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Abstract

This paper studies the use of the Jefireys prior in Bayesian analysis of the simultaneous
equations model (SEM). Exact representations are obtained for the posterior density of the
structural coefficient § in canonical SEMs with two endogenous variables. For the general
case with m endogenous variables and an unknown covariance matrix, the Laplace
approximation is used to derive an analytic formula for the same posterior density. Both
the exact and the approximate formulas we derive are found to exhibit Cauchy-like tails
analogous to comparable results in the classical literature on LIML estimation. Moreover,
in the special case of a two-equation, just-identified SEM in canonical form, the posterior
density of f§ is shown to have the same infinite series representation as the density of the
finite sample distribution of the corresponding LIML estimator,

This paper also examines the occurrence, first documented in Kleibergen and van Dijk
(1994a), of a nonintegrable asymptotic cusp in the posterior distribution of the coefficient
matrix of the reduced-form equations for the included endogenous regressors. An
explanation for this phenomenon is provided in terms of the jacobian of the mapping
from the structural model to the reduced form. This interpretation assists in understand-
ing the success of the Jeflreys prior in resolving this problem. © 1998 Elsevier Science
S.A. All rights reserved.
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1. Introduction

In Bayesian analyses used for scientific reporting, it is often necessary to
specify a noninformative prior or a prior which expresses the notion of ‘knowing
little’. While there is a general consensus that no prior distribution can be
completely uninformative and that no unique mathematical formulation exists
for the idea of ‘knowing little’ a priori, empirical investigators faced with
a situation of vague initial knowledge often use either the diffuse (uniform) prior
or the Jefireys prior. In the standard linear regression model with exogenous
regressors and Gaussian disturbances, there is little controversy over the choice
of a noninformative prior. Here, the Jeffreys prior is uniform on the coefficients
of the model. Moreover, it is well-known that a diffuse-prior Bayesian
analysis in this case leads to the same inferences from the data as those obtained
from classical maximum likelihood procedures, albeit with different interpreta-
tions.

In the transition from the linear regression model to a simultaneous equations
setting, the issues surrounding the use of these priors become more complicated.
For a simultaneous equations model (SEM) the uniform prior and the prior
derived from Jeffreys’ rule do not coincide. Moreover, in this case, Bayesian
analysis using the diffuse prior does not provide the same inference as the
¢lassical maximum likelihood procedure. Pioneering work by Zellner (1971) and
Dréze (1976) show that under a diffuse prior, the marginal posterior of §, the
vector of coefficients of the endogenous regressors in single-equation analysis of
the SEM, beiongs to the ciass of poly-t distributions. This posterior distribution
has moments which exist up to (but not including) the order of overidentifica-
tion. On the other hand, the analyses of Mariano and Sawa (1972), Mariano and
McDonald (1979), and Phillips (1983a, 1984, 1985) make clear that the finite
sample distribution of the LIML estimator of f has Cauchy-like tails. Finally, in
a stimulating paper, Kleibergen and van Dijk (1994a) (hereafter KVD) report
how various pathologies in the marginal posterior distributions can arise from
the naive use of the uniform prior. Taking the Tintner meat market model as an
example, KVD point out that under the uniform prior, the posterior density of
B (in their case, the coefficient of the price of meat in the demand equation) is
nonintegrable in the case where the model is just-identified under the order
condition (the apparently just-identified case). They also show that a diffuse
prior is highly informative about certain reduced form parameters in the SEM
as it leads to a nonintegrable joint posterior distribution with an asymptotic
cusp. This cusp occurs in that region of the parameter space where the rank
condition for identification does not hold, irrespective of the order condition,
and gives unduly high posterior mass to this region. KVD note that this
problem is related to the problem of nonintegrability of the marginal posterior
density of § in the apparently just-identified case alluded to earlier, as both
pathologies are caused by a diffuse prior's failure to sufficiently down-weight
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that part of the parameter space where the rank condition either fails or nearly
fails.

As an alternative to the diffuse prior in situations of vague initial knowledge,
K VD propose the use of the Jeffreys prior, which they show to effectively resolve
the second problem (i.e., it does not give rise to nonintegrable asymptote in the
posterior distribution of the reduced form parameters). While KVD have shown
that the use of the Jeffreys prior can help one avoid some of the problems of
a diffuse-prior analysis of the SEM, properties of posterior distributions under
the Jeflreys prior are still not well understood for this model. The purpose of the
present paper is to contribute further both to an understanding of the conse-
quences of the use of this prior in Bayesian limited information analysis of
the SEM and to its implementation in this context. Our main focus is in the
derivation of exact and (asymptoticafly) approximate representations for the
posterior density of §. Exact calculations are given for some special cases which
have been extensively studied in the classical literature on the exact finite-sample
distributions of the LIML estimators. Our results indicate that the use of a
Jeffreys prior brings Bayesian inference closer to classical inference in the sense
that this prior choice ieads to posterior distributions which exhibit Cauchy-like
tail behavior in the manner of the LIML estimators. In fact, for the important
subcase of a just-identified, orthonormal model in canonical form {which we
explain below), we find the posterior density derived under the Jeffreys prior to
have the same functional form as the density of the exact finite sample distribu-
tion of the corresponding LIML estimator given in Mariano and McDonald
(1979).

We also derive an asympitotic formula for the marginal posterior density of
B in the general case where the Jeffreys prior is applied to a model with an
arbitrary number of endogenous regressors and with arbitrary degree of
overidentification. This asymptotic approximation can serve as an easy-to-
implement alternative to Monte Carlo integration for empirical investigators
wishing to conduct a Jeffreys-prior Bayesian analysis of the simultaneous
equations model.

A final objective of this paper is to provide another interpretation for the
occurrence of the aforementioned nonintegrable asymptote in the posterior
distribution of certain reduced-form parameters. We show that in an apparently
just-identified model, the appearance of the asymptote is rooted in the jacobian
of the mapping from the structural model to the reduced form. Seen from this
perspective, the Jefireys prior with its invariance properties provides a natural
solution to this problem.

The organization of this paper is as follows. Section 2 sets up the model to be
examined. Section 3 provides a discussion of the Jeffreys prior in the context of
the simuitaneous equations model. Section 4 presents, for a two-equation sys-
tem, some exact calculations of the posterior density of § conditional on the
elements of the error covariance matrix of the reduced form. Section 5 gives an
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asymptotic approximation to the marginal posterior density of § in the general
case where the number of endogenous variables in the model and the degree of
overidentification are both arbitrary. Section 6 puts forth an alternative ex-
planation for the occurrence of a nonintegrable asymptote in the posterior
distribution of certain reduced-form parameters. We make some conclu-
ding remarks in Section 7 and leave all proofs and technica! material for the
appendices.

Before proceeding, we briefly introduce some notation. In what follows, we
use tr( - } to denote the trace of a matrix, | 4| to denote the determinant of a square
matrix A in the case where A is positive definite and to denote the absolute value
of the determinant of 4 in the case where A is not positive definite, and r(IT) to
signify the rank of the matrix II. The inequality ‘ > (" denotes positive definite
when applied to matrices; vec(-) stacks the rows of a matrix into a column
vector; and Py is the orthogonal projection onto the range space of X with
Pix, x, similarly defined as the orthogonal projection onto the span of the
columns of X, and X, Finally, we define Qy =1 — Py and, similarly,

Q(x,.sz =1I- P(x..x,].

2. The model

Throughout this paper, we shall be concerned with the following limited
information formulation of the m-equation simultaneous equations model:

n=YB+2Z;7+u, (1)
Y2=Z!H1+22H2+V2, (2)

where y; (T x 1)and Y, (T x n) contain observations of the m = n + 1 endogen-
ous variables of the model; Z, (T x k,) is an observation matrix of exogenous
variables included in the structural Eq. (1); Z, (T x k,} is an observation matrix
of exogenous variables excluded from Eqg. (1); and u and ¥, are, respectively,
a Tx1 vector and a T x»n matrix of random disturbances to the system.
Moreover, let u, and v, (1 x n) denote, respectively, the rth element of u and the
tth row of V,, and we make the following distributional assumption:

T

["’ ] ~ iid N(O, Z), (3)

Uag lr=1

where X is a symmetric m x m error covariance matrix which we assume to be
positive definite. We often find it convenient to partition X conformably with
(u, t5,) as follows:

[} -
Zz( 11 21)- @)
G121 X2z
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Under the normality assumption (3), the likelihood function for the model
described by Egs. (1) and (2} can be written as
LB, y, Iy, O,, 2|Y, Z) = 2m)~ ™23~ T2
xexp{ — 3r[Z7 Y, Vo) (u, V2)1}, (5)

where Y =(y,, Yy} and Z = (Z,, Z,).
The structural model described by Eqs. (1) and (2) can alternatively be written
in its reduced form:

nw=2Zm + Zym; + vy, (6
Y,=2,\11, + Z;01, + V,, (7)

where vy = (v14,..,U15r-..,017) 18 @ T x 1 reduced-form random disturbance
vector. The distributional assumption (3) and the triangular structure of the
system described by Egs. (1) and (2) imply that

Uiy T "
~ iid N(0, Q), (8)
Dz dt=1
where
Q=(wn w'n))o 9)
Wiy Q;,

Postmultiplying Eq. (7) by g and subtracting it from Eq. (6) yields the identify-
ing restrictions which connect the structural and reduced form parameters:

m, —H,f=1y, (10)
n, — =0, (11)
I = BQB, (12)
where
B (1 0). (13)
-8 I

Observe that in the absence of restrictions on the covariance structure, Eg. (1) is
fully identified if and only if #{II,) = n < k,, which is assumed.

