of cointegration have been developed; a nonexhaustive
list includes the likelihood ratio tests of Johansen (1988, 1991) and Reinsel
and Ahn (1992) and the Stock and Watson (1988) tests for common trends.
Most of these procedures are designed to test the null hypothesis that the
cointegrating rank is less than or equal to some preassigned value r against
the alternative that the cointegrated rank is greater than r. Hence, estimating the
number of cointegrating relations requires performing a sequence of such tests
for different values of r. One such sequential procedure has recently been
proposed by Johansen (1992) who recommends testing from the subhypothesis
r =0 onwards.

The sequential procedure, however, does not yield a consistent estimator of
the cointegrating rank. As was shown in the Johansen paper (see Theorem 2 of
Johansen, 1992), the probability of underestimating the rank under the Johan-
sen procedure goes to zero asymptotically, but the probability of overestimation
remains positive in the limit and is constrained by the size of the test. Secondly,
this type of procedure assumes that the correct lag length of the vector autoreg-
ressive {VAR) process is known. In actual empirical situations, this is almost
never the case, Moreover, simulation studies by Toda and Phillips (1994) and
Chao {1995) have shown that test performance of these procedures can be
adversely affected by lag misspecification.

The present paper offers a fresh perspective on the problem of cointegrating
rank determination. We seek to address the issues raised above by reconsidering
this problem from the viewpoint of model selection. The Posterior Information
Criterion (PIC) put forth recently by Phillips and Ploberger (1994, 1996) is
especially useful in this endeavor. Here, we extend the Phillips-Ploberger
analysis to a VAR process with reduced rank cointegration structure. This
extension enables us to jointly select the lag length and the cointegrating rank in
a vector error-correction model. Qur criterion has the additional advantage that
it carries an implicit penalty function which symmetrizes the costs of under- and
over-parameterization. As a result, this approach achieves consistent estimation
of both the cointegrating rank and the VAR lag length.

A second objective of this paper is to conduct a Monte Carlo study comparing
our criterion to the alternative model selection procedures BIC and AIC. Qur
results show PIC to perform at least as well and sometimes better than both BIC
and AIC in all the cases studied. A likely explanation for the good sampling
performance of the PIC procedure is that its penalty function takes into account
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not only the number of estimated parameters in the model but also the non-
stationarity of the regressors associated with some of these parameters. :
The paper proceeds as follows. In Section 2, we discuss the model, the data
generating process and the associated assumptions. Section 3 is divided into two
subsections. In Section 3.1, we describe our model selection procedure PIC and
show that estimators of cointegrating rank and lag length which emerge from
our procedure are weakly consistent. Section 4 reports a Monte Carlo investiga-
tion comparing PIC with alternative model selection procedures. Some conclud-

ing thoughts are offered in Section 5, and all proofs and technical material are
provided in the appendices.

2. Model and assumptions
Consider the m-dimensional vector autoregressive process of (p + 1) order:
Yi=JL)Y,-y+¢, (1)

where J(L)=3Y¥?2/J,L'"". We initialize the process denoted by Eq. (1) at
t = —p,...,0. Since the values {Y,,Y _,,...,Y _,} do not affect our subsequent
asymptotic analysis, we allow them to be any random vector including con-
stants. Alternatively, Eq. (1) can be written in the vector error-correction model
(VECM) representation as

AY, = JHLAY,_ +J,Y,_, +z, 2)

where J, = J(1} ~ I, and J*(L}Y =Y., JEL'" ! with J¥ = —~ Y22L, J, with
(i = 1,...,p). Moreover, we assume the following conditions:

(i} det[I,, — J(L)L] = 0 implies that either L =1 or |L| > 1.

(1) J, =T,A4;, where I', and A, are mxr matrices of full column rank
nO<r<m(Ifr=0wetake 'y = Ao = 0,and if r = m, we take I, =J,
and A4,,=1,.)

() I'y (J*(1) = I)A,,, is nonsingular for 0 < r < m, where I', , and 4 , are
mx{m—r) matrices of fuill column rank m—r such that
P,r,=0=A,,4,.0r=0wetake ', o= A, o =1I,)

(v} {&}] =iid N(0,8), 2 > 0.

These conditions allow for nonstationarity in the sense that the characteristic
polynomial of the VAR model described by Eq. (1) may have roots on the unit
circle. Condition (i}, however, explicitly excludes explosive processes from our
consideration. These conditions also allow for cointegration so that certain
linear combinations of ¥, may result in J(0) processes. Condition (ii) specifies the
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rank of the cointegration space (or the cointegrating rank) to be r. The mxr
matrix A4, in condition (ii) is known as the cointegrating matrix and its columns
form a basis for the cointegration space. Note that without further restrictions,
I', and A, in condition (if) are unidentified. To achieve identification, we follow
Ahn and Reinsel (1990) in selecting a normalized parameterization in which
A, = [1,, 4;]. Condition (iii) ensures the application of the Granger representa-
tion theorem so that AY, is stationary and has a Wold representation.

Taken together, conditions (i)-(iii) imply that if r < m, then {Y,} is an integ-
rated process of order one, or an I(I) process, with m — r common unit root
components. Moreover, if r > 0, then the number of common unit root compo-
nents in the multivariate system (1) is less than m, the number of constituent
univariate J(1) processes in Y,, as a result of cointegration. Thus, for 0 < r < m,
we can isolate the I(0) and I{1) components of Y, by defining the matrix
A, =14, , AJand writing A, Y, = [(4}, Y.V (A.Y)]Y. Note that here A.Y, is I(0)
and has a moving average representatzon which we shall give in Section A.2 of
this paper. 4, ,Y,, on the other hand, is /(1) and represents the m — r common
unit root components.

Finally, the normality condition (iv) allows us to write down the conditional
likelihood function for the model given in Eq. (2) as

T
LAT, A, J%, ..., J% Q) = (2m)" T"2|Q|~ T2 exp{ — -;- Yy e:Q'la,}, (3)

=1

where g, = AY, — JML)AY,_( — I'L4,Y,_, as can be seen from expression (2).
The likelihood function (3) fully specifies, up to the unknown parameters
FnAndt, ... 03,.0Q), a VECM with cointegrating rank r and order of lagged
differences p, which we shall denote with the symbol M,, Let
8, = (vec(d,Y, vec(T,Y, vec{J¥), ..., vec(J¥Y, oY, where @ is the mim + 1)/2 x 1
vector of nonredundant elements of Q2. We often find it convenient to partition
8,, =18, 0", and we assume that 8,, belongs to the parameter space
@) =0rxO3 XxOpx - xOpx0, —@,,,x @‘,,, where @,, is a subset of
ROme=r+mip+ (L2mm¥ 1) gyeh thay T, A, J%, ..., J* satisfy conditions (i)-(iii),
and note that the dimension of ®,, depends on the value of p and r.

Our task in this paper is to select a VECM with particular p and r, say (5, ),
from amongst a class of these models (M,,:r =0,...,m; p =0,...,p). For this
purpose, we shall assume that there exist °={0<r°<m) and p®=
(0 £ p° < ) corresponding to a unique ‘true’ and ‘minimal’ model M 0« with
conditional likelihood function L1{8, ,-) which depends on the parameter vector
0,0 € @ o 0. In addition, as is common in parametric frameworks, we assume
that the data generating process is an element of the set of structures defined by
the model M o 0. Thus, let 6% ,» = (vee(I'%Y, vec(A%), vec(J1°), vec(J¥%), w°}
be the true value of the parameter 8, .. Then the data generating process is of
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the form (2) where the conditions (i}<iv) are satisfied with p = p andr =r%and
where the parameters of the model take on the true value 6%

A few words on notation. In what follows, we let ¥ = [Y,, .Y =
[Yo..... Y- 1, AY =[AYy,...,AY]) and W(p)=[W,(p),....W(p)]' with

Widp) = {AY; 1---AY 1. We shall often wish to partition
W(p) = [W(p), W(p*)] where the submatrices W(p) and W (p*) contain, respec-
tively, the first mp columns and the last m(5 — p) columns of the T x mp matrix
W(p). Fry will be used to denote the mx(m —r) matrix for which
F(ry =[0,1p-,) and My = I+ — X(X'X)"™ ' X’ is the projection onto the ortho-
gonal complement of the range space of X. In addition, we let
X =[AY,Y_,W(p), W(p*)] and $ = X’X and write S in partitioned form as:

AY'AY AY'Y_, AY'W(p) AY'W(p*)
Y., AY Y., Y, YL, W(p) Yo W(pY)
Wpyay WYy -, WpY W(p} W(pY W(p*)
WE*YAY  WE*YY., WENWE)  WeHWeY

SAA SA). SAP SAp"
S)'A Sr.v Syp Syp*
SPA Spy Spp S.w‘

= SyA S},y ) Syp (SaY).

