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NEW TOOLS FOR UNDERSTANDING SPURIQUS REGRESSIONS!

By PeETER C. B. PHILLIPS

Some new tools for analyzing spurious regressions are presented. The theory utilizes
the general representation of a stochastic process in terms of an orthonormal system and
provides an extension of the Weierstrass theorem to include the approximation of
continuous functions and stochastic processes by Wiener processes. The theory is applied
to two classic examples of spurious regressions: regression of stochastic trends on time
polynomials, and regressions among independent random walks. Tt is shown that such
regressions reproduce in part and in whole the underlying orthonormal representations.

Keyworps: Loéve Karhunen representation, nonsense correlation, orthonormal sys-
tems, spurious regression, Weierstrass theorem.

1. INTRODUCTION

SPURIOUS REGRESSIONS, OR NONSENSE CORRELATIONS as they were originally
called, have a long history in statistics, dating back at least to Yule (1926).
Textbooks and the literature of statistics and econometrics abound with interest-
ing examples, many of them quite humorous. One is the high correlation
between the number of ordained ministers and the rate of alcoholism in Britain
in the nineteenth century. Another is that of Yule (1926), reporting a correla-
tion of 0.95 between the proportion of Church of England marriages to all
marriages and the mortality rate over the period 1866—1911. Yet another is the
econometric example of alchemy reported by Hendry (1980) between the price
level and cumulative rainfall in the U.K. The latter “relation” proved resilient to
many cconometric diagnostic tests and was humorously advanced by its author
as a new “‘theory” of inflation. With so many well known examples like these,
the pitfalls of regression and correlational studies are now common knowledge,
even to nonspecialists. The situation is especially difficult in cases where the
data are trending—as indeed they are in the examples above—because “third”
factors that drive the trends come into play in the behavior of the regression,
although these factors may not be at all evident in the data. Moreover, as we
have come to understand in recent years {(although the essence of the problem
was evidently understood by Yule in his original article), it is the commonality of
trending mechanisms in data that often leads to spurious regression relations.

'The original version of this paper, entitled, “Spurious Regression Unmasked,” was delivered as
an Invited Lecture at the XTV Latin American Meetings of the Econometric Society, Rio de Janeiro,
August 5-9, 1996. That version of the paper is available as Cowles Foundation Discussion Paper No.
1135 and can be obtained on request. Some of the ideas that appear in Section 3 of the paper were
first suggested by the author while presenting an overview at a conference on Unit Roots and
Cointegration at INSEE /ENSAE in June, 1991. Computations in the paper were performed by the
author in GAUSS and the paper was typed by the author in Scientific Word 2.5. The author’s thanks
go to the co-editor and three referees for comments on the original version of the paper, and to the
NSF for research support under Grant No. SBR 94-22622.
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What makes the phenomenon dramatic is that it occurs even when the data are
otherwise independent,

In a prototypical spurious regression, the fitted coefficients are statistically
significant when there is no “true relationship” between the dependent variable
and the regressors. The statistical significance is deemed spurious and mislead-
ing because there is no meaningful relationship between the variables. Using
Monte Carlo simulations, Granger and Newbold (1974) showed that this phe-
nomenon occurs when independent random walks are regressed on one another.
Phillips (1986) gave an analytic theory of regressions of this type for quite
general stochastic trends, showing, inter alia, that the ¢- and F-ratio significance
tests have divergent asymptotic behavior in such regressions. Therefore, such
outcomes are inevitable in large samples. Similar phenomena occur in regres-
sions of stochastic trends on deterministic polynomial regressors, as shown in
Durlauf and Phillips (1988). The simple heuristic explanation for phenomena of
this type is that conventional statistical tests do nothing more than reveal the
presence of a trend in the dependent variable by making the fitted coefficients
significant for all regressors that themselves have trends, Thus, the commonality
of trending mechanisms in data is the source of these spurious regressions.

The purpose of this paper is to develop some new tools for analyzing and
understanding such regressions. These tools help us explain why significant
regression coefficients occur in what seem to be manifestly incorrect regression
specifications relating variables that are statistically independent. The common
theme, of course, is that all the variables share the common feature of a
trending mechanism, even though they may otherwise be unrelated and even
though the trending mechanisms themselves may be very different. We develop
an asymptotic theory to explain this phenomena. A fascinating feature of the
theory is that, just as we may model a continuous function by Fourier series in
terms of different orthonormal system coordinates, so too we may validly
represent a trending stochastic process in various ways, including the use of
trending regressors that are independent of the time series being modelled. The
fact that the fitted regression coefficients are significant in such cases is shown
to be a statistical manifestation of the existence of this underlying representa-
tion.