The identifying restrictions above suggest another useful representation of
this simultaneous equations system, which we write as

y1=2ZI1L + y) + Z,01,8 + vy, (14)
Y2=Z]_H1+22H2+V2. (15)
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This form of the model highlights the fact that the SEM can be viewed as
a multivariate (linear) regression model with nonlinear restrictions on some of
the coefficients. Under condition (8), the likelihood function which corresponds
to this alternative representation has the form:

LB, v, Iy, Ty, QY, Z) = (2m)" ™27 72

xexp{ — 3tr[Q Y(v,, V2 )oy, Vali, (16)

where v; and V', are given by Egs. (14) and (15). The likelihood functions (5) and
{16) are, of course, equivalent as a simple algebraic manipulation shows.

Let ¢° and ' be (mim + 1)/2)x 1 vectors comprising, respectively, the
nonredundant elements of ¥ and 2 The transformation
(B, 7, vec(IT,), vec(IT,), a*) — (B, ¥, vec(IT,), vec(I1,), @) is one-to-one and
differentiable and has a jacobian of one. Hence, the marginal posterior density of
the structural parameter § will be the same regardiess of whether we use the
likelihood function (5) and marginalize with respect to y, 11, II,, and X or use
the likelihood function (16) and marginalize with respect to y, IT,, IT,, and .}
Writing the likelihcod function as Eq. (16), however, is espectally convenient if
we wish instead to derive the posterior distribution of § conditional on the
elements of the reduced-form error covariance matrix . In particular, as we
shall explain in Section 4 of this paper, we will be interested in obtaining the
posterior density of f for a simultaneous equations model in canonical form, i.e.
an SEM as described above, but with the additional specification that

w @’ 1 0
Qz( 11 21)=( ) (17
wy 2y, 0o 1,
To complete our specification, we make the following assumptions on the
sample second moment matrix of Z:
T 'ZZ=M;>0 VT, (18)
and
Mir—-M>0 as T- . (19)

Conditions {18) and (19) are standard in classical analysis of the simultaneous
equations model. Condition (19), in particular, is needed for our use of the
Laplace approximation in Section 5. Also, in some cases, we shall impose the
stronger condition

T-'Z'Z [T_IZ"Z‘ T_IZ"ZZ}—[I"‘ 0} VT (20)
lrizz, T'zZ,] 00 I ’

* We thank an anonymous referee for emphasizing this point in his report.
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and we shall refer to an SEM which satisfies Eq. (20) as an orthonormal SEM.
Note that while orthonormal SEMs in canonical form can be viewed as interest-
ing special cases of the more general simultaneous equations model whose error
covariance matrix and exogenous variables satisfy the less restrictive conditions
given by Egs. (9), (18) and (19); they typically occur as the result of applying
certain standardizing transformations to an SEM in general form. (Se¢ Phillips
(1983a) for details.) In the case where transformations are needed to bring about
an orthonormal canonical structure, the parameters of the transformed model
are functions of the parameters of the model before transformation. These
transformations are useful because they reduce the parameter space to an
essential set and identify the critical parameter functions which affect the
behavior of the statistical model,

3. Jeffreys priors for the simultaneous equations model

Our main interest is in the study of posterior densities which arise from the
use of the Jeffreys prior. We start by giving a general description of this prior and
then proceed to derive the Jeffreys prior for different versions of the SEM
described in the last section. Expositions of the Jeffreys prior and its properties
can be found in the writings of many previous authors (see, for example, Jeffreys,
1961; Zellner, 1971; Phillips, 1991; Kleibergen and van Dijk, 1994a,b; Poirier,
1994), and we will confine our discussion here to what is relevant for our
subsequent analysis.

Let L(6]X) be the likelihood function of a statistical model fully specified except
for an unknown finite-dimensional parameter vector e @. If we set Iy =
— E{(¢%/@066)in(L(8| X))}, then the Jeffreys prior density is given by pf6) o
[Tgg|*%. An explicit formula for this density for the model described by Egs. (1) and
{2) under error condition (3) was derived by KVD.? We restate their result here
for later reference and give the simplification for the case of just identification,

Lemma 3.1. The model described by Eqgs. (1) and (2) under error condition (3) im-
plies a Jeffreys prior of the form:
PiB, 7. Oy, 115, Z) oc oy, 3% M T _“m(k+"+2'|n’zztzQz,ZzH2J Yio@n

where k = k; + k,. When the model is just identified (i.e.. I1, is a n x n square
matrix and r(I1;) = n = k,), the Jeffrevs prior is simply:

PAB. 7, Iy, Ty, Z) oc |Z|7 VBT, {22)
? Actually, the expression for the density of the Jeffreys prior (expression (50)) given in Kleibergen

and van Dijk (1994b) contains some typographical errors. The correct expression was given in an
earlier version of their paper, Kleibergen and van Dijk (1992).
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Remark 3.2.

(1) An important quality of the Jeffreys prior in the present context, as pointed
out by Poirier (1996), is that its density reflects the dependence of the identifica-
tion of the parameter vectors § and y in Eq. (1) on the rank of the parameter
matrix IT; in Eq. (2). Indeed, as noted earlier, a sufficient condition for § and y to
be identified is the rank condition r(fT;) = n < k,. Poirier (1996) has argued
persuasively that a sensible prior for a single-equation analysis of the SEM
should reflect the dependence of valid statistical inference on this rank condition
and, in fact, should not favor regions of the parameter space in which the model
would be unidentified. The Jeffreys prior density, he notes, captures this depend-
ence through the factor [[1,Z5Qz Z,17,|'? (see Eq. (21)), which is simply the
square root of the determinant of the (unnormalized) concentration parameter
matrix. Note, in particular, that when the rank condition fails, this factor equals
zero; hence, the Jeffreys prior places no weight in the region of the parameter
space where r(I1;) < n and relatively low weight in close neighborhoods of this
region where the model is nearly unidentified. This characteristic of the Jeffreys
prior turns out to have important implications as it leads to posterior densities
which are always proper, regardless of whether the model is just- or over-
identified, and which are less likely {relative to diffuse-prior posterior densities)
to overstate the number of well-defined moments in the case where the underly-
ing model is only apparently overidentified. (We shall have more to say about
this in the next section.) In addition, as we shall discuss more fully in Section 6 of
this paper, this feature of the Jeffreys prior leads to a posterior density for
IT = (I1,, I1,) that is free of the nonintegrable asymptote which appears when
a diffuse prior is used.

(2) Another important feature of the Jeffreys prior (and, in fact, the primary
motivation for its development by Harold Jeffreys) is that it is invariant to any
differentiable 1:1 transformation of the parameter space in the sense that
if ¢ =f(0) is one such transformation, then |Ip)'/2d0 = |1,,)V/? d¢b, (see, e.g.
Zellner (1971), p. 48).

By making use of this equivalence, we can readily deduce from Eq. (21) the
form of the Jeffreys prior density for the alternative parameterization of the
SEM given by Egs.(14) and (15) under error condition (8). Let
0= (f, 7. vec(I Y, vec(I1,), 6”Y and ¢ = (F, v, vee(IT,), vec{Il,), w*Y, where
a* and w" are as described in Section 2. Since the transformation ¢ = f(0) is
one-to-one and differentiable, we have

[yo)'? = |Lgpl 12|}
2)k, - - .
= gy, | BT T DRI T, 700, Z TN
. 2¥ky —
=lwy; ~ 2wy, f + B0 e

x|BQBT VI T, 7,0, 7,111 |
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= |11 — 201 + Fafl QI VDN, 200, Z, 1T,
@3)

where J = (36(¢p)'/0¢) is the Jacobian matrix of the transformation ¢ = f{f), and
where the last equality follows from the fact that [B| = 1 and |Jj = 1 due to the
triangular structure of the SEM considered here.