Finally, we define!
Sl'j.k = S,'j - S,—kSQ‘ISU for i,j' = A, ¥y and k = b p

Sijkr =Sy — Sil.kst?.;stj.k fori,j=4,p*and k, I =y, p, p-

! Note that for the symbol S;;, 1. the range for its indices is subject to the restriction that k, | P
unless § # p* and j # p*.
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3. Order selection in a partially nonstationary VAR
3.1. Posterior information criterion and consistent order estimation

Our object is to jointly estimate the cointegrating rank r and the order of
lagged differences of the VECM Eg. (2) using the Posterior Information Cri-
terion (PIC) developed in Phillips and Ploberger (1994, 1996). More specifically,
we propose to select (5, 7) as follows:

(p.) = argmin PIC(p, ), @
where
PIC(p,) = exp (e[0T, ,7) — T,0)S,,.,0 00 1) — T 0W T}
x exp L0 %S epe, T 0T}
x (107 @S, 210 @S]
x (e, O™ @S,, M, 1V @5,y 51117]. )

Here J,(p,r) = (Pp,n, [p,r)A(p,r)) where F(p,r) and Alp,r) are the Gaussian
maximum likelihood estimators of the reduced rank parameters I' and 4 when
the cointegrating rank is assumed to be r and the order of lagged differences is
assumed to be p. These estimators are obtained from a Newton-Raphson
procedure which we describe in Section A.l of Appendix A. We let
Tu(P) = Say.{Syy.p) " and J¥(p*) = Sape, S, p5) " denote, respectively, the
least square estimator of J in a VECM of lag order p and the least square
estimator of the last m(p — p) columns of J* {or the coefficients of the last p — p
lagged differences) in 2 VECM of lag order 5. In addition, & = Saary s/ T is the
maximum likelihood estimator of Q in the case where the model given by Eq. (2)
has the highest possible order in our setup, ie, r =m and p = p; and the
(2mr — r*) x m* matrix H(p,7) is defined as

(oY @ F))
B = - 5
1) [um@»u,,z(p, r)'»] ©

While criterion (5) appears complicated, it has a simple intuitive interpreta-
tion as a combination of likelihood ratio statistics, which test the fit of
the reduced rank model given by Eq. (2), and penalty terms, which reflect the
complexity of the model. To see this, note first that we have written Eq. (5) as the
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product of four terms. The trace expression in the exponent of the first term, 1.e.,
Q70,0 1) = T o)Syy T o2 7) — T (0] Y

is, in fact, the likelihood ratio statistics for testing the null hypothesis that the
cointegrating rank equals r against the general alternative that the rank is m (cf.

Reinsel and Ahn, 1992). Likewise, the trace expression in the exponent of the
second term, ie.,

tr[Q7 T p")S prpe s T (2*)] ®

can be easily seen to be the likelihood ratio statistic for testing the null
hypothesis that the VECM given by Eq. (2) has p lags against the alternative that
it has p > p lags. Moreover, the third and the fourth terms are terms which,
ceteris paribus, penalize models for having higher lag order and/or greater
cointegrating rank. We shall discuss these penalty terms in more detail in
Remarks 3.2(i)(ii) below but note for the time being that, unlike AIC, BIC and
other information criteria, whose penalty function depends on a simple para-
meter count, the penalty terms of PIC compare the determinant of the Fisher
information matrix of the larger model with that of the smaller model. In this
sense, it is closely related to the Fisher Information Criterion (FIC), which was
independently developed and analyzed for the univariate case by Wei (1992).
Both Wet (1992) and Phillips and Ploberger (1994) have argued that this penalty
function, which uses the redundant information introduced by a spurious
regressor to penalize excess parameterization, has the particular desirable fea-
ture that, in making model comparisons, it takes into consideration not only the
number of regressors included in the alternative models but also the magnitude
of the regressors and the sample information accumulated in the data about the
models’ parameters. Hence, one would expect the criterion given by Eq. (5) to
perform well when applied to partially nonstationary VARs, as such models
involve I(1) and {0} components of vastly different magnitudes,

In the next subsection, we give results showing that the PIC criterion given by
Eq. (5) can be derived using a combination of Bayesian and classical ideas. Our
main justification for proposing PIC is based not on Bayesian foundational
arguments but on the criterion’s good sampling properties, both in smail and
large samples, and the fact that it delivers jointly consistent estimates of
cointegrating rank and VAR lag order. The Monte Carlo simulation results are
presented in Section 4. Below is a formal statement of the weak consistency
property of PIC in joint order selection of p and ».

Theorem 3.1, Suppose the true data generating process belongs to the set of
structures defined by the model M ,» of the form given by Eq. (2} and satisfies
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assumptions (i)-(iv), with lag order 0 < p° < p and cointegrating rank 0 < r° < m.
Suppose (p,F) is selected in accordance with the criterion given by Eq. (4). Then,

. 0
(f ) - (Po) in probability as T — oc .
f r

Remark 3.2.

(i) To provide some intuition on the weak consistency of PIC, take the special
case where, under the nulil hypothesis, p = p and r < 7 = m. First, notice that in
this case expression (5) reduces to

PIC(p, 1)
= [HE N2 ®S,, JAE, 1Y VHQ T @S,y 4~ 2
x exp{(3tr[ Q™ (T (5, 1) — T30S,y 5T, (5. 1) — T (BT} ©)
Taking the logarithm of Eq. (9) and multiplying by 2, we have
21n PIC(p, 1)
= e[ Q71T B,1) = T3NS,y 0T B 7) — T (Y]
+ In[l A, rQ ™' @ S,y MG, VI ®S,,41]. (10)

Now, observe that the first term is simply the likelihood ratio statistic for testing
the null hypothesis that the cointegrating rank equals r against the general
alternative that the rank is m (cf., Reinse! and Ahn, 1992). To analyze the second
term, we need to determine the orders of magnitude of the elements of the
matrices that appear in the determinants in this term. Rotating the regressor
space to isolate components of S,, ; of different orders of magnitude (see Phillips
(1988) for details of how to do this), we find that under the null hypothests,

1071®S,, 4 = O, (T ™), (11)
|G, Q1 ®S,, JHP, 1| = O,(THE™ %), (12)

Since 2m* —rm —(3mr —2r¥) = 2m* — dmr + 212 = 2(m — r)* > Oforailr < m,
the second term of Eq. (10) will be negative for large T whenever r < m. Hence,
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the criterion penalizes the alternative when the null hypothesis is correct. Recall
that for Johansen type sequential procedures, as mentioned in the Introduction, -
the probability of overestimation never vanishes, not even in infinite samples.
The PIC procedure corrects for upward bias by imposing a penalty on over-
parameterization. Moreover, the penalty does not contribute to a Type I error
in the limit because, being a logarithmic function, it changes more slowly than
the likelihood ratio statistic with an increase in the sample size.

A similar analysis can be carried out for the case where under the null

hypothesis r = F and p < p. Here, two times the logarithmic transformation of
the criterion given by Eq. (5) reduces to

21 PIC(p, 7) = tr[ Q7 T*(p*)S o, *P*)] + Q™ @S,/ @811
+1[[07 1 ©S,,, /1071 ®S,, /1 (13)

Note that Eq. (13)is expressed as the sum of a likelihood ratio statistic, a penalty
function, and a third term which we will show to be insignificant asymptotically.
The LR statistic tests the null hypothesis that the true lag length is p against the
alternative that the lag order is greater than p. The remaining terms can be
analyzed by noting that under the null hypothesis,

187 E@S,, = O,(T™"), (14)
187 @85 = O (T™?), | . (15)
and

'Q‘ 1®Sr)'.pl/]Q_ ! ®Syy.#i
= Q7' (T3S, /1@ (TS, 5l 3 1. (16)

Hence, the last term converges in probability to zero. The second term, on the
other hand, converges in probability to — oo, thus, eliminating the possibility
of committing a Type I error in the limit.

In the general case where r # 7 and p # p, both lag and rank overspecification
will be penalized. This modification of the traditional likelihood ratio test is
what drives the consistency result in Theorem 3.1.