It is important to recognize that such representations as we will discuss in this
paper do not take the place of temporal predictive models. Nor do they serve as
mechanisms for understanding temporal causal relationships between time
series. In an important respect, the limit theory we present is a limit theory of a
“sample period fit,” in which the sample period can be viewed as a snapshot of
an infinite time series. Such asymptotic analysis is already used, albeit implicitly,
in cconometrics. One example, for instance, is the derivation of trend break
limit theory, wherein the breaks are considered to occur at some fraction of the
sample that turns out, in the limit, to be the same fraction of the infinite
trajectory. In this respect, therefore, the “snapshot of infinity” asymptotic theory
of this paper is not a radical departure from some established lines of asymp-



SPURIOUS REGRESSION 1301

totic analysis in econometrics. It will turn out to be an important mode of
analysis in the general development of misspecification-robust asymptotics for
trending time series.

The starting point in the approach that we adopt is a general orthonormal
representation theory of a continuous stochastic process, and the theory that we
use here is outlined in Section 2 of the paper. Our theoretical development is
primarily focussed on stochastic trends and their associated Brownian motion
limits, but many of our resuits hold for other limiting stochastic processes (such
as diffusions) that are amenable to an orthonormal representation, and to
deterministic functions of time other than polynomials and trigonometric func-
tions. Section 3 shows how the orthonormal representation of a stochastic
process is accurately reproduced by a fitted regression, and is completely
captured when the number of regressors grows with the sample size. Section 4
shows that the Weierstrass approximation theorem can be extended to give a
theory of approximation of continuous functions by independent Wiener pro-
cesses, gives some illustrations, and applies the theory to the case of the classic
spurious regression of independent random walks. Section 5 concludes the
paper. Proofs are collected together and notation is listed in an Appendix.

2. SOME PRELIMINARY REPRESENTATION THEORY

We start by making use of the general representation theory of a stochastic
process in terms of an orthonormal system. Several forms are available, the most
common of which is the Loéve-Karhunen representation, which is given in
Lemma 2.1 below. This result ensures that any random function that is continu-
ous in quadratic mean has a decomposition into a countable linear combination
of orthogonal functions. The representation is analogous to the Fourier series
expansion of a continuous function. Thus, suppose X(¢) is a zero mean stochas-
tic process that is continuous in quadratic mean on the interval [0,1] and has
covariance function v(r,s). Let {¢,J;., be a complete orthonormal sysiem in
L,{0,1] with the property that these functions serve as the eigenvectors of the
covariance operator, i.e., A, o, {r) = [jv(r, s)p,{s) ds, where A, is the eigenvalue
of ¥{r, s) corresponding to the eigenfunction ¢,. Mercer’s theorem (e.g., Shorack
and Wellner (1986, p. 208)) ensures that the covariance function can be
decomposed as

(D y(r,s)= Y A () (s),

k=1

where the series converges absolutely and uniformly on [0,1].? The correspond-
ing decomposition for the stochastic process X(f) is most often called the
Loéve-Karhunen expansion, although the stationary Gaussian case is sometimes
attributed to Kac and Siegert (1947). The following statement of the expansion
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is given in Loeve (1963, p. 478):

2.1 LeMMA: A random function X(t) that is continuous in quadratic mean on
the interval [0, 1] has on this interval the orthogonal expansion

@ X0 = L A e,
k=1
with
EG =5,  [ole)ds=3,,

iff the A, are the eigenvalues and the ¢, are the orthonormalized eigenfunctions of
the autocovariance function y(r,s). The series (2) converges in quadratic mean
uniformly on [0,1]. The orthogonal random quantities £, that appear in (2) can be
represented in the form & = AV *f(x(s)p(s) ds. The &,; above is Kronecker’s
delta.

Just as Fourier series of continuous functions do not always converge point-
wise (but do converge in mean), the representation (2} of the stochastic process
X(¢) converges in quadratic mean but not necessarily pointwise. For this reason,
the equivalence in (2) is sometimes represented by the symbol “~ ”, signifying
that the series is convergent in the L, sense and that distributional equivalence
applies.

There are many different representations of standard Brownian motion W(r)
that originate in the general form (1). The simplest is the Lo&ve-Karhunen
expansion itself, which is obtained by using the eigenvalues and eigenfunctions
of the covariance kernel y(r, x) =r A s, viz.