(3) It is also of interest to derive the Jeffreys prior density for an orthonormal
simuitaneous equations model in canonical form, i.e., an SEM which satisfies the
additional conditions (17) and (20). To deduce the Jeffreys prior density for this
model, we first deduce the form of the Jeffreys prior for the slightly more general
case where we condition on an arbitrary reduced-form error covariance matrix
. 1t is most convenient here to work with the representation given by Eqs. (14)
and (15) with error condition (8). To proceed, partition ¢ = (¢}, ¢4), where
¢ = (f, 7, vec(Il,), vec{ll,;)Y and ¢; = w*, and note that in this case, the
information matrix is block diagonal with respect to this partition, viz.,
I, = diag[l, 4, 1,,4,]- Simple computations produce the marginal Jeffreys
prior for § as py(§2) oc €] 4/2¥*+2) Using Eq. (23), the conditional Jeffreys prior
density given Q must then be of the form ’

piB, v, Iy, ,|€) oc |1¢l¢,|”2
« oy — 2wz, 8 + ﬁ'szﬁi“m‘h_"J|Q|_M2|H'ZZ’2QZ,ZZH2|”2
o oy — 23,8 + ﬁ'szmmz"k’—"J|H'22'2Qz,zznz|”2- (24)

It follows immediately that for an orthonormal SEM in canonical form, the
density of the Jeffreys prior is given by

piB. v, 11\, I|Q = L} oc |1+ fB10 T, T2, (25)

4. Exact posterior analysis

We present here some exact formulas for the density of the posterior distribu-
tion of fi conditional on the elements of the reduced-form error covariance
matrix . While Bayesian inference is typically based on the marginal, and not
the conditional, posterior distribution, our purpose for deriving this conditional
density is twofold. First, as explained in Remark 4.4(5) below, knowledge of this
conditional posterior density provides useful information about the tail behav-
1or of the (unconditional) marginal posterior distribution of £. Secondly, in the
case where 2 is known, as in the case when the SEM is in canonical form, the
conditional posterior density of f given Q is also its marginal posterior density.
Since simuitaneous equations models in canonical form have been the subject of
intense study in the classical literature on the finite-sample distributions of
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single-equation estimators,” our analysis here allows us to compare Bayesian
results based on the Jeffreys prior with results from sampling theory. We
summarize our results in the theorems and corollary given below.,

Theorem 4.1. Suppose the likelithood function is given by a special case of
expression (16), where

(1) the number of endogenous varigbles is two, ie, m=2;

(2) the model is just identified so that n =k, = 1 and Il, # 0.2

Then, the conditional Jeffreys prior density given the elements of the reduced
Jorm covariance matrix £ is of the form

PokB, v, Iy, M51Q) o [, (26)

Moreover, under the prior density (26), the conditional posterior density
of B given & is of the form

i 1/2)0’112 (ﬁ)i
5o (1/2)dolBy ™'’

2
where 01 » = Wy, — W5,/w,3,

PRI, Y, Z) o (27)

Wiy W1

bolB) = B — 2——p + —,

Wy2 W32

W31 2 ,
d1(B) = (ﬁ - _) ¥1{Pz — Pz )y,

22

+ 2(18 - %)(m“ - %5))’1(})2 — Pz

Woy AWz W

142} (1)2
+ (w—ﬂ — —‘ﬁ) Yo(Pz — Pz )ys
Wy Qi

and where (a); is Pochhammer's symbol ie.,

_ {(a}(a +1)--l@a+i—1), fori>9,
(@), = 1 fori=90

*See, for example, Mariano and McDonald {1979), Mariano (1982), Phillips (1983a,b),Phillips
(1984, 1985, 1989). and Choi and Phillips (1992).

*Note that [T; # 0 is just a version of the rank condition #{/1;) = n < k, appropriate for the
present case where n =1,
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Theorem 4.2. Suppose the likelihood function is given by a special case of
expression (16); where

1. the number of endogenous variables is two, i.e., m = 2; and
2. the model is overidentified of order one, so that ky = 2 and the 2 x 1 parameter
vector I, +# (.

Then, the conditional Jeffreys prior density given @ is of the form
pAB, . Iy, Mo)Q) o lwy; — 20218 + 227V 2T 250, Z 1T,V (28)
Let D be a 2 x 2 matrix defined by

ZEQ2J22=:DIK
and let
1 ’ -1 111 [l2
L=Y Qz,Zz(ZzQz,zz) D= ,  say.
I3, I22

Then, under the prior density (28), the conditional posterior density of 8 given
Qs
w j+1
PBIR Y, ZYoc ¢olB) ™" + 3 3 CUJ Dol AU Do A1 P4, (29)

J=01=0

where ¢ol(f) is as defined in Theorem 4.1 and where

Wiy )2 w w @
b2p) = ( ~ —»i‘) i3+ 2(ﬁ — i)(# - iﬁ)ﬁ il
W33 Waz f\W22 Wiz

2
(524 w
+ (ﬁ —iﬁ) B,

W2z W32

dx(B) = (ﬁ - “’—) B, + 2(ﬁ - ‘“—)(‘“— - @ﬁ)nzru

W3 Waa \Wpy Wiz

2
w 43}
+(¢_i ) z,.

Wiy Wz

. +3\ 1Ny L U+ .
Cij,h= (ﬁ)(ﬁ)ml& “( N )G(Z(} + 1120,

(2(1' + 1)) 2+ 1)
21

with

TR0+ 1= ey
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and
r [r/2—1 :
" 142
_Jl:[o (m)} forr-.2,4,6, s=0
(221 (1 + 2%
G(r,s)=* Lk]:[g (2+2k)] forr=0,5=24.6,...
-1 $2-1 rtsy2—1
H 1+ 2i) n o+ 2j)]/|: l_] 2+ 2k)il forr=2,4.6,...,5=2,4,6,...
. i=0 =0 k=0
Corollary 4.3.
1. Let the likelihood be the same as in Theorem 4.1 but with the additional

assumptions that

(1.1) the exogenous regressors are orthonormal as in condition (20);

(1.2) the model is in canonical form, i.e. 2 is a 2 x 2 identity matrix.

Then, under the Jeffreys prior, pi(B, v, 11, II;) oc |I1 4}, the marginal posterior
density of B is of the form

i - @2’ + gy
PBIY, Z) o _exp{ — £(1 + B*)2} Z Y ik (30)
where i* = y3(Pz — Pg)y: = (1/T)J’22222Y2 and B = (ys(Pz ~ Pz)y,)~"

YoAPz = Pz )y = (¥22:25y2)" yZZZZZyl

. Suppose the same likelihood function as in Theorent 4.2 but with the additional

assumptions that

(2.1) the exogenous regressors are orthonormal,

(2.2) the model is in canonical form,

Then, under the Jeffreys prior. py(B, v, I, ;) oc |1 + B*M3I5M,|Y2, the
marginal posterior density of f§ is of the form

o f+1

pBIY, Z)ac ' (B)" " + X Z D(j, Des(B) 9 Po3(BUT NeNBY, (31

j=0 1=0

where
do(By =1+ B2,
3B = yfxpz,,hﬂz + 2¥\ Pz, y2B + ¥2Pz, V2,

@3(B) = ¥1Pz, v + 2ViPz,y2B + VaPz, V2,

{43 N2+ D .
Dij, 1) = (m)(;@)( 2 )G(Z(J +1=1)20,
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and where Z3, and Z,; are the orthonormal columns of the T x 2 matrix Z, so
that Pz, =T '2,,Z}, and Py = T™'Z;,Z5,. All other symbols are as de-
fined in Theorem 4.2,

Remark 4.4,

(1) Note that the conditional posterior densities given in Theorems 4.1 and 4.2
have Cauchy-like tails of order O(|f|”%) as |f| = . It follows that these
densities are proper (i.e., integrable) but have no finite integer moment of
positive order. Note also that the densities (27) and (29) have similar tail
behavior in spite of the fact that the former arises from a just-identified model
while the latter arises from a model that is overidentified of order one.

(2) For simultaneous equations models in canonical form, the marginal
posterior densities (30) and (31) follow as special cases of the conditional
posterior densities (27) and (29). Hence, they are also characterized by Cauchy-
like tails and the nonexistence of positive integer moments. The tail behavior
shown here is markedly different from that of the marginal posterior density of
B when a diffuse prior is applied to the canonical model. Specializing Theorem
3.1 of Dréze (1976} to the present case shows that the posterior density resulting
from the diffuse prior is nonintegrable when the model is just-identified but has
moments which exist up to (but not including) the order of overidentification for
models which are apparently overidentified (by which we mean models which
appear to be overidentified by the order condition but which may or may not
satisfy the rank condition).” Interestingly, existence of moments of the marginal
posterior densities of f resulting from the Jeffreys and the diffuse priors closely
parallel that of the finite sample distributions of the LIML and 2SLS estimators
respectively, The finite sample distribution of the classical LIML estimator of
B has also been observed by various authors (see, e.g., Mariano and McDonald,
1979; Phillips, 1983a, 1984, 1985) to have Cauchy-like tails, leading to the
nonexistence of positive integer moments even in overidentified models. More-
over, moments of the finite sample distribution of the 2SLS estimator of § have
been found by Basmann (1961), Mariano (1972), and Kinal (1980), amongst
others, to exist up to and including the order of overidentification, which, for
a given order of overidentification, results in the existence of an additional
integer moment relative to the posterior density arising from a diffuse prior.

{3) It may seem counterintuitive at first glance that a prior which incorpo-
rates more model-based information, i.e. the Jeffreys prior, will actually produce
a posterior distribution which has fewer well-defined moments than that

*In an earlier version of our paper, we derived, for a canonical model, the exact expression for the
marginal posterior density of § under the diffuse prior. This result is omitted here because of its
similarity with the more general derivations of Dréze {1976) and Kleibergen and van Dijk {1994a)
but can be obtained from the authors upon request.
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obtained through the less structured diffuse prior in the case of apparent
overidentification. However, as pointed out by Maddala (1976), the sharpness of
the diffuse-prior marginal posterior density of § under apparent overidentifica-
tion is illusory as it depends only on the satisfaction of the order condition and
not the rank condition. Since a model may be underidentified even though it
satisfies the order condition, a diffuse-prior analysis may result in posterior
inference that is misleadingly sharp when, in fact, the underlying model suffers
from a lack of identification.® When a Jefireys prior is employed, on the other
hand, even though the advantage of well-defined moments is lost (vis a vis the
use of the diffuse prior), the marginal posterior density of § for an identified
SEM is always proper (even in the case of just identification). The latter property
results from the fact that the Jeffreys prior tackles the underlying identification
problem by imposing the appropriate low weighting to the region of the
parameter space in which the rank condition nearly fails.’