() We can also find an approximation for our criterion which facilitates
a direct comparison of its penalty function with that of BIC. First rewrite
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criterion (5) in the equivalent form
PIC(p,r) = exp{3tr[Q*AY — Y, J (p, r-);)’MW¢p,(AY —- Y_J. (0.3}
x exp{3u[QHAY — Y_, T (0)Y My (AY — Y_ T (5))]}
x Q7' @S, /127 @5 45""*]
x [H(p, Q™' @Sy, A0, 1Y /107 @8,y 4111, (17)

Now, multiply the logarithmic transformation of Eq. (17) by 2/T and ignoring
those terms that do not involve p and r, we see that minimizing Eq. (17) with
respect to p and r is identical to minimizing

HnlQ ' @8, + Holf(p, YO ®S,, Hp, 1)y + (2713, ], (18)

where @, ,=[AY — Y_,J (0, Y My (AY — Y_,J (,))/T. To rewrite
tr[ﬁ“‘ﬁp, .J in a form closer to BIC, we make use of the first-order Taylor
expansion:

In|f3,,,| ~ inl@}| + [ Q" 1(,, — B)]

so that minimizing Eq. (18) is seen to be asymptotically equivalent to minimiz-
ing

Inj3, | + #n|2"'@8S,,} + HnlAp, X2 ®S,, YA, ). (19)

Finally, in light of Eqs. (12) and (14) of the last Remark, an approximation to
Eq. (19) that takes into account the orders of magnitude of the data matrices as
T — oo (without characterizing their partially random limit) is
Inj3,,] + $in T™? 4 §in T2rtm=r) +on)
= In|@, | + (m*p + 2r(m —r) + mr) #in T.. (20}
We can compare Eq. (20) to the BIC criterion

BIC(p,r) =IniG,,} + (m*p + rim = r) + mr) $In T (21)

given in Phillips (1993) for VECMs. We see that BIC penalizes all parameters in
the same way, while PIC attaches twice as great a penalty to the rim —r)
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parameters of the cointegrating matrix than it does the parameters asso-
ciated with stationary regressors. Hence, the PIC criterion takes into
account not only the number of parameters but also the potential rates of
convergence of the estimators of these parameters. As Wei (1992) pointed out,
the inclusion of excess nonstationary regressors should be more heavily penaliz-
ed as it leads to a greater increase in prediction error than over-parameteriz-

ation with respect to stationary regressors when the inclusion of these regressors
1s incorrect.

3.2. A partially Bayesian interpretation of PIC

The formula for criterion (5) can be derived using a combination of Bayesian
and frequentist ideas. Let L{8,,,) be the likelihood function of the model M, as
described in Section 2, and note that L1{6,,) has the form given by Eq. (3). Let
0 ,.. be as defined in Section 2 and let n, {(8,,) be a (possibly improper) prior
density on 8,,. Then, PIC is based on the mixture density

II{M,,|QY) = Jn(gp.r)LT(Qp.er) dé, ... ‘ (22)

QF-"

In the special case where Q is known and the prior density n(8,,) is proper,
expression (22} is, in fact, proportional to the posterior probability of M, and
ratios of this integral can be used to test hypotheses within the traditional
Bayesian framework of posterior odds. In practice, of course, £ is never known
and the conventional Bayesian approach is to define a joint prior over 8,, and
Q and to integrate with respect to both. Thus, expression (22) highlights two
ways in which our approach departs from Bayesian inference based on posterior
odds. First, our treatment of the nuisance parameter Q is classical in the sense
that we estimate it using a consistent estimator (to be discussed more fully
below) and conduct inference conditioned on this estimate. Second, in the actual
derivation of our criterion, we adopt an improper uniform prior for 8,,, and, in
consequence, mixture (22) defines a o-finite measure rather than a proper
probability measure, as was discussed in Phillips and Ploberger (1996). We do
not see these deviations from the Bayesian posterior odds paradigm as invalida-
ting our approach, which has its own asymptotic justification. Moreover, we
have found that the sampling performance of our criterion is better when we
condition on a consistent estimate of Q (cf. the results and discussion in Phillips
(1995a) regarding this treatment of the scale parameter in the univariate case).
Further, in many practical applications, it is difficult to justify the imposition of
any particular proper prior density on 8, ,, especially in situations where prior
knowledge of cointergrating rank and lag length is very limited.
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To find an explicit form for Eq. (22), note that the nonlinear reduced rank
restriction J = I',4’, resulting from cointegration precludes exact computation

of the integral (22) in the cases where 0 < r < m. We therefore develop an
asymptotic approximation for the integral (22) using the Laplace’s method.

Theorem 3.3. Let n(8,,} be a diffuse prior density such that =n(f,,) —

(2m)~W2mp 4 2=t for 9. ,€@,, and suppose that the covariance matrix § is
known, Then,

M, 0Y) N
- — 1in probability as T — o,
T,(M,,12,Y) P ¥

where IT{(M, |, Y) is as given in expression (22) and where
M, |Q,Y) = 2n)” ™0 TQ@S,i~ /2
x| H{p, Q™' ®S,, JH(p,r)y| 77
xexp{ — HI[BUAY — Y ,J, 0. 1Y My
x(AY ~ Y-, J(p, )]} (23)
with B(p,») and J,(p,7) = (F(p, 1), P(p,r)A(p, 1)) as defined in Section 3.1 above.

Since 2 is usually unknown, we advocate plugging the consistent estimator
Q = S,4,,/T into expression (23) and selecting the order of tagged differences
p and the cointegrating rank r by minimizing the ratio

HT{M_JJIQ: Y) (24)
A:M, |3, Yy

This, of course, simply results in the procedure as described by expressions (4)
and (5) in Section 3.1 earlier. The result below shows that our plug-in procedure
is asymptotically equivalent to conditioning on a known Q.

Corollary 3.4. Suppose that the conditions of Theorem 3.3 hold except that Q is
now unknown and let @ = S, . /T. Then,

— lin probability as T — ¢,

IAM,JQY) [NAM,A0,Y)
IHM, )0, Y)Y O4M, 0, Y)
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where IT{(M, |Q,Y) is as defined in expression (22) and where
1M, 14,Y)=(2n) ™20~ T20®S,,,| ~ 2| H(p, )2~ ®S,, »H(p, 1|~ 1? |
xexp{ — W[~ YAY - Y_, T (n,"))
X MyfAY — Y-, J,(p, 1)1} (25)
again with H(p,r) and J (p,r) as defined in Section 3..1.

Remark 3.5. (i) In the special case where there is sharp prior information about
the nuisance parameter € (i.e., Q is known a priori), the procedure is similar to
a posterior odds comparison of a family of models indexed by p and r, with the
important qualification that it uses an improper prior on @,,,.

(it} It has been known since the discussion in Bartlett (1957) that the use of an
improper diffuse prior in Bayesian tests of models of different dimensions leads
to an arbitrary scale effect in that the height of an improper prior density can be
made to be as large or small as one desires. If we follow this interpretation of our
criterion, the implied diffuse prior has height n(@,,) = (2m)~ (/2¥wp*2mr=r})
which corresponds to the normalization constant in a multivariate normal
distribution of dimension m?p + 2mr — r2. This height was chosen primarily out
of convenience so no rescaling was needed during the course of the Laplace
approximation. It is therefore indeed subject to the criticism of arbitrariness if
one follows a Bayesian interpretation of the criterion. However, other inter-
pretations, such as prequential odds are possible and these are discussed at
fength in Phillips (1996), so that it is not necessary to rely on the Bayesian
approach in justifying a criterion like Eq. {24), especially when we condition on
an initial set of observed data. Further, the choice of constant prior here is, in
our view, no more arbitrary than many proper prior densities used in Bayesian
empirical work applying the posterior odds ratio since those priors are also
frequently chosen out of computational convenience and not because they
properly model subjective prior information.

(iii) In addition, we emphasize that however arbitrary the scale effect of an
improper diffuse prior may be, its effect is asymptotically of a lower stochastic
order than both the ‘likelihood ratio’ and the penalty function components of
the criterion. To see this, suppose we set n(@,,) =c,, (for 0 <p <p and
0 < r < 7), where the ¢, ,'s are positive real constants, then following the same
arguments as that employed in the proofs of Theorem 3.3 and Corollary 3.4, we
can obtain the alternative criterion

PIC*p,7) = K(p,7)

xexp(3tr[Q~ ' AY — Y - J (.Y MuifAY — Y 1T, (2,7}
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x exp{— [ NAY — Y_, T (5)YMyAY — Y_ T (5]}
X (107 1@, /13" @Sl
x (@, 12 ™' @Sy, JH@, 1Y 13127 @8y, (26)

where K(p,r) = (¢p, /¢p, J(2m) DB = p*im=r’] Note that PIC*(p,7) differs from
PIC(p,r) as given by expression (17), by only the factor K{(p,r). Now, arguing as
in Remark 3.2(ii), we see that minimizing Eq. (26) with respect to p and r is
(asymptotically) the same as minimizing

Inifl, | + 7101071 ©S,,] + = InA(p,PE©S,, JAG: ]

2
+ T In K(p, r). 27)