4
T Qk- D
directly in (2), giving the following L,-representation
= sin[(k—1/2)7r]

(4) W(r): ﬁkgl (k*l/z)ﬂ' ke

(3) A @ (r) =2 sinl(k - 1/2)7r]

where the components £, are independently and identically distributed (iid) as
N(,1). Tt is easily seen by applying the Martingale convergence theorem (for
square integrable martingales} that the serics representation (4) of WA(r) is
convergent almost surely and uniformly in » € [0, 1], so this series does converge
pointwise.

Another commonly used representation is developed as follows. Let V(r) =
W(r) — rW(1) be the Brownian bridge process corresponding to the Brownian
motion W(r). The covariance function of V(r) is y(r,s) =r A s —rs, which can
be decomposed as in (1) above with eigenfunctions given by the orthonormal
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system {V2 sin(km7)f;_, and corresponding eigenvalues A, = (k7)) *—e.g.,
Shorack and Wellner (1986, pp. 213-214). This leads to the following L,-repre-
sentation of V(r):

= sin{kwr)}

(5) Virn=v2 Y — & with gk=\/if
k=1 7 0

1sin(kms)
—V(s)ds.
km
The components £, in this decomposition are also iid N(0, 1), as can be verified
by direct calculation. The representation (5} gives rise to a corresponding
expansion for the Brownian motion W{r), viz.

= sin(kwr)

(6) W(r)=ré, +v2 Y.

— ¢,
Pt ko
with

1 sin(kas)

E,=W(), & =V2 jo — o W(s) —sW (1) ds.

Again, the £, are iid N(0,1). The series (6) is known to converge almost surely
and uniformly for r €[0,1]—e.g., Hida (1980, p. 73, Remark 2), and Brieman
(1992, p. 261), where the series are defined over the intervals [0,2+ ], and [0, 7 ].

The representation (6) has a linear trend component with the random
coefficient £, and shows that W(r) can be written in terms of both polynomial
and sinusoidal functions. In fact, (6) is one of many alternative functional
representations of Brownian motion. For instance, we may write each of the
trigonometric functions in the orthonormal system {v2 sin(kar);_, in terms of
another orthonormal basis, such as orthonormal polynomials in r, and then
substitute these orthonormal series for the sinusoidal functions in (6), giving a
new representation of W{(r) in terms of the new basis. The coefficients in this
new representation are still random and normally distributed, but no longer
necessarily independent. Another popular representation of W(r) is in terms of
Schauder functions (orthogonal tent functions) and here again the convergence
is uniform in r €[0,1] almost surely-~see Karatzas and Shreve (1991, Lemma
3.1, p. 57). In all of these different representations to the continuous stochastic
process W(r) is written as an infinite linear combination of deterministic
functions with random coefficients. What distinguishes the Loéve-Karhunen
expansion, is that the random coefficients as well as the deterministic functions
form an orthonormal sequence.

These expansions may be used directly to create representations for linear
diffusion processes like J.(r) which satisfy the stochastic differential equation
dl (r) =cJ (r)dr+ dW(r) for some constant ¢. With initial condition J,(r) =0,
the solution of this equation has the form:

D T = [ dW(s) = W(r) + ¢ [ e W(s) ds.
0 0
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Substituting (4) into (7) we find

© 1
J(N=v2 )y ————
’ k);] (k—1/2)7

X |sinl(k = 1/D7r] + cfre(””c sinf(k — 1/ wslds | &
0
Ay
B it (k=1/2Y72+¢
+(k—1/2)msin[(k —1/2)mr]].

S [ce" —ccos[{k—1/2)mr]

The substitution is valid because the series (4) is uniformly convergent almost
surely and can be integrated term by term. Another representation can be
obtained by using (6} instead of {4) in (7), and yet another is the Loéve-Karhunen
expansion (2) itself, based on the eigenvalues and eigenfunctions of the covari-
ance kernel y(r,s) =eT*9% /2¢[1 — e 272 %] of J(r).

3. REPRODUCTION OF THE ORTHOGONAL REPRESENTATION BY
SPURIOUS REGRESSION

The existence of expansions like (4)-(6) indicates that continuous processes
such as Brownian motion can be represented and, indeed, generated by deter-
ministic functions of time with random coefficients. To the extent that standard-
ized discrete time series with a unit root converge weakly (0 Brownian motion
processes, we infer that deterministic functions of the same type may be used to
model such time series. This brings us to the study of prototypical spurious
regressions in which unit root nonstationary time series are regressed on
deterministic functions, a topic first studied analytically in Durlauf and Phillips
(1988) for the case of a linear trend.