(4) For the just-identified canonical model considered in part (1) of Coroliary
4.3, the correspondence between the Jeffreys-prior Bayesian results and the
classical LIML results goes beyond just tail behavior. The posterior density (30)
has, in fact, precisely the same functional form as the exact expression for the
density of the finite sample distribution of the LIML estimator given in Mariano
and McDonald (1979). (See Eq. (3) of that paper.) Of course, the interpretations
given in the two cases are different. Expression (30) denotes the density function
of a random parameter f§ conditional on the data, while Mariano and
McDonald (1979)'s result gives the probability density of the LIML estimator
B conditional on a certain parameter value. This correspondence is the analogue
for the simultaneous equations model (given £2 = I, and orthogonal regressors)
of the equivalence between the probability density of the maximum likelihood
estimator and the Bayesian posterior density of the coefficient vector in the
linear regression model given the equation error variance.

(5) From the conditional posterior density {29), we can deduce that the
marginal posterior density of § under the Jeffreys prior, for the model described
in Theorem 4.2, has no finite integer moment of positive order. To see this, note

® As also noted by Maddala (1976), this problem is roughly analogous to one which may occur in
classical 25LS estimation under conditions of apparent identification. In fact, Phillips (1989} and
Choi and Phillips (1992) have shown that in the event that the order condition is satisfied but the
rank condition fails, the 2518 estimator is inconsistent and has a limiting distribution which carries
no information about the unidentified parts of the coefficient vector, so that the conventional normal
approximation gives a very misleading picture of its asymptotic behavior,

" Again, a rough analogy can be drawn between the classical LIML procedure and the Bayesian
procedure using a Jeffreys prior, in that both procedures are less susceptible to the problem of
identification failure {by which we mean the situation where the order condition is satisfied but the
rank condition fails) relative to 2518 and diffuse-prior Bayesian procedures. In the case of LIML
estimation, identification failure is less likely to go undetected as this is often revealed in the form of
flat (or nearly flat) ridges in the concentrated likelihood funcuion.
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first that, as discussed in Section 2, the marginal posterior density of § derived
from using the likelihood function (5) and marginalizing with respect to
v, ITy, I3, and X is the same as that derived from using the likelihood function
(16) and marginalizing with respect to y, I1,, I1,, and Q. Proceeding in the latter
manner, we have

It

J.RIBI"P(BIY, Z)dp Rlﬁl" J P, QY, Z)d2 |dp

-]

= | 18 JP(ﬁIQ,Y, Z)PQIY, Z)d2 |df

a

~

= | PQIY, Z)U IBFPBIR.Y, Z)dB |dQ

Py,

&

= + o0

where @ is the space of all 2 x 2 positive definite matrices and where inter-
changing the order of integration is justified by the Tonelli theorem. Thus,
the nonexistence of integer moments for the conditional posterior distribution
of § given 2 implies that the same moments would not exist for the
marginal posterior distribution of f either. Note further that the model
considered in Theorem 4.2 is assumed to be overidentified of order one. Hence,
this example also shows that the nonexistence of posterior moments of posi-
tive integer order under the Jefireys prior is not particular to just-identified
models.®

(6) The results we present in Theorems 4.1-4.2 and Corollary 4.3 are related to
a line of research in statistics aimed at resolving what Welch and Peers (1963)
have referred to as Lindiey’s problem, which seeks conditions under which
Bayesian posterior intervals will have the correct frequentist coverage probabil-
ity. Notable contributions to this literature start with the early papers of Lindley
(1958), Welch and Peers (1963), and Peers (1965) and inciude some more recent

® In the most recent version of their paper, Kleibergen and van Dijk (1996) make the claim that the
posterior density of f has moments which exist up 1o and including the degree of overidentification.
The main reason for the discrepancy between our results and that reporied in their paper is the
difference in the priors used in the two analyses, The prior we study in this paper is the conventional
Jeffreys prior; the prior they use in their paper, on the other hand, arises from the application of
Jefireys’ rule to each of the conditional/marginal likelihood obtained in factoring the joint likelihood
mto a sequence of conditional and marginal likelihoods.
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work as reported in Tibshirani (1989) and Nicolaou (1993).° With the exception
of Lindley (1958) and Section 5 of Welch and Peers (1963), which present
some exact results for simple location models, the aforementioned papers are
concerned primarily with establishing the asymptotic equivalence between one-
sided classical confidence sets and one-sided Bayesian posterior intervals resuli-
ing from the Jeffreys prior (or its variants) for general likelihood functions. On
the other hand, in this paper we work with more specific likelihood functions;
1e., that implied by special cases of the simultaneous equations model with
Gaussian disturbances; but in the case of a just-identified, orthonormal model in
canonical form, we establish a much sharper result, namely, the exact equiva-
lence of the classical maximum likelihood procedure and the Bayesian proced-
ure under the Jeffreys prior. (See Corollary 4.3(1) and the discussion in Remark
4.4{4) above).

(7) In a pathbreaking paper, Zellner (1970) conducts an early Jeffreys-prior
analysis in econometrics on a two-equation system where the independent
variables are unobserved.!® The model studied in that paper is, in fact, related to
the simultaneous equations model here and can be seen as a special case of our
model, where w,; is set to zero and where there are no Z, variables. However, as
Zellner's paper predates much of the classical finite sample literature on the
SEM (particularly, that of the LIML estimator), no comparison is made in
Zeliner's paper between the posterior distribution derived there and the finite
sample distributions of the LIML estimators given in later papers by Mariano
and McDonald (1979) and Phillips {1984, 1985).

5. Posterior density of § in the general case

The exact results of the last section were derived for special cases of the
simultaneous equations mode! presented in Section 2. In this section, we study
the general case where the number of endogenous variables and the order of
overidentification are left arbitrary. For this case, the exact expression for the
marginal posterior density of § under the Jeffreys prior cannot be so readily
obtained. Hence, we follow Phillips (1983b}, Tierney and Kadane (1986}, and
Kass et al. (1990) in using Laplace’s method to deduce an (asymptotically)
approximate formula for the marginal posterior density of f. (Appendix A has
a formal statement of the version of the Laplace approximation that we employ
here.) We summarize our results in the theorems below:

® We thank an anonymeous referee for relating our work to this literature.

'"We thank Arnold Zellner for bringing this paper 10 our attention.
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Theorem 5.1. Let the likelihood function be given by expression (5) and suppose
that the rank condition for identification is satisfied so that r(II,) = n < k,. Sup-
pose also that conditions (18) and (19) are satisfied. Then, under the Jeffreys prior
21y

PBIY, Z) ~ RIS + (B = Pows) Y20z, Y B — Pors)|~ /2D

y 01 — Y2B)YQa vy — YoB)| 772
|03 = 1202ty — Y2B)

where S = y1Qy, )y, and BOLS = (erQz,Yz)_lyszzlh and where
K = (2n){(h,m +kin)/2 + mim+ 1)/4} exp{ _ %Tm}IIYrZ(PZ _ PZ,)Y2|”2
X |Y30:Y o/ TI” V3T 10y, 230/ TI™ T2, (33)

(y1 = YofYQz (y1 — Y1)
((y1 — Y25y Qa(y, — Yzﬁ))z

x [(v1 — Y2BYQaAy: — Y2Basrs)?

+ (¥ - YszSLs)'(Pz — Pz My — Yzﬁzsl.s)

X(y1 — Y2fYQzY AY5(Py — Pz)Y2) Y302y, — Y2811
(34)

IHB, Y, Z)'?, (32)

HB Y Z)=

Here, g = (YoPz — Pz )Y,) ' Y5(P; — Py )y, and * ~* denotes asymptotic
equivalence in the sense that A~ Bif A/B—1as T — oo. The approximate
posterior density (32) has Cauchy-like tails, i.e., it is integrable but has no finite
moment of positive integer order.

Remark 5.2.
(1} It is clear from the proof of Theorem 5.1 (see Appendix B) that the tail
behavior of the approximate posterior density (32) is determined by the factor

IS + (8 — Bows) Y202z, Yao(f — Bors)~12M* 1,

which is, in fact, proportional to the pdf of a multivariate Cauchy distribution.
Note further that the conditions of Theorem 5.1 require only that the model
satisfies the rank condition for identification; and, hence, the Cauchy-tail prop-
erty of Eq. (32) holds regardless of whether the model is just- or over-identified
and, in the case of overidentification, regardless of the order of overidentifica-
tion. Moreover, the analysis of the previous section indicates that the nonexist-
ence of positive integer moments for the overidentified case here is not an
artifact of the Laplace approximation but a characteristic of the marginat
posterior density of § under the Jeffreys prior. Similar tail behavior is also
observed in the exact finite sample distribution of the LIML estimator of £ in
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the general case where the number of endogenous variables and the order of
overidentification are left arbitrary. (See Phillips {1984, 1983)).