Note that the first term of Eq. (27) is O,, (1). The second and third terms, which
are the primary penalty terms of this criterion, are each O (In T/T) while the
term involving the factor K(p;r) is only O,(1/T). Hence, while the height of the
prior density will certainly have an impact in small samples, as the sample size
becomes large its effect will diminish relative to that of the first three terms of
our criterion. Note further that our choice of prior density height, ie,
2(0,,) = ¢,, = (2m) /W +Imr=r) s tantamount to setting K(p,r) = 1 in ex-

- pression (27) and, thus, effectively ignoring the last term.
(iv) In a stimulating recent paper, Kleibergen and van Dijk {(1994) present
a Bayesian study of a possibly cointegrated VAR system. With an emphasis that
_ differs from that of the present work, Kleibergen and van Dijk (1994) focus on
posterior distributions derived under the diffuse and Jeffreys priors and point
out that a diffuse prior specification may lead to nonintegrable marginal
posterior distributions for some parameters under their specification of the
cointegrated system. As discussed in Remark 3.5(i) above, our own approach is
one of model selection and bears a closer resemblance to posterior odds analysis.
Also, Kleibergen and van Dijk (1994) take the lag order of their VAR as given,
while this paper explicitly considers the problem of jointly estimating the
cointegrating rank and the VAR lag order. Finally, whereas Kleibergen and van
Dijk (1994) adopt a Bayesian perspective, our paper is also concerned with the
sampling properties of our procedure, and shows that the use of PIC leads to

consistent cointegrating rank and lag order estimation.

(v} Note also that the normality condition (iv) given in Section 2 is not needed
for either Theorem 3.3 or the consistency result, Theorem 3.1, of the last
subsection. Instead, we can obtain these results under the weaker assumptions
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that {¢,}] = iid (0,8), 2 >0, and E|g,)?*’ < oc for some & > 0 (i=1,..,m),
where &; denotes the ith component of the disturbance vector &. Such error -
assumptions are common in the study of VARs and RRRs.

(vi) It is possible to extend our methods of consistent cointegrating rank
estimation to time series models of reduced rank that allow for general weakly
dependent error processes. One way of pursuing such an extension is to follow
Phillips (1991a,b) in setting up a frequency domain version of the likelihood and
basing the order selection criterion for cointegrating rank on a penalized version
of this likelihood. This approach was adopted in a research note by Phillips
(1991c) and a formal extension of the methods and limit theory of the present
paper to this general environment is now being conducted by the authors.

4. Monte Carlo results

This section reports the results of a simulation study comparing the finite
sample performance of PIC with the alternative model selection procedures BIC
and AIC in VAR models with some unit roots. Eight experiments were conduc-
ted; in each case the data generating process is assumed to be a trivariate VAR
with Gaussian disturbances, and the sample size is T = 150. The precise descrip-
tions of these experiments are as follows:

Experiment 1
Cointegrating rank and lag order: p=0,r =1,

Roots of det[I, — J(L)L] = 0: L = 1.00,1.00, 1.01,
Error-correction form: AY, = ' 4\Y,-; + &,

— 001 064 168 1.36
A, = 0 [[1 —15 0, Q=]168 466 5171}
0.23 136 517 14.34

Experiment 2

Cointegrating rank and lag order: p=0,r =1,
Roots of det[I, — J(L)L] = 0: L = 1.00,1.00, 2.00,
Error-correction form: AY, =, A\Y,-, + ¢,

—05
nay={ 0 ({1 08 0]
~0.04
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3.25 —-024 —-0074
Q=] —-024 5.76 0.048
— 0074 0048 4.842

Experiment 3

Cointegrating rank and lag order: p=0,r = 2,
Roots of det[], — J(L)L] = 0: L = 1.00, 1.01, 1.05,
Error-correction form: AY, =AY, + ¢,

0 0.1

I oos|[1 0 005

2= o 1 o [
-02 03

130 099 0.641
2= 099 0.81 0.009}
0.641 0009 585

Experiment 4

Cointegrating rank and lag order: p=0,r =2,
Roots of det[I,, — J(L)L] =0: L = 1.00,2.00, 2.00,
Error-correction form: AY, = ' A3Y,_, + ¢,

0 0.1
1 0 =5
rzA z‘ = 0 - 0.5 B
0 1 0
0.1 0.2
9.61 —-0.62 0155
Q= —062 2.00 0018

0.155 0018 2563
Experiment 5

Cointegrating rank and lag order: p=1,r = 1,
Roots of det[], — J(L)L] =0: L =1.00,1.00,1.01,1.01,1.05, 1.05,
Error-correction form: AY, = JYAY,_, + I A\Y,; + ¢,
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0 0.99 0 0
ridi=—-001|{1 025 08}, Jf=| 0 0.9025 0 |
0 0 0 0.99

225 255 195
Q=125 325 281}
195 281 278

Experiment 6

Cointegrating rank and lag order: p=1,r =1,
Roots of det[ !, — J(L)L] = 0: L = 1.00,1.00,2.00,2.00, 33.33, 50.00,
Error-correction form: AY, = J{AY,., + M A1Y,_, + ¢,

0 0.02 0 0
A =105 l:l -~ 0.5 0.4] . Ji=]-05 025 -02],
0 0 0 0.03

400 360 440
Q=360 340 4201}
440 420 524

Experiment 7

Cointegrating rank and lag order: p=1,r=2, "
Roots of detl, — J(L)L] = 0: L = 1.00,1.01,1.05,1.05,1.11, 1.11,
Error-correction form: AY, = JAY, - + '3 A5Y -, + &,

— 005 0
ra, =] o 0 [‘ 0 6]
2 0 1 005]°
0 —0.1
0855 0 0 17.64 1008 10.92

Jr={ 0 099 0 | 2=|1008 640 1.20
0 0 0.855 1092 7.20 8.24
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Experiment 8

Cointegrating rank and lag order: p = 1,7 = 2,
Roots of det{I, — J(L)L] = 0: L = 1.00,2.00, 2.00,2.00, 2.00, 10.00,
Error-correction form: AY, = JYAY,_; + ALY, + &,

-025 0

1 0 0
FA,' = 1.2 0 .
0 1 —-0.5
0 0.5
0.25 0 0 5.76 10.08 —8.16
Ji=| —-12 0.1 0 Q=i 1008 18.00 —15.18 |
0 —-05 025 —816 —15.18 13.90
Table 1
Results of Experiment } (r=1,p=0)
" PIC
4
0 1 2 3 4 5 6
r
0 3t 0 0 o 0 1] 0
1 9811 1 0 0 0 o 0
2 157 0 0 0 0 ¢ 0
3 0 0 0 0 0 0 0
BIC
P
4] 1 2 3 4 5 6
y
o 7 0 0 0 0 0 0
1 966 0 0 0 0 0 0
2 312 0 o 0 0 0 ]
3 18 0 0 0 0 0 0
AlIC
P.
] 1 2 3 4 5 6
\
0 o 0 0 0 0 ] )]
1 4179 7 4 1 0 V] 0
2 4562 91 5 0 0 ¢ 0
3 1068 18 1 0 0 0 ]

Note: Number of replications = 10,000; sample size T = 150.
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The experiments are chosen to allow for data generating processes with
different lag and rank order, ranging from VECMs with p=0 and r =1 as_
represented by Experiments ! and 2 to VECMs with p=1 and r=2 as
represenied by the Experiments 7 and 8. Moreover, Experiments {, 3, 5, and 7
were designed so that the *stationary’ roots of the characteristic polynomial of
the VAR model lie in the range 0.90-0.99 (corresponding to the roots of
det[l,, — J(L)L] = O being in the range 1.01-1.11), which are considerably closer
to the unit circle than the ‘stationary’ roots of the characteristic polynomial of
the model represented by Experiments 2, 4, 6, and 8; which, in turn, are in the
0.02-0.5 range (which corresponds to the roots of det[I,, — J(L)L] = 0 being in
the range 2-50). Note that the maximum lag and rank order considered in these

Table 2
Results of Experiment 2 {r=1,p=0)
PIC
P
] 1 2 3 4 5 6
r
¢ ¢ 0 0 0 0 0 0
1 9966 0 0 Q [ (] 0
2 34 0 0 0 G 0 0
3 0 0 0 ¢ 0 0 0
BIC
4
0 1 2 3 4 5 6
r
0 0 0 0 ] 0 4] 0
1 9862 0 0 4] 0 0 0
2 130 0 0 ¢ 0 0 0
3 8 0 0 0 0 0 0
_AIC
P
0 1 2 3 4 5 6
r
0 0 0 0 0 9 0 0
1 6166 20 9 1 ¢ 0 0
2 3162 61 1 1 0 0 0
3 499 10 0 1] 0 ¢ 0]

Note: Number of replications = 10,000; sample size T = 150.
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experiments are j = 6 and 7 = m = 3. In addition, choices of p and r from BIC
and AIC were obtained by minimizing the criteria:

BIC(p,r} = In[p,r)} + {m?p + mr + r(m — P}in(T)/T,
AIC(p,r) = In|Q(p,r)| + {mp + mr + r(m — r}}2/T,
where Q(p,r) is the residual covariance matrix from a fitted reduced rank

regression.