We are concerned to ask the following question. Consider the time series
y, = Liu,, where u, is a stationary time series with zero mean and finite absolute
moments to order p > 2. What are the properties of a regression of the form

K . t
(8) Y= Zbk@k(_)+ﬁ:
k=1 R
or, equivalently (with 4, =n~'/25,),
Y X t i,
o 2w Fanft)et,
Jn k§1 £ Pi n /n
when the limiting behavior of the dependent variable i§ a Brownian motion, i.e.,

y[n-]

Vn

(10) = B{:)=BM(c?),
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and the regressors ¢, form a complete orthonormat system in L,[0, 1). In what
follows, we assume that the functional central limit theorem (10) holds (see
Phillips and Solo (1992), for primitive conditions); and, to be specific and to
relate outcomes directly to those of the previous section, we take ¢, and A, to
be the eigenfunctions and eigenvalues of the covariance kernel a’r A s of the
limiting Brownian motion B, which are obtained from (3) above by scaling A,
by o2,

In view of (2) and (10), we may very well expect that the regressors in (9) take
on the role of the deterministic functions in the associated orthonormal repre-
sentation of the limiting Brownian motion B(-). Perhaps, we can go even further
than this. If K— 2 as n — %, could (9) succeed in reproducing the entire L,
orthonormal representation of B(-)? We now proceed to examine whether these
heuristic notions can be made more precise.

Let @, =(4,) be the coefficients and ¢, = (¢, ) be the K-vector of regressors
in (9). Let ¢, € R¥ be any vector with ¢yc, =1, t. s, be the usual least squares
regression f-ratio for the linear combination of coefficients cya,, and let R?
and DW be the regression coefficient of determination and Durbin Watson
statistics, respectively. The following two theorems give the asymptotic proper-
ties of these statistics when K is fixed and when K — o=

3.1 THEOREM: For fixed K, as n — = we have:
1 d 1 .
(a) Ck&x=’f}<[f quB] :N(O,azc}(/ f e (P r As)eg(s) dsdrey
0 0 7o
=N(O,CrKAKCK)s

h
- . i
®) e L a8

t=1

1/2
1 1
©  nig=alf *”KB]/ )
1 1 P
(d) Ri=1- Bz/ B2, DW 50,
B/,

where B, (-} = B(:) = (i Boi X [y ex ¢k ) "¢ () is the Ly-projection residual of B
on ¢g, Ay =diag(A,,..., Ay), and A, is the eigenvalue of the covariance function
o *r A s corresponding to ¢,.

3.2 REMARKS: (a) Theorem 3.1(a) shows that the fitted coefficients in the
regression (9) tend to random variables in the limit as # — «. Moreover, the
random limits are equivalent in distribution to the corresponding random
elements in the Loéve-Karhunen representation of the limit process B(-). Thus,
(9} reproduces accurately in the limit the appropriate elements in the orthogo-
nal representation of the limiting form of the dependent variable process. In this
sense, we can interpret (9} as a partial but nonetheless correctly specified
empirical version of an orthogonal representation of Brownian motion. We use
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the word “partial” here because (9) has only K regressors, i.e., ¢ = () |. The
model is correctly specified because the regressors that are omitted from (9), viz.
@, = (gg.;)_,, are all orthogonal to the included variables. Hence, (9) is
indeed well suited to least squares regression. All of the above holds in spite of

the fact that the Durbin Watson statistic DWW 4 0, indicating that the residuals
in the fitted model are serially dependent. Thus, conventional wisdom that the
regression model (8) is spurious and that the low DW statistic signals that
inference is hazardous is mistaken here. On the other hand, conventional
wisdom that the low DWW statistic may signal poor predictive performance of the
model may well be appropriate.

(b) Part (c) of Theorem 3.1 shows that the usual regression ¢ ratios of the
fitted coefficients diverge at the rate 0,(n'/?), and, therefore, ultimately exceed
any finite critical values as n increases. Hence, such tests indicate statistically
significant regression coefficients with probability that goes to one as n — x,
The fitted coefficients in {9) are not spuriously significant because the significant
¢t ratios correctly indicate the presence of the orthonormal representation

D B(r)

Y VA o r)E,, where £, =iid N(0,1),
k=1

= Y @)y, where m, =iid N(0,A,).
k=1
In effect, the fitted regression (9) is an empirical model for (11). Setting
N = ()X, we have

d
(12) Cly = N0, cie Agcg) = Cm