{(2) While the Laplace approximation is generally not invariant to repar-
ameterization, it should be noted that in the present case, it does not matter
whether we apply Laplace’s method to the parameterization given by Egs. (1)
and (2) with likelihood function (5) or the parameterization given by Eqgs. (14)
and (15) with likelihood function {16). To see this, note that by arguments similar
to that outlined in the proof of Theorem 5.1, we can show that under the latter
parameterization, application of the Laplace method results in the (approxim-
ate) posterior density

PBIY, Z) ~ K'ldyy — 20218 + f'Qafl P70y | T
x \131Z2507,Z 5017, (35)

where K = (2m)itim ka2 +mim+ 1/4} oy { _ Tm/2} and where 1,7 and

- By O
QT = ( ) 11 42 1)
W21 L2322
are the MLE's of the parameter matrices I7, and £. Making use of the

well-known invariance of maximum likelihood estimators to smooth one-to-one
transformations of the parameter space, we can further show that

Q4] = (B} £4B7Y
= |£r|
=Y20:Y 2/ TNy10w, 251/ T)
%[y =~ Y2BYQz (v, ~ Y2P /[y — Y2 BYQuAy, — Y . (36}
|y, — 2058 + B Q22281 = 1614
=18+ (f ~ Bors) Y202, Y 2(B — Pos)l, {37)
and
U127Z307, Z2MTor| = |Y3(P7 — Pz)Y4|IS

+ (B — Bows) Y202, Y (B — PorslH(B, ¥, Z)l,  (38)

where B is as defined in expression (13) and S, foLs, and H(B, Y, Z) are as
defined in the body of Theorem 5.1. From expressions {36)-(38), it is easily seen
that Eq. (35) is, in fact, equivalent to the approximate posterior density (32)
given in Theorem 5.1.

(3) An advantage of the formula given in expression (32} is that it can be
implemented quickly and easily on a PC with only a few lines of computer code.
Hence, it serves as a useful alternative to the more time-demanding Monte Carlo
integration for empirical investigators who wish to conduct a Bayesian analysis
of the simultaneous equations model using the Jeffreys prior.



J.C. Chao et al. | Journal of Econometrics 87 (1998) 49-86 67
6. The Kleibergen/van Dijk problem revisited

KVD show that the posterior density of IT = (IT}, IT5) under a diffuse prior
has a nonintegrable asymptote along the path where IT, = 0. They argue that
this pathology is caused by the fact that to obtain the marginal posterior of 7,
one must integrate with respect to the conditional posterior density of # which is
improper under a diffuse prior along the subspace where £ is unidentified, or
equivalently, where IT, = 0. KVD further show that the use of the Jeffreys prior
successfully removes this undesirable asymptote. Here, we show that in the case
of just identification an alternative explanation for this phenomenon can be
given in terms of the jacobian of the mapping from the structural model to the
reduced form. Our interpretation illuminates the role which the Jeffreys prior
plays in resolving this problem.

To proceed, let us briefly review the probiem as presented in KVD. Consider
the mode! described by Eqs. (1) and (2) of Section 2. For ease of exposition,
we shall discuss only the two-equation case, but the same conclusion can
be drawn for the general m-equation case using a similar analysis. From
expression (5), the likelihood function for the two-equation model can- be
written as

LB, y, 1, My, 21Y,Z) o |27 T2 exp{ — 3r[Z™ Yu, v,)(u, v,)]},
where v; =y, — Z, I, — Z,1I, is the T x 1 vector of random disturbances in
Eq. (2) in the special case where n = 1. Combining this likelihood with the
diffuse prior
p(B, v, 1y, I, Z) o | 2792,
we get, after marginalization, a posterior for IT = (7}, IT%) of the form
pUl IL|Y, Z)oc y, — ZOY(y, — ZIy+ (T —IYZ Z(1T — )| "/ T -4
X 12250,y,.y,.20Zo M|~k 4
L EYAT NPRV2Y 7 P
= y2 — ZHY(y: — ZI) + (1 — [IYZ'Z(1T — [ 13T+ a- s
x G(I1,, y4, v3, Z), say, (39)

where [T = (Z'Z)"'Z’y,. Eq. (39) is a restatement of Eq. (18) in KVD. Note that
the posterior density (39) is nonintegrable as a result of the presence of the
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asymptote at IT, = 0. In the just-identified case, Eq. (39) reduces to
oy, Mo|Y, Z) o« \y, — ZI{y, — Z1)
+ (0 - AYZ'Z(I1 — )|~ 13Ty, =1
=pedlly, ILY, )| (say), (40)

where [T, is a scalar parameter here. We see that Eq. (40) is simply the marginal
posterior of II = (IT}, I,), derived from a diffuse-prior analysis of the reduced
form model given by expressions (6)8), multiplied by the extra term |H,| ™.
The factor |T,|”*, which causes the nonintegrability, is the jacobian of the
transformation (f, ) — (rn}, n5), as is apparent from Egs. (10) and (11).

An alternative interpretation of this problem can be obtained by noting that
the assumption of a diffuse prior on (8, ¥, IT}, II,) automatically implies a prior
on (n', may, Iy, II,) of the form:

p{nln 3, Hls HZ) o p(ﬁs ya H.ls H2)|a(ﬁs 'y’s ’15 HZ)'/a(nfls M3, H’h HZ)JI
= ;1" (41)

In this sense, the nonintegrability can be viewed as a pathology brought about
by the implicit specification of a peculiar prior on the reduced form, which gives
infinite density at the point [T, = 0. Hence, a seemingly uninformative diffuse
prior on the structural model turns out to be highly informative about the
reduced form. Moreover, specifying a diffuse prior on the structural model in
this case is not in accord with the principle of ‘data-translated likelihood’ as put
forth by Box and Tiac (1973). Recognizing that a uniform prior under one
parameterization may not be uniform under a reasonable reparameterization of
the model, Box and Tiao (1973) argue that a uniform prior should be used for
that parameterization in which the likelihood is ‘data translated’, i.e., a likeli-
hood that is in location form in terms of sufficient statistics. Their justification is
that for a ‘data translated’ hkelihood, different samples will change only the
location, but not the shape, of the likelihood. For such a likelihood, being
noninformative a priori means assigning equal prior density at all the possible
locations, resulting in the specification of a uniform prior. In the case of the
simultaneous equation model, it is the likelihood of the reduced form model, not
the structural model, that is ‘data translated’. Hence, according to this theory
a uniform prior should be specified on the reduced form. The implied prior on
the structural model then becomes

p(ﬁ! T Hh HZ) = p(nls I Hls HZ}la(Tf’h Ty, nrl, H2)’/5{ﬁ’ 'va ’11 HZ)’l
o« [T, (42)

Comparing expression (42) with Eq. (22), we see that in the just-identified case,
Eq. (42) is simply the marginal prior on (f, y', [}, I1;) which results from
application of Jeffreys’ rule. '
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7. Conclusion

This paper studies the use of the Jefireys prior in Bayesian analysis of the
simultaneous equations model. Exact representations of the posterior density of
the structural coefficient f are obtained for two-equation versions of the canonical
SEM with orthonormal exogenous regressors and are found to exhibit Cauchy-
like tails, much like the density of the finite sample distribution of the classical
LIML estimator. Indeed, for the special subcase of a two-equation, just-identified
SEM in orthonormal canonical form, we find an exact correspondence between
Bayesian results based on the Jeffreys prior and classical LIML results as ob-
tamned by Mariano and McDonald (1979). In the general case with m endogenous
variables, an arbitrary order of overidentification, and an unknown covariance
matrix, we derive a Laplace approximation for the posterior density of 8. This
approximate posterior density also has Cauchy-like tails, even in the case of over-
identification. Again, this mirrors exact results for the classical LIML estimator.

This paper also revisits a problem, studied by Kleibergen and van Dijk (1994a),
which shows that the application of a diffuse prior in the simultaneous equations
model results in the presence of a nonintegrable asymptote in the posterior
distribution of the reduced form coefficient I7 along the subspace I7, = 0. In the
case of just identification, we interpret this pathology as arising from the jacobian
of the mapping from the structural model to the reduced form. This perspective
helps in understanding the role of the Jeffreys prior in resolving this problem.

Our paper does not attempt to settle the larger question of which prior best
embodies notions of objectivity and noninformativeness, nor does it wish to
advocate the automatic use of the Jeffreys prior. Qur view is that, in simulta-
neous equations models, application of Jeffreys’ rule provides empirical investi-
gators with an interesting reference prior in situations of vague initial knowledge
and helps to avoid some of the pitfalls of a mechanical use of uniform priors in
this context. Proceeding from this standpoint, we have sought to gain a better
understanding of some of the consequences of a Jeffreys-prior analysis of the
SEM. It is hoped that such an understanding will help to promote the prudent
use of this prior in empirical research.

8. For further reading

Anderson (1984), Dreze (1977), Dreze and Richard (1983), Tierney et al. (1989),
Zellner et al., (1988)
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Appendix A.
This appendix gives two results which are used in Appendix B.