Results from the eight experiments based on 10,000 replications are presented
in Tables 1-8. Table 9 reports the average bias and standard deviations of rank

Table 3
Results of Experiment 3 (r =2, p = 0}
PIC
P
0 1 2 3 4 5 6
r
0 0 0 0 0 0 Q 0
1 588 0 H 0 0 0 0
2 9400 0 0 0 0 0 ]
3 2 0 0 0 0 0 0
BIC
P
0 1 2 3 4 5 6
’
0 0 0 0 0 0 0 0
1 250 0 0 0 0 0 0
2 9129 0 0 0 0 0 0
3 621 0 0 0 0 0 0
AIC
P
0 1 2 3 4 5 6
r
0 0 0 0 0 0 0 0
i 8 0 0 0 0 0 0
2 7082 139 12 5 0 1 0
3 2684 64 5 0 0 0 0

Note: Number of replications = 10,000; sample size T = 150.
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and lag estimation (where averages are taken over the 8 experiments) as
computed from the empirical distributions generated by our experiments. In ail -
eight experiments, PIC outperforms both BIC and AIC in cointegrating rank
selection although BIC produces a correct lag choice with slightly greater
frequency than PIC. Overall, the probability of a correct model choice (i,
correct choice of both the lag length and the cointegrating rank) by PIC exceeds
that of BIC by about 0.04 on average and that of AIC by about 0.39 on average.
Moreover, PIC also exhibits the least variation in rank selection with an average
standard deviation of 0.144 over the eight experiments as opposed to 0.238 for
BIC and 0.514 for AIC. Clearly, AIC is the worst performer in terms of both

Table 4
Results of Experiment 4 (r =2, p =)
PIC
P
0 1 2 3 4 5 6
r
0 0 ] 0 0 ¢ 0 0
1 ] 0 0 ¢ 0 o 0
2 9900 0 0 0 0 o 0
3 100 0 0 0 0 0 0
BIC
p
0 1 2 3 4 5 6
r
0 0 0 0 Q 0 0 0
1 0 0 0 0 0 0 0
2 9677 0 0 0 0 0 0
3 KyX] 0 0 ¢ 0 0 0
AlC
P
0 i 2 3 4 5 6
r
0 0 0 0 0 0 0 0
i 0 0 0 0 0 0 0
2 7939 136 ] 1 1 0 0
3 1889 26 0 0 0 0 0

Note: Number of replications = 10,000; sample size T = 150.
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Table 5
Results of Experiment 5 (r = 1, p = 1}
PIC
p
0 i 2 3 4 5 6
’
] 0 742 2 0 0 0 0
1 0 9248 0 0 0 0 o
2 0 8 ¢ 0 0 0 0
3 0 0 0 0 0 0 1}
BIC
P
0 1 2 3 4 5 6
r
0 0 43 0 0 o 0 0
1 0 7825 o 0 0 0 o
2 o 1917 0 0 0 0 0
3 0 215 0 0 0 0 0
AlC
P
0 1 2 3 4 5 L]
r
0 0 0 0 o 0 0 0
1 0 834 18 1 0 0 0
2 ] 6539 176 15 1 0 0
3 0 2326 74 13 3 0 9

Note: Number of replications = 10,000; sample size T = 150,

rank and lag selection. Note that relative to PIC and BIC, AIC shows a much
greater tendency to overestimate both the cointegrating rank and the order of
lagged differences. With respect to lag order estimation, our Monte Carlo
evidence is entirely in accord with the asymptotic analyses of Shibata (1976) and
Tsay (1984), which show AIC to be inconsistent in the sense that the probability
of overestimation under this criterion does not approach zero as sample size
approaches infinity. That our experiments also find AIC to overestimate the
cointegrating rank with great regularity leads us to conjecture that it is similarly
inconsistent for cointegrating rank estimation.

A surprising result from these experiments is that while a priori we would
expect BIC to perform well relative to PIC in cases where the ‘stationary’ roots
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Table 6
Results of Experiment 6 (r=1,p=1)
PIC
4
0 1 2 3 4 5 6
r
0 0 0 0 0 0 0 0
1 0 9963 0 0 0 0 0
2 0 37 0 0 0 0 0
3 0 0 0 0 0 0 0
BIC
P
0 1 2 3 4 5 6
r
0 0 0 0 0 0 0 0
1 0 9858 0 0 0 0 0
2 0 138 0 0 0 0 0
3 0 4 o 0 0 0 0
AIC
P
O i 2 3 4 5 6
r
0 0 0 0 0 0 0 0
I 0 5921 116 10 0 0 0
2 0 i 61 5 2 0 0
3 0 565 8 1 0 0 0

Note: Number of replications = 10,000; sample size T = 150..

are closer to the unit circle; given that, ceteris paribus, the latter tends to favor
specifications with fewer cointegration relationships; the opposite seems to hold
true in our experiments. The two experiments where PIC has most dramatically
outperformed BIC are experiments 5 and 7, where the ‘stationary’ roots are in
the 0.90-0.99 range and where BIC, counter-intuitively, has shown a heightened
tendency to overselect the cointegrating rank. It turns out that in these cases
reduced rank regression given the correct cointegrating rank often does not
result in a good fit; in fact, overparameterizing the number of cointegrating
reiationships often results in a better fit. Moreover, while the penalty function of
PIC is strong enough to overcome the inclination to overfit in these cases, that
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Table 7
Results of Experiment 7(r=2.p= 1)
PiC
D
0 1 2 3 4 5 6
r
0 0 0 0 0 0 0 0
1 0 724 2 ] (] 1] o
2 0 9273 i 0 0 0 0
3 0 ] G 0 0 0 o
BIC
P
0 1 2 3 4 5 5
r
0 4] 0 0 0 0 0 0
1 0 3 ¢ 0 0 0 0
2 0 3764 0 0 0 0 0
3 0 1233 0 0 0 0 o
AIC
p
0 i 2 3 4 5 6
r
0 0 ¢ 0 0 0 0 0
1 0 0 0 0 0 0 0
2 4] 6177 162 9 0 2 0
3 0 1559 84 5 1 0 1

Note: Number of replications = 10,000; sample size T = 150.

of BIC is not, thus resulting in more incorrect choices by BIC in the direction of
overselection.

These resuits speak favorably of our criterion. We attribute the good perfor-
mance of PIC to a penalty function that takes into account not only the number
of parameters but also the nonstationarity of the regressors associated with
some of the parameters.

5. Conclusion

This paper takes a model selection approach to the problem of determining
the cointegrating rank. More specifically, we extend the analysis of Phillips and
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Table 8
Resuits of Experiment 8 (r=2,p= 1)
PIC
p
¢ 1 2 3 4 5 6
r
0 0 0 ] 0 0 0 0
1 0 0 0 0 0 0 ]
2 0 9987 i 0 0 0 0
3 0 12 0 0 0 0 0
BIC
P
0 1 2 3 4 5 6
r
0 0 0 0 0 L 0 ¢
H 0 o 0 0 0 o 0
2 0 9664 0 0 0 0 o
3 0 336 0 ¢ 0 0 ¢
AIC
P
0 1 2 3 4 5 6
r
0 0 0 0 0 0 0 0
1 0 0 0 0 0 ] 0
2 0 7935 145 14 2 i 0
3 0 1855 45 3 0 0 0
Note: Number of replications = 10,000; sample size T = 150.
Table 9
Avg. Bias and Std. Deviation of Rank and Lag Selection
Avg. Bias Avg. Std. Dev. Avg, Bias Avg. Std. Dev.
Method of /* of p° of p*
PIC 0.030 0.0001 0.006
BIC 0.065 0 0
AIC 0.342 0.024 0.16%

*Average is taken over the eight experiments,
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Ploberger (1996) to a vector autoregressive process with reduced rank structure.
There are four principal advantages to this approach, First, it provides a coher-
ent framework under which the VECM lag order p and the cointegrating rank
r can be jointed selected. Secondly, it leads to consistent estimation of
both p and r. Third, the method is extremely easy to use in practice,? involves
minimal computation and does not require the use of complicated statistical
tables. Finally, the penalty function implicit in our criterion takes into account
not only the number of parameters but also the nonstationarity of the regressors
associated with some of the parameters. This latter attribute, we believe, ex-
plains why our criterion performed well relative to BIC and AIC in the
simulation experiments presented in Section 4.

The methods given here can be generalized in several ways. The time series
model investigated in this paper has neither a deterministic nor a moving-
average component. However, these components are important in some
econometric models. A natural extension of the methods allows decisions to
be made with respect to the trend degree and the order of the moving aver-
age component. Models for scalar time series with these features were studied
using similar model selection methods in Phillips and Ploberger (1994). As
indicated in Remark 3.5(vi), extensions of the approach given here to
semiparametric models of reduced rank with general time series errors are also

of interest. We hope to report at a later time some progress on extensions aiong
these lines.
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Appendix A

For notational simplicity, we shall, throughout this and the subsequent
appgndices, suppress the indices p and r and write I', A, F, and W instead of

., A, F(r), and W(p), whenever we are not using the same symbols to denote
parameter or data matrices of different dimensions.

A1, Maximum likelihood estimation

In this section we will briefly describe our procedure for obtaining maximum
likelihood estimators for the model described by Eq. (2), assuming that 2 is
known. The maximization is carried out in stages. First, note that we can
maximize the likelihood (as given by expression (3)} with respect to
J* = (J1,...,J}) and obtained the concentrated log-likelihood:

T
(I, A|Q, data) = — -';:log!QI —% Y [ 'y, —u(Q QW)
=1
T T
x Z (Q'1®WIW;))-1 Z (-Q“I®W:)"t]: (A1)
=1 1=1

where

WI = (AY;— PR ’AY;—p),s
ty = AY, — (L, ®@ Y- Jveel — (1@ Yo N I.@Avec T
=AY, - (I,®@Y\, - vecl —([,®@ Y5 @I, -, vec 4.
Next, following Ahn and Reinsel (1990) we note that the parameter vector

B = [(vec Ay, (vecI')']’ can be estimated using the approximate Newton-Raph-
son relations:?

Biryy=HBpy+HEQ'QY_ MyY_ DHGNHQT'@Y. \My)vec U,
(A.2)

3 As our estimation procedure parallel that of Ahn and Reinsel (1990), only a very abbreviated
account is given here. Interested readers are referred to Ahn and Reinsel (1990) and an earlier version
of this paper, Chao and Phillips {1997), for more details.
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where

U'=[uy,...,ur),

H=( (r'®F) )
(@I, )

A.2. Review of the relevant background asymptotics

Here, we review some properties of the VECM given by Eq. (2) in Section 2 as
well as give some asymptotic results derived under the assumption that the
model given by Eq. (2) is correctly specified with respect to p and r. The
discussion here is useful in the development of our own asymptotic analysis. The
treatment here follows that of Toda and Phillips (1993) and Ahn and Reinsel
(1990). To begin, we define the m x 1 vector Z, = (Z},, 25,Y = (Y'A4,, Y!A). Write
v, = (g, AZY,, Z3, W,)' and define the long-run covariance matrix X such that

I=XF+A+A1, (A.3)
where

2* = E(vw),
A= 2 E(vv;4 ).
i=1

We often find it convenient to partition X, *, and A conformably with v, so, for
example, we can write

£= , (a4)

where the indices ‘1’, 2', ‘3’, and ‘4’ correspond to ¢,AZ,, Z,,, and W, respec-
tively. Note in particular that Z,; = Q since E(gg4,) = 0 for all j > 1. Note
further that making use of Eq. {2), we can write (Z41, Wi.,) as the first order
system

Z &b @ VA A
( 2|+l):( 11 12)=( 21)+( )81, (AS)
W,y Py PDay W ep— 1By
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where e,_; is a (p — 1)x 1 vector such that e,_, = (1,0, ...,0) and where
¢11 = A!F + I,,

Py, =(AJY, .. AT}

Imu:-ll 0 ’

Since Z,, and W, are I(0) processes, the eigenvalues of the matrix

¢ = (‘pll ¢1 2)
' ZYI 2%’
must be outside the unit circle, and we can write Eq. (A.5)in the moving average
representation

(zz,)_(an(m elz(m)( A )E
W) \@ul) (L) \ep-1 @I/ '
=@(L)Eal—l

=Y g, (A6)

i=0

(oo
B ep-l@-Im ‘

We shall next discuss a few lemmas which are used in the proofs of Theorems
3.1 and 3.3 and Corollary 3.4. Before proceeding, however, let us first introduce
some more notations, First, define 4’ = [A4,, A] and partition 4’ further as

A AJ—: Al] _ [A.L; Ir]
= A, A - A, A

where

in
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‘where A, , A,, and A, are, respectively, rx(m —r), (m —r)x(m —r), and
{m —r)xr. Also define P to be the inverse of A so that PA =A4P =], and
partition P conformably to 4’ as

P P
pofPr 1]
Py Py
In addition, let Zl = Y_lAJ_ = [ZlO?"'! Z”-..l]' and z: = Y—lA. =

{Z30s.-.y Z37-1] and let W{s) (se[0,1]) be a d-dimensional standard
Brownian motion.

Lemma A.1. Let data be generated by a process of the form (2) under assumptions
(ir-(iv) given in Section 2, then the following convergence results hold as T — co.

[Ts]
T &= Bols) = QW)

1
(a) ‘\7?- =1

1 (T
(b) 7——% Z_,l AZy = Au[Tn + (1,1, .. J3- )OI W1B(s) = By(s),

I:Bz(s)
Bs(s)

H

oL F !:Zztj]=’[(@u(1)14'+612(1)(9p—1®fm))30(3)]
JT S LW L0204 + (1), - 1 O1.)Bals)

Proof. See Lemma 1 of Toda and Phillips (1993). J

Lemma A.2. Under the same assumptions as Lemma 1, the following convergence
results hold as T — o0

1
(2) T *Z\MwZ, =>fo(S)B;(S)' ds,
0

1
() TT*FY_ MyY_,F= lejBl(S)Bx(S)’dS Py,
0

© T UMZ, = {fsl(s)dso(sr}',

0
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1

r

(d) TIUMpY_yF= {P21'[Bi(s) dBo(S)’} ,

0

(€) Z2Z,/T > Ii,
() Z,W/T 5 13,
(@ WWw/TS zi,

(h) vec(U'MyZ,/./T) = N(0 (2@ Z1;.0)),
where I%; 4 = I3y — Z3,2357 '2h,
() F'Y. MyY_,A/T*? 5 0.

Proof. All results follow directly from Lemma A.1, the continuous mapping
theorem, and arguments analogous to those used in Lemma 2.1 of Phillips and
Park (1989). O

Lemma A.3. Let B =[(vec 3’)’, (vec FY] be the Gaussian maximum likelihood
estimator generated by the iterative relation (4.2), then

\/-T_‘(vecf —vec I'%) = N(0,(Q®Z%73)),

1

T — A% = (IR0 1" ‘r°‘9°"( I By(s) dBo(s)')'

)
! ~1

(JB 1(8)B;(s)Y ds) P3!
0

Proof. See Theorem 2 of Ahn and Reinsel (1990}, 3
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Lemma A4. Let J, = AY'M,Y _,(Y_ MyY_,)"" be the least squares es-
timator for the model described by Eq. (2), then :

J. = JOPD=[R,S],

where

D = diag(T1y-p/TL),

1 1

-1
R= {JB 1(s) dBO(s)’}'(J.BI(S)B 1(sY dS) .
0

0
S =N(0,(R®Z37 ).

Proof. See Theorem 1 of Ahn and Reinsel (1990). [

Lemma A.5. Consider the model given by Eq. (2) under Assumptions (i)-(iv); the
likelihood ratio statistic for testing the null hypothesis that the cointegrating
rank =r has the asymptotic distribution given by

tr{ QT — T DY My, Y (o r) — T 00}

1 1
= tr{(j W, _fs)dW,,_ ,(s)’)’(J. W - As)dW,, _ (s) ds) 1
0 0

e

X (IWm-r(S)dWm-r(S)’)},
[ 4] .

where J (p,r) = (F(p,r), (p,r)A(p, 7)) with F(p,r) and A(p,r) being given by the
iterative relations in Eq. (A.2) and J (p) = AY' My, Y (Y- My, Y -1) "%

Proof. See Theorem 1 of Reinsel and Ahn (1992). O

Appendix B

Proof of Theorem 3.1. To show that (5,7 > (p° r®), we need to show that for
all p  p® and/or r # r°

PUIA(M e ol Y AAM, (2 Y)>1)>1 as T — oo,
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This will certainly be true if for all p # p° and r # +°,
M, 0| Q,Y) , .
. — o0 in probability as T - oo, (B.1
M, 18Y) P d ’ )