Lemma A.J. Let {g(0,, 08,)} be a sequence of real functions on = @, x @,,
where @; and ©, are open subset of R” and RP*. Consider the multivariate
integral

1@,. T)= J exp{Tgrl0,, 6,)}h(6,, 0;)d0,. (A1)

6
Suppose in addition that the following conditions hold:

1. g(6,, 6,) and h(B,, 8,) are twice continuously differentiable with respect
to 0, on the parameter set @,

2. for each 0,€©,, {g{B,, )} have local maxima {8,7(8,)} so that
3g7(0,, ,7(0))/00, = 0 and d*g{8,, 8,1(0,))/80,80, is negative definite;

3. for any & > 0 and for each 8, € @,, define B{#,1(0,)) to be the open ball of
radius ¢ centered at O,1{8,), and we have

lirrnﬂs:p sup {gH0y, 05) — g0\, 0,48,)): 0,60, — BA,1(0,))} <O.
z (A.2)
T hen,
I8, T) ~ 2n/T)P"? exp{ Tgr(6y, 827(0,)} (8, 8:1(6,))

x {det[ — d%gr(8,, 01(0,))/00,00,1} 77, (A.3)
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where ‘'~ denotes asymptotic equivalence in the sense that A~ Bif
A/B—=1asT— oo,

Proof. The result follows from minor modification of the proof of Theorem 6 of
Kass et al. (1990). See also (Bleistein and Handelsman (1976), Chapter 8) and the
more general arguments presented in Phillips and Ploberger (1996). O

Lemma A.2. Let Abe a T x T real symmetric positive semidefinite matrix such
that r(4) = T — I for some integer | satisfying 0 <1< T. Then, for any T x 1
vector x not in the null space of A,

A
Ay €0 <, (A4)
X X

where A,., and Ar are respectively the smallest and largest positive eigenvalues
of A.
Proof. The proof foliows as in the derivation of the Rayleigh quotient. O

Appendix B.

Proof of Lemma 3.1. See Section 5 of Kleibergen and van Dijk (1992) for an
outline of the derivation. The just identified case follows immediately from
expression {21).

Proof of Theorem 4.]. The prior density (26) follows almost immediately from
expression (24) of Remark 3.2(3) since in this case k, = #n = 1 and I, is a scalar
parameter so that pyff, v, IT,, I1,i82) oc [IT,).

To compute the conditional posterior density given by Eq. (27), first combine
the likelihood function (16) with the prior density (26) to form the joint posterior
density:

P(B, v, Iy, ITLIQ)Y, Z) oc || exp{ — 3tr[Q7 vy, Vo) (vr, VI]} (B)

where from Eqgs. (14) and (15), we have v, =y, — Z\(II,1 # + 7) — Z,11,8 and
V, =y, — Z,II, — Z,I1,. Note that § 1s a scalar in the present case and, hence,
the parameters y and {I, can be integrated out in the usual manner, ie. by
completing the square for these parameters in the exponent of Eq. (B.1) and
making use of the fact that the density of a multivariate normal distribution
integrates to one. (See, for example, Kleibergen and van Dijk (1994a) for details).
Performing these steps leads to the conditional posterior density of £ and
IT; given £, viz,,

p(B. 1152, Y, Z) oc |5 exp{ — 3¥o(B)I3 — 291 (BHT, + 421}, (B.2)
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where

Wolf) = wiy. z(ﬁz -2

‘”“ﬂ + E-‘-1)22Qz,zz, (B.3)
2

W33

V() = (91_11-2((13 - %)yagz,zz + (“’— - ‘—”ﬂﬁ)yzgz Zz), (B.4)

Wr2
- i w ’ w i
Y2 = wy 11-2(y1Qz,Y1 - 2""'21)?1Q2.JJ2 + _HJ’zQz.J?z)- (B.5)
Waa Wzz

To integrate Eq. (B.2) with respect to IT,, our general strategy is to represent the
integrand in terms of elementary power series which can be integrated term-
by-term. To proceed, let u = — 3 o{(B)T3 — 24 (H)T, + ;) and then du =
(= YolB)T; + Y (B)dIT,. Note that e“du = (— Yo(BII; + ¥ 4(B)e" dIT,.
Hence, the density in Eq. (B.2) can be written as

—edu  y(f)
mylemdn, = —= 4 Vi oumign, 1, >0 B6
2 2= T Vol 2 (B6)
e, = % 0B g, <o (B.7)

Yolf)  Wolp)
Thus,

f T e 41,

1 - d 1 —{1;2n,
— L] ud
wo(mf Cames T 'J/o(ﬁ)_[ R

x 0
+ %’—%J e dir, — i‘gg LA
olJo o .
2 2
= mexp{ — s} + S ol — s exp B GA )

1 ¥ (Bt By * 12w
X WJ; [~ d“", (BS}

where w = (II;, — (B} l‘f’1(ﬁ))'f’o(ﬁ)”2-
Now expand exp{3(t ()¢ o(f) '} and exp{ — In?} as power series and
Eq. (B.8) can be rewritten as

2 1 1 = PRI
Yol B) exp{ — o} + o (ﬁ()f)z xp{ — i¢2}|:j;) G)(g(d’ﬂﬁ)) YolB) )]

W (Bl BV 1 1 i .
> I:J\o lgb (E)( -— 5) w dﬂ} (Bg)
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Evaluating the final term in Eq. {B.9) and regrouping, we obtain

o 1 1)+
2exp{ — E'//z}{w &) ; ; [(} )(ﬁ)( - 1)*(5)
X (21—_'_1)('#1(3))2’- R 7" 1)) B 2}]} (B.10)

Note that integration term by term above is justified by the absolute conver-
gence of the series involved, which allows us to reverse the order of summation
and integration. Changing the summation index fromj to k = j + I, we can then
rewrite Eq. (B.10) as

2expl — 40 5+ 5 {3) P e

k ; 1
L ({k pt ~ Ve 1)}

= 2exp{ - I'/fz}l: TR k,( ) WAB) 2ol )+

aH{k1)?
X ((2k n 1)!)} (B.11)

which simplifies to

i (1/2)k+1(¢](ﬁ))2;k+1,:|
k=0 (1/2)k+‘(|po(ﬁ))(k+2, K

Changing the summation index from k to i = k + 1, we can rewrite Eq. (B.12) as

oL E A
2expt = 2"’2}[ P TR ]

1
2exp{ ~ ‘ﬂbz}[wm + (B.12)

(B.13)

— _1 s (1/2) w7}, z{ﬁbl{ﬁ))i
= 2w, .2 €Xp{ 2'1{’2}[ i=0 (2ol B :|,

where the last equality follows from the fact that

WY iy (BB
WolBE T (G BT

and where ¢(f). ¢o(B), and (1/2); are as defined in the body of the theorem.
Finally, multiplying (B.13) by (1/2n)wiy 2 exp{3y, ], we have

Z 1/2)'5011 z((f’l(ﬁ))f 0

oy ALLN
PBI Y. Z)ec 20 S GalB) !

(B.14)
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Proof of Theorem 4.2. The prior density (28) follows immediately from expres-
sion {24) since in this case k; —n = 1. To obtain the conditional posterior
density (29), note that by well-known arguments, alluded to above in the proof
of Theorem 4.1, we can derive the conditional posterior density of (8, IT,) given
£ as

p(B, MLl Y, Z) o |wyy — 205, + w22V T,DD T2

x exp{ — [ So(BITLDD I, — 28,(BY DI, + 3,1} (B.15)
where
5o(B) = i} z[b” - 2“’“ﬁ “’] (B.16)
Wsaa W22

5109 = w;ﬁzu'[(zaez,zzr‘Z'zezly,(ﬁ - “’—)

2

W )
+(Z2302,Z5) 12307 y2(¢ — ﬁﬁ)} (B.17)
Wiz Wiy
- ’ w r w r
é; = CU11].2[Y1QZ,)’1 - 2iY1Qz,J’2 + 'iyzQz,h]- (B.18)
Wi Wy

Next, consider integrating Eq. (B.15) with respect to f1,. Again, our general
strategy is to represent the integrand in terms of elementary power series which
can be integrated term-by-term. To proceed, write

@32 Uh Wi

el | 8 —— Li|—-—
i [ i-20)
R 7)) I (1 (ﬁ_%)ﬂ (&_@3))’

1124 hi2 @, 2 o o

where [; is the (i, j)th element of the 2 x 2 matrix L = Y'Qz, Z4(Z5Q;,Z,)" ' D.

Let 11, = D’I1, and note that the integral of Eq. {B.15) with respect to IT; can be
equivalently written as

(B.19)

|| ottotzatupy i, + T
1 _ _ _ _
X CXP{ - 5[50(13)”7%1 + 135} — 28,,(B)T 3, + 6121 37)

+ m}aﬁn diT,,, (B.20)
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where ﬁzl a_nd Ezz are, respectively, the first and the second elements of the
2 x 1 vector IT,. Changing the integral Eq. (B.20) to polar coordinates, we have

2% oo
||, atzatiasupyer
o Jo
1 .
X CXP{ — 3L0(BXr — S0(B)” (5:11(B) cos 0 + &, 5()sin 9))2]}

1
X exp{i[éo(ﬂ)‘ (611(B)cos B + 8,4(f)sin B)* — 52}}iD'i’ Ydrd6. (B.21)
First, consider the integral

© 1
L r&o(f)? eXp{ - 5[50(5)& — 3o(B)” '(611(B)cos 8 + &,,5(B)sin 9))2]}dr,
(B.22)
and make the substitution u = r — (5o(f) '614(B)cos B + S¢(B) ™18, 2(B)sin O),
which leads to

|7 wouey exp] — Souow

—d;(8.8)
+25,8.0)|  ubolB)”? exp{ - 150(B)u2} o
= d;(8.8) 2
+(54(8, O)? J RTRT exp{ - 16009):&} du, (B.23)
—8:{$.6) 2

where J3(8, 0) = (60(8) 18, ,(B)cos 6 + 64(f)~'8,,(f)sinB). Note that the first
integral in Eq. (B.23) can be integrated by parts while the second integral can be

integrated by making the substitution w = — §q(fu?/2. Hence, we can rewrite
Eq. (B.23) as
&4(8, 8 1 _
Fraenn — 5uNO5. O + (645, 07"+ 5lp) )
x [ f oo exp{ - 1ao<ﬂ)u2}du
o 2
0 1
+ J do(B)7? exp{ - Eéo(ﬁ)uz}du]. (B.24)
—3&,(8.
Now using