We shall check this divergence only for cases where either p # p° or r # r°, as
the analysis for cases where p # p° and r # ° follow analogously.
Now consider the case where r > r° and p = p°. From expression (5), we have

feR ¢ - }
II;]:(TJP:O[IQ Y;=|ﬁ(13°,r°)(ﬁ 'YL MY - DHE, %)

X Ao )@~ @Y Mo Y - HEC, rf2
x exp(#tri{ 3~} AY — Y _ T (0%

X MppofAY — ¥ _ T 0% )]}

xexp{ — e[AHAY — Y- ,T, (%)Y

X Mpp(AY — Y J.(0% N1,

where H(., ) is as defined earlier in Section 3. It follows that we can rewrite the
expression above as:

HMp 01 QY A1 7 yp
ﬁiM::IIQ, Y)) = (F@° Oy Q' F°, )@ F(°) Y Myyn Y - F(r°))

X Q™ @ Lo, A(p% 1Y 1Y s Mgy Y -1 [1n, A%, 1%)T)
~ Q™ FE°, XL (0, Y Q™ P %) Fip°, POy 1]
®LLoA(p®, 1Y 1Y My Y - 1F(°)
X (FGY Y. 1 Mwen,Y - FGO) T F )
X Y s My Y -1 [ A(p°, POy 15 112
x (P Q™ PP N@F(Y Y- \ My Y - 1 F)

x (@~ @ [1,,A(p°, )]
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X Y\ My Y -1 [nA(p%,7YT) — (8 F0°, ik E (00, Y
x 071, 1)~ PO, 2 1@ 1. A% 1Y)
X Y\ My Y - FOFW) Y My Y _ F()) ™
X FEY Yo My Y - L. A(%, 1) TS
x exp{3tr[ Q7 (T 0% 1) — TpO) Y- : M Y -y
x (%) — 1.7}
x exp{ — 3tr{ Q™' (J,0°% %) ~ T DY - i Muwm Y -
x (T(2%1%) — J,(0°0 1}, (B.2)
where J,(,,.) and J (') are as defined earlier in Section 3. By Lemma A.2
T™HFOY Y sMwmY - F(%) = O41),
[, A rY 1T~ (Y s Mgy Y - )T, A%, 1T = O4(1),
(15, A, rPYIT3(Y"_ M wien Y - )FONT ™ FECY Yo . My nY - 1 F (%))
x T~ FGOY Y My Y - )00 ﬁ(pf", YT = o,(1).
We now write the complex expression (B.2) in the symbolic form
()7 120 )i Pexp{(172( )a}exp{ — (1/2)(" }o}, (B.3)

where (-); and (-), represent the numbered bracketed factors that appear in
Eq. (B.2) and (), and (), denote the tr[ - ] expressions that appear in the final
two exponential terms, respectively, of Eq. (B.2).

Some simple scaling manipulations confirm that

(,)1 —_ OP(TZ(m-r")r“-i-m“) . OP(T3mr°—2r°')_ (B4)

To evaluate the order of (-),, we need to transform the regressor space to isolate
components of different orders of magnitude. For instance, since 7 > r® we know
that the term

U AG°, 1YY My Y <511, A%, 1)
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has a first diagonal r® x r° sub-block of O,(T) and a second diagonal sub-block
of O,(T?), corresponding to the limiting cointegrating submatrix of [1,, 4(p°, r)']
of order r° x m and its complement, respectively. (Any rotation of the coordinate
system that s used to achieve this will not affect the orders of magnitude of the

final determinantal form). Proceeding in this way with each element of (), and
using the methods outlined in Phillips (1988) we obtain

()2 = OTHm=nr+4°=20=Pimly _ @ (bmr=2ri=s"my (B.5)
Combining Eqgs. (B.4) and (B.5) we have
(IT1()z = Oy(Tamrmami e
We observe that the exponent in this order of magnitude is
dm(r — %) = 2r —r%%r + ) =2r = O 2m —(r + 1} > 0
for all r > r°. Thus the ‘penalty’ term in Eq. (B.2) is
{102} = Oy(Triam=trt ey (B6)
which diverges to oo in probability for all 7 > r°.
Finally, we consider the expressions in the exponents of the exponential
factors of Eqs. (B.2) and (B.3). We start with (-),. Note that by Lemma A.5,
() = tr[Q7 (%) = T 0D Y- Mwin Y - oT,0% ) — T ()]
= Q1)
Next consider (-),. We have
(")a = tr{Q7 T, 0% 1) — TN Y- i My Y o(J, 0% ) ~ T,(0°)]
= twe[Q7'(T,00°% 1) — T WPDD ' AY_ \ My Y -, 4D 1)
x DP(p% 1) — J ("))

where D = diag(TI,,-,, ﬁ!,o}.
Note that by the arguments of Theorem 1 of Ahn and Reinsel {1990)

DAY My Y i AD ' =0 1), - (B.7)
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Add and subtract J$ from (J(p°r) — J(p°))PD and get
Jap% 1) = T @°WPD = (J (p°, 1) — Jﬂ)PD‘+ (T3 ~ T (p°)PD.

Again, by the arguments of Theorem 1 of Ahn and Reinsel (1890), we see that
(/3 = J,(2°)PD = O (1), (B.8)

Next, partition

. r r . A A
r 0’ —_ ES , desk 0’ — * , * A%
®"r) l:m xr mx{r— ro)] and - A(p"1) [m xr® mx(r— rO}]

in a conformable way corresponding to the true number of columns (r°) and
supplementary columns r — r°. The columns in these partitions are ordered
according to the size of the corresponding eigenvalues in the associated reduced
rank regression in the usual way. We decompose (J(p°, ) — J9)PD as follows:

(]*(po’ ) — J:)PD = (F*':i:a: + F**g:ﬁ* - FUAO'}PD
=[(F, —IAY + 4, — A% + [, A,
+ op(T~Y1PD.
Now, AYPD =[0,T¥%,], so that (f‘ — I')A%PD = O41). Also, since
T(4, — A% = O(1) we have I %4, — A®PD = O,(1). Finally, A, =041,
just as in the spurious regressmn analysis of Phillips (1986), and I'H =0 (T™?)

(being the coefficient of A,,Y,_;, which is an (1) regressor with random
coefficients in the limit). Thus 7 M awAuePD = Oy(1), and we have

(J 2% 1) = J2)PD = O(1). (B.9)

Combining Egs. (B.7), (B.8) and (B.9) we find that (-), = O(1). Thus both (-),
and {-), are O(1). The penalty term (B.6) therefore dominates when r > r° and
we deduce that

TTHM 00| 82, ),
Ji]

oL in probability as T — -,
T(Mp 7 ! Q$ Y) P y

as required.
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Now, if r < r® we again write
J0° 1) = T p®)PD = (J (p° 1) — JOPD + (J° — J.(p°)PD.

We have (J — J,(p®)PD = O,(1} just as in Eq. (B.8). We partition

I"O — ‘rg r:* and AO = A: Ag*
mxr mx{r® —r) mxr’ mx(® —r)

conformably and then
Julp,r) —JHPD = [FA' - 1%4% — 18, A%, 1PD
=U(F =~ THAY + TYA - 43Y +op(T™Y)]

x PD — IS, A%, PD = O 1) + O(T).
It follows that
QT 0% 1) = T (p°NY = s My ¥ - (T (0% 1) — T %] = O(T?).
(B.10)

Thus, once again

ﬁT(Mp".r“ | Q’ Y)
M, |9Q,Y)

— o0 in probability as T — o0 .

This time (when r < ro) the exponential term dominates the asymptotic behavior
of our criterion.