0o

'[ uL(%(ﬂ)” : eXp{ - %%(ﬁ)uz }du =/n/2
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and expanding exp{ — 35o(f)u’} as a power series, Eq. (B.24) has the form

6
%exp{ - S0oPHEE, 9))2} + /2B, 6) + 5o(B) ']
0 . ;
IO 08 + 54| oY K } %) flﬂ‘s"‘m)f“ﬁ]d“'
T Oalsy i=0 :

(B.25)

Note that the power series inside the integral above is absolutely convergent,
and integrating term by term in Eq. (B.25), we obtain

53(p. ) exp{ — S9olBNG(8, 9»2} + /720648, OF + 6]

Sol)™
+ L(65(8. 6)%6a(B)*" + 8o(8)™ 1]
ﬁ [( - ) HOo(BBS(8, )2 + 1)] (B26)

In view of Eq. (B.26), we can rewrite Eq. (B.21) as

Kv[ SoB)™1264(B, 6)d0 + KL [/ 7/2[53(8, 6))* + So(B) ")

C¢

+ ([8348. T 86(B)'* + do(B) 1)

5 |(-3) Soumions oy i s ]

<| exo{ s o2} [Je e (827

where K = w;‘;zzw}‘leD |~ 'exp{ — 18,}. Expanding exp{33,(A)NJ:(f, 8)*} as
a power series and recalling that 8;(8, 6) = 84(8)™'(6,,(f)cos§ + 8,,(B)sin ),
we can further write Eq. (B.27) as

Fid
KI:.[ Solf)™>%(811(B)cos 0 + &, () sin 0)do

0

2n
+J‘
0 i

2n
+ j Y OY AS(BN TS (Brcos B + Ba(B)sin 8P T2 L dg

0 i=0j=0

AifBo(BN T3S, (Brcos B + 8,,(B)sin )2 T2+ 3 g

Mn
b1a

0

]

0

R
4]
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2n o
+ L Y Bi(8o(B) Y8, ,(B)cos 6 + 8,,(B)sin §)*V* 1 do
j=o
27 w
¥ j Y. Bi(So(B) V" 1(6,1(B)cos 8 + 8, x(B)sin 6)* de} (B.28)
0 j=o0

where

A = _l TV 1 nd'B'—ﬁl e
s\ T2 Az Givry) N BT '

Noting that the first integral in Eq. (B.28) integrates to zero and applying
the binomial theorem to the last four integrals, we have that Eq. (B.28) is
equivalent to

2 o o
KU (Z Y A So(B) I

0 \i=0j=0

242431705 4 2] 4 3 L
) I:(! IJ )51i(ﬁ}‘z'+21+3)_1512(ﬁ}f
I=0

x (cos Q)2 21T N ~Lgin Gy )do

2n w ®©
+f ( Y Aifo(B) ¢TI

0 \i=0j=0

2i+2j+1 2‘ + 2 + 1 ) .
) [(’ ,’ )61l(ﬁ)‘z'“””"«su(ﬁ)‘
=0

x (cos @)+ 27+ D~ {(gin gy )do
2/ @ 20N
+f (z Bi(so(f) ™V Y ((“’ })
0 \j=o0 =0 {
x 31, (BYV T 118, 5(B)(cos )2V 1 (sin 9}‘)d9

2n [+ 3} i 2j 2j
; f (z B;-(ao(m)-u+“>:( )
=0 i=o \

0

x 318?716, 2(f)(cos By ~!(sin 9)‘)d8:| {B.29)

Again, the absolute convergence of the series in Eq. (B.29) permits the order of
summation and integration to be interchanged and, thus, term-by-term integra-
tion. Integrating each term of Eq. (B.29) involves integrals of the form

Zn . m=012 ..
cos™0sin"f8dfé for
0 n= 0, 1, 2,
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When either m or n is a positive odd number or when both are positive odd
numbers, we have

2r
'[ cos™fsin"8df = 0. (B.30)
0
Otherwise, by the Wallis formula
n
J‘ cos™@sin"8dd = G(m, n), (B.31)
0
where
{ 27 form=0n=0
- _
n(ﬁﬁ)]zn form=2,46,.., a=0
E j=0
Gimp) ={ [ 3
I (H%i)}Zn forn=2,4,6,..., m=0
Lik=0
m -1 -1 'L;L'_l
1+ ZE)H {1 +2ﬁ}2n)/[ I—[ 2+ 2k):| form=246,...,n=2406,...
\ Li=o i=0 k=0

Making use of Eqs. (B.30) and (B.31), we can integrate Eq. (B.29) with respect to
@ to obtain the conditional posterior density of § given £2 in the following infinite
series representation:

PR Y. Zyer 3 Y Cidolf) ™Y V6, (BY 170848
j=01=0

+ ¥ ¥ DidolB) UV, 1(BPU 8 (B, (B.32)
j=01=0
where

Cyi = B}(z(j N ”)G(z(f +1-10.20),

)
= }(ZDGQU — D20,

Collecting terms of the same power and noting the relations, ¢of{ff) = wy 1 284(8),
$2(B) = @1, 2012(B) and $3(B) = w,, 3622(F)*, we can rewrite Eq. (B.32) in the
form given in the theorem.

Proof of Corollary 4.3. To show part (1), note that the assumpticons of orthonor-
malization and canonical covariance structure imply that expressions (B.3) and
(B.4) can be simplified to

Yolf) = (1 + BHT, (B.33)
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¥u(B) = [BZyy, + Z5y,] = [ﬁ;?il + 1:]22)’2 = [Bf + 11Z5y,, (B.34)
2¥2

where B = (v:Z,2Z5y,)” v, Z,75y,. Moreover, it follows from Eqs. (B.33) and
(B.34), and the definitions of ¢4(f) and ¢,(f) in Theorem 4.1 that in the present
case,

do(B) = (1 + p7), (B.35)

and
$18) _ ¥i(BY _ 1922273y, 2 B0+ Py
= = 1+ = , B.36
T R e R e (B30
where 4° = (1/T)y2Z,Z%y,. Substituting Egs. (B.35) and (B.36) into Eq. (B.14)
and noting that wi;', = 1 in this case, we have

1.2 (2221 + pB)*
PAY. Z) o 2 (o + BT
Finally, multiplying Eq. (B.37) by exp{ — £i%(1 + f)*/2}, we have the desired
form

(B.37)

1 . 2 (A%/2Y(1 + BB
PBIY, Z) e —exp{ — f*(1 + P22} Z W (B.38)

To show part (2), note that again under the assumption of orthonormalization
and canonical covariance structure, we have Z,0; Z, = DD’ = TI, implying
that D =./TI,., Moreover, under the same assumptions, L =
Y0220 Z5)'D =T 12Y'Z,. Tt follows that I, = (1//TW,Zan.
ha = (/T Zaa, by = (1/5/T)y2Z21, and Iy = (1/\/T)y2Z;,. Upon substi-
tuting these expressions into the definitions of ¢,(f) and ¢{(f)} in Theorem 4.2

and noting that ¢o(8) = 1 + $* in the present case, we can deduce the posterior
density (31) from the general expression in Eq. (29) of Theorem 4.2.

Proof of Theorem 5.1 {Outline).
To derive Eq. (32), we make use of Lemma A.2. First, write the Jeffreys prior
density (21) in the form

PUB. 7. 1Ty, [T, 2) 02124242507 Zo " T mim 11312
- —{1/2)k i
x|y TRLI| R O T, 7,0, Zo T2

= ¢4lo, 1|‘”2m‘2 I ~akTm 1}547—1r'2Z’2Q21221_1r::|”2 (say), (B.39)

1 To save space, we only give a sketch of the argument here. Detailed derivation is available from
the authors upon request.



20 J.C. Chao et al. [ Journal of Economerrics 87 (1998} 49-86

which includes a constant of proportionality ¢, that was omitted in expression
(21).1? Combining the Jeffreys prior density Eq.(B.39) with the likelihood
function (5) gives us the joint posterior density

pB, 7. [y, My, ZIY, Z) cC cpfoy, VD0 Z| 7T Hheme )

X |ITZZ'2Q2122H2I”2 exp] — 3tr[Z7 Y, V¥ (u, Vall. (B.40)

We further define 8, = §, 8, = (¥, vec(IT}), vec{IT}), 6”'y,
gr{6y, 02) = — 3n|Z) — 30 [Z7 Y, VoY (u, V2)Ds (B.41)
(B, 8;) = |g |12 BT LR m T IR, 7902, Z,1T5| 2, (B.42)

where, as before, ¢* denotes the vector of nonredundant elements of the mxm
matrix Z.

Observe that gy and h are both twice continuously differentiable with respect
to v, vec(I1,), vec(I1,) and ¢* on the parameter set &, = @, x @, x Oy x Oy,
where @, = R*, @, = R*", @ is the subset of R*" where r(IT,) = n < k5, and
@; is the subset of R™ consisting of all the positive definite m x m matrices.!?
Moreover, since g7 is simply the log-likelihood function divided by T, the
maximum of g given f is attained at the MLE of v, IT,, IT,, and X given f.
From the results of Anderson and Rubin (1949), we have the following formulas
for the ML estimators of v, I1,, IT,, and X given §:

Pr =(Z21Z)7'Zi(y; — Y2P),

ﬁl.T = (lezl)_ l2’1 Y, - (Zﬁzl)‘lzlzz(z’zzQzlzz)k lZ’z
Qz(Y2— (y1 — Y2B)62./611),

ﬁz.T ={Z30:,Z,)" lzszz,(Yz —(y1 — Y25)6%,/814),

(‘711 021)
T = - & o
G21 222
where

G =~ Y:B)'Qz.(}’l - Y,B)/T,

- {1 — Yof¥Qz (v, — Y2P)
2T = YaRQy; — Yaf)

by

é

Y30zy: — Y2B)/T,

12 Since the constant of proportionality for an improper prior density is arbitrary, its inclusion or
omission is animpertant from a decision-theoretic viewpoint. We choose to include the constant
here because writing the prior density this way allows for a cancellation of factors later on and, thus,
greatly simplifies the form of the final posterior expression.

13 Note that 4 is not differentiable on the set of parameter values of [7, such that riT,) < n.
However, this set of parameter values is not a part of our parameter set @, since we have assumed in
Section 2 that our model satisfies the rank condition for identification.
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222 =Y50,YyT

(y1 — Yo 8y(Pz — Pz y1 — Yaff)
(r: — Y2802y, — Y8

x Y2QAy: — Yaf)yi — Ya8YQzY .

Now it is well-known that under conditions (3), (18), and (19),
(7, 1T, 1, 131, £1) is the unique global maximizer of the function gr given B,
from which it follows immediately that conditions (2) and (3) of Lemma A.1 are
satisfied in the present case. Hence, we deduce the following approximate
marginal posterior density of g

PBIY,Z) ~ Kcjldy |12 =) | = AT ke m s Oy Y 1 7502, Zo T 317
x| — 82gu{(B1, B17(6,))/06,805 172, (B.43)
where
K = (2n/T)am*ken)/2 +mim+ 1idi oyl — $Tm}. (B.44)
With some additional algebra, we have
| — 6%g1(01, 014(61))/002005] V2 = |Z)Z,/T| ™ "™ DNZ5Q5,Z,/T| ™ "0/ 20m

X | st “Ffzz.llk”q

= Titkim+kan)i 2+ mim+ 1)-’4ICJ‘ 1

ky
X (G yy| T E VBRI, (B.45)

To put Eq. (B.43) in a more revealing form, note that we can write
Fre r ¥ 1 ] 1]
2722022511, 7 = Ei{d_f[ + b?[G — ¢¢'/d]}

=G{l,— (G '¢/d, — (d/bz)G"[)(g,f)’}e (B.46)
where b =(y; — Y ff)Qulys — YaB), d=(yy — YaBY(Pz — Pz )y, — Y20
e=YyPz— Py )y1— Yaf) [=7Y320:Y,0—-[Y20zy, — (b/d)e], and G =
Y3(Pz — Pz }Y,. It follows that

1, 72507 Zo01, 1M = G121, — (G 'e/d, (~ d/bH)G ™ e S

=GI"2I; — (e, fY(G™ g/d, ( — djb)G™ )", (B.47)
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Explicit computation of the determinant on the right-hand side of expression
Eq. (B.47) gives the result

15,7250z, Zf12 11" = |Y3(Pz = P2) Y2 |y — Y28)Qu 3y — Y2812

x’ (V1 — YaBY0z,(y1 — Y2) .
i — Y2802y, — Y 6)°

(vi — YZﬁ)’QZl(yl — Y,f) O, —
({1 — Y280y, — Y 2B

x(yy =~ Y BY QY o(Y5(Pz — Py )Y3) Y30y, — Y 50", (B.48)
where Basis = (Y(Pz — P2)Y,) 'Yy Py ~ Pz )y,. In addition, we can write
b+d h+ G
2=(1/T)[ o o
h+ @k Ya0:Y, + @b |

where b and d are as defined above and where h = Y30,(y; — ¥,f). It follows
that

b — Y28 Qzy: — Yszsr_s))2

+ Y 2B2s0s)(Pz — Py — YzﬁzsLs)

(B.49)

' d ’
|£|=‘(1/T)[b+d b+ Bk }’

h +@h Y20 Y, + (b b
= (b + d)/TIY32QzY /T

X |1n = (Y202 Y 2)™ (b, @)h)E. B) /(b + d)|
=|(b + d)/T||Y2Q:Y /T

x Iy — (b BY(Y2Q:Y5)™ (b, Q)b + d). (B.50)

Explicit calculation of the determinant on the right-hand side of Eq. (B.50) gives
us, after simplification, the result

|£l =1Y30; Yz/T”leQm.Z)}’x/ﬂ

% |{y1 = YaBY0Qz, () — Yaf)
|U’1 = Y BYQzy: — Y2B)

Making use of Egs. (B.45), (B.48) and (B.51), we can rewrite the (approximate)
posterior density Eq. {B.43) in the form stated in the theorem:

PBIY, Z) ~ Kl(y, — Y 8YQz(yy — Y f) - t/n+ty

|(}’1 = Y B0z (y1 — Y2 ~Ti2 )
g |(v1 — Ya2BYQulys — Y 15) |H(B, Y, Z)|

. (B.51)
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= K|S + 8- BOLs)'Y'zQz,Yz(B — Bovg)| /B

_ - (Tm

where K, S, foLs. and H(B, Y, Z) are as defined in the statement of the theorem.
To show that the posterior density (32) has Cauchy-like tails, we first obtain
upper and lower bounds for |H(, Y, Z)|"/ and
|(y1 — Y,BY0.,00n — Yzﬁ)l Tz
|(_V1 — Y B8Y0zv, — Yzﬁ)| '

Note that

2
X
|

|H(B, Y, Z)|'/*

I(J’J = YaB)Qz{(y: — Y25) (O —
" [ = YaBy0Ay: — Y2B)

+( = YoBY0z(y: — Y2f)) r
{(y1 — Y28Y020y; — Yzﬁ)}zL

X Y50y — YoP I — YaBasisV(Pz — P2 )01 ~ Yafosio)]l'?
2 ([ — YaBYQzY oYo(Pz — P2)Y2) Y204y, ~ Y)Y
x [ — YaBYQzyy —~ Y2
X[y — YabassV (P2 — Pz )y — YaBasi]l'?
2 liminl(Vs — Ya2BasisV(Pz — Pz )yi — Y ofasi o', (B.53)

where /., is the smallest positive eigenvalue of the matrix
Yy(YyP; — Pz)Y;)" 'Y’ and where Byq 5 is as defined after Eq. (B.48). Note
that the last inequality follows from Lemma A.2. Note also that

YaBYQuAy: — Yz.Ezm.s))2

(31 = Yoy QY (Yo(Pz — Pz )Y3) ™!

\H(B, ¥, Z)"'*

'J’E—Yzﬁ)Qz(yl— 2ﬁ} _
I (1= Ya2BYQzy: — Yzﬂ)‘ !

Y1—Yzﬁ)’ta(Jh— zﬁ) [y, —
(71 — Y2BY0y: — YBP

x Y20y — Y,8)]
X[ — YoPastsV(Pz — P2 vy — Yafasisl|*?

zﬁzsl.s) QAy:, — Yzﬁzsn.s)

Y2B)QzY oY3(Pz — Pz )Y2) !
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1 ~
—y — YzﬁzsLs)'Qz(yl — Yafaa9)

Hmin

€

142

A - ~
+ ( m“)(,\h — Yaofaas) (Pz — Pz Xyy — Yafasis) (B.54)

min

where A, 1s the largest cigenvalue of the matnx Y (Yy(P; — P;)Y,)” 'Y} and
where ., is the smallest positive eigenvalue of the matrix Q.. The first
inequality above follows from the Cauchy-Schwarz inequality while the second
inequality follows again from Lemma A.2. Finally, note that

r2 |01 = YaBY @z vy — Y1)~ .
< |1 — Y2BYQrys — Y2B)| < (mar)™ (B.55)

where yi,,;, is as defined previously and where p,,,, is the largest eigenvalue of the
matrix Q.

Making use of the inequalities Eqs. (B.53), (B.54) and (B.55), we can bound the
posterior density (32) as follows:

Ruial¥1Qu, 291 + (B — BorsY Y202, Y 2B — Bows) =12+
< KIyiQu,.z91 + (B — Bors) Y20z, Y (B — Porg) =12+ D

[6: = Y28 Q2 (v, — Y B 777
| — Y2801 — Y2B)

€ Kmaxly’l Qu’,.zpy: +{f - ﬁOLs)'Y'zQz,Yz(ﬁ - BOLSN_WM"H), (B.56)

(nurnin)

|H(B, Y, Z)|'

where
Kmin = K(ﬂmin)nzuwin[(}’l - Y2BZSLS)'(PZ - Pz.)()ﬁ - YszsLs)]|”2v(B-57)
Kmax = K(“mu}nz
1 " ~
#__(Jh =~ Y2fas1s) Qa(yi — Y2Basis)
;_ n N 172
+ ( ' )U’l — YaPass)(Pz — Py Xy — Y 3B 251s) - (B.58)

Note from Eq. (B.56) that the (approximate) posterior density (32) is bounded
above and below by expressions that are proportional to the density of a multi-
variate Cauchy distribution and, hence, the stated result follows.
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