Now, if instead we have the case where r = r® but p > p°, then partition

[ we®) W(x)
W) = [T xmp®” T xm(p — p°):}

and we can write the PIC as

THAM o 013, Y) o o 0
= E = ) W ]
M, 1 0.7) Yip.p", 7" )¥a(p, p°)

x exp{3tr[ QT (p.%) — (P}
Y MypY - 1(‘7*(17’ r°) — j*(p})']}

X exp{ - %tr[é— l(]*(pos ,.0) - j.;.(PO))
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x Y. 1MWIP“}Y- l(‘]*{pov rO) - J*(PO))']}

x exp{ — $r[Q™ UTHxY W My, v s W IT*)])

(B.11)
where

Je(s) = (W) Mgy W) W Mgy AY,
1(p, p% r°) = [P, Y Q' 1%, %)
RFI°Y Y. s My Y  FO)| 12
X Q™ @ A(p%, YUY~ :Muyin Y - ), A0, %Y T)
— (@7 P, Y (@O, PR 0 ) T, 0y R
®LLe, AP°, PV Y- s MY - FOONFGS Y- My ¥ - FO) ™!
XYY = My ¥ - )Lie, A, 110 Y34, 107 0 2 Fp, r°)
FIY Y- 1 MY - FEO) Q™ ® [0, Alp, r°)']
X (Y- 1M Y - )l Alp,)T)
— @7 L, r YL r%YQ Fip, o) Fp, 1y Q!
®LLe Alp, YUY~ i My Y - FOONFCY Y s Murn Y - FGO)
X (FO%Y Y- My Y - )L A(p, O T2,
¥a(p,0°) = 187 (W'Y W)~ O™ (W oy WpI'*
Applying Lemma A.2, we see that for p > p°
¥\, p% %) = O1).
and

¥olp, p°) = TV~ PG @ T~ (W (p0) W(pP)~ 381

RT ' WEHYWp)'? > « (B.12)
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as T — oo . Moreover, note that

tr[ 83~ 175 («) WY Muype.y. .)W(*)j*(*)]

= e[ Q7 T2 %) T YW ()M gy oy v, W) TV2T*()]. (B.13)
By Lemma A.2
T™HW Y Moy W) = O(1). (B.14)

Also,
JH) = (W Mavgory W) W Mipn,v_ .
where E = [&,,...,£r]". Hence,
TU12J5() = (T~ HW () My, W) T VW (3 My, E) + 0,(1)
= O,{1) (B.15)

by standard regression theory for stationary processes. From Egs. (B.14) and
(B.15), and the continuous mapping theorem we conclude that

e[ Q7 THAT*) T~ W (o Moy WENTV2T*(6)] = O (1) (B.16)

Furthermore, we note that

e[Q7 T r%) ~ T DY = My Y - 1T (0, 1) — T (0] = O,(1). (B.17)

Putting together Eqs. (B.12),(B.16)and (B.17)and hoting that all the other terms
in Eq. (B.11) are O{1} as argued earlier, we have the required result that (for
p>p°%

nT(Mp“.r“ I Qs Y)

— oz in probabilityas T - ¢
M, |8 Y) P y

by application of the continuous mapping theorem.
Similarly, for the case p < p°® we can partition

o, _| Wip W x#)
Wip') = I:T xnmp’ T xm(p® — p)]
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and write PIC as

ﬁT(Mp".r“ I Q, Y)
ﬁT(Mp.r" I ﬁ, Y)

= ¥, (. p°, rO)¥(p. p°) x exp{$tr[ Q1T (p, r®) — T (p))

X Y_ My ¥ - (T 40 r%) — T 001
x exp{ — $tr[Q7 (T (% ") — T (p*)
xY_ M WY - :(] *(Po, "0) -J *(PO))']}

x exp{Ate[Q 7 THany W (w6} Myp v, W (x0T ¥ ()]},
(B.18)

where

TH(xx) = (WY Mgy W %)™ W) Mgy JAY .
From standard regression tﬁeory with stationary regressors we know that

TH(exY W (%) Mgy s W (p#)T % (6%) = O T). (B.19)
Moreover, write

tefQ7 1. r°) — LY My Y (T2 7°) — T, (0)]

= u[Q7 ', (p.r%) — T (YPD(D ™' AY_ My Y -1 AD™Y)
x DP 4p,7") = 7,01

Add and substract J from (J,(p,7%) — J,(p))PD and we get

(ole.1%) = T 0DPD = (J (p.1°) = JOPD + (J§ — T (p)PD.

Note that following arguments similar to that given in the proof of Theorem 1 of
Ahn and Reinsel (1990), we have

(o =T, pHPD = — [Ty T (W) My Z (T HZV\Z,) 7!

H(TTIUZNTTHZLZ,) Y JHse) T VAW (a)



J.C. Chao, P.C.B. Phillips | Journal of Econometrics 91 (1999) 227-271 267
XMy Z T NZ:MypyZ )"t + T2
X (U My ZNT ™ HZoMupnZ2) 7] + oy(1)
= - [0,(1,, 0T 3], (B.20)
whereZ, = Y_ A, »and Z, = Y _, A,.. In addition, since {(p,°) — I'® = O4(1)
Jy(p.1) = JUPNPD = {T(Lp,1%) — I°, F(p,rA(p, 1%y ~ r°A°7P,,
x TY2[F(p,r®) — I, F(p,r%)&(p,r% — r°A%1p,}
={04T), OLT"3}. (B.21)
Furthermore, Lemma A.2 gives
D 4Y. My, Y -, 4D = O(1). (B.22)
Combining Eqs. (B.20), (B.21} and (B.22) we conclude that

Q™ 0 r) — DY My Y -1 (T(p, 1) — T (p))Y] = OLT).
(B.23)

Since
[ Q7T 0% % — T (ONY - s My Y - (T (0% 7°) = F L0 = 0,1

By Lemma A.5 and since the asymptotic behavior of Eq. (B.18) is dominated by

the exponential terms, we deduce on the basis of Egs. (B.19) and (B.23) that for
4]

p<p

1M 00| D, Y)
IHM,-[Q,Y)

—oc in probabilityas T — . O

Proof of Theorem 3.3. The proof of this theorem follows from the general idea of
that of Theorem 2.1 of Phillips and Ploberger (1996) and Theorem 3.1 of Kim
(1998) and is, thus, omitted. The proof is available in an earlier version of our

paper, Chao and Phillips (1997), a copy of which can be obtained from us upon
request. '
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Proof of Corollary 3.4. Since by Theorem 3.3

MM, ;1Q,Y) /I‘IT(M, Q. Y) P
: -1 asT — o,
MM, Q7)) I{M,,|2,7)

it is sufficient that we show here that

(M, ;12,7) /nT(MpH Qv
- = = ] asT- o,
HAM,, |2, Y) I:M,,|8,7)

To proceed, write

M,/ 1Q,Y) /m(M,.fi 3,7)
A{M,1Q,Y) M, [3,Y)

=Q7'@WEYW () Q™' @W (Y W(p)'*
x QT @WE W)~ NQT @W By W(E)
x [IHPAQ ' QY. My Y - )Hp.r)"
x B, X2 @Y. M., Y - ) A(p, "]
x[Q 'R Y. MY -1 VR @Y. M,y Y 1))
X exp{%tr[(ﬂ" - Q"N (p.1)

- f*(p)) Y. IMw(p]Y - I(J*(p’ r)— j*(P))’]}

1 - -
X exv{itr[(ﬂ' - Qg *(p*)W(p*)’Mu_,.w(an(P*)J*(p*)'J}-
Note first

27 ' @W YW@ NE T @W(py W ()"

= |Q| " Bmpy Q= uDme I 1 ag T o o (B.24)
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by the consistency of & and the Slutsky Theorem. Similarly, we deduce that as
T-oo

QI QWEY W)~ G t@WEHYWE)| 2 S 1 (B.25)
and

- P
27 @Y Moy T AGTI® Y My Y 472 1L (B.26)

Next, we write
H(p. Q™' @Y MY - YH(p. 1)1
= fp.rYQ ' Fp.N@F() Y- My Y - F(7)|
X197 @I AP, 1)Y= 1 Moty ¥ a1 A, 7YYL + 0P(1))
Since |[H(p, Q™ '@ Y- ;MY - )B(p, )| can be written similarly, we see that
B, QT @Y\ Moy Y - )Ap. 1)1/
|Ap, X2 '®Y"- 1Moy - DB, Y12 _
= [F(p,ry Q™ F(p, )™ =7 F(p, ry @~ [(p, ryfi2m=n
x QRGN + op(1)).
It follows from the consistency of £ and the Slutsky Theorem that as T = oo

'H(Pa rie” ]® Y. le(p)Y - L)ﬁ(l’, F)'IUZAH(P;"}(-Q- ! Y. le[p]Y ~1)
ﬁ(p, r)|t? -i 1. (B.27)

Finally, note that under the null hypothesis that the cointegrating rank and the
ECM lag order equal r and p respectively, we have by Lemma A.5 that

(Fe2.r) = TO)Y Moy Y (T (01} — T ()Y = O,(1)
and

THEW @Y My, W (p*)T*(p*) = OL(1)
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It then follows from the consistency of £ and the continuous mapping theorem
thatas T — o«

1 . - -
exp{itr[(Q"l — QT o,y = T ()Y Moy Y (T p. 1) — J*(P})’]}

L (B.28)

and

P

1 A T -~
SXP{EtT[(Q'l —_ Q-l)J*(p*)W(P*)'M()'-..w:p;)W(P*)J*{P*)']}—> i (B.29}

Putting Eqgs. (B.24), (B.25), (B.26), {B.27), (B.28) and (B.29) together, we deduce
the result

NH{M, ;| 2,Y) Y/n,{Mﬁ,]Q Y)

AAM, . [0Y) 1M, [8Y) " -1 asT—w

via the continuous mapping theorem.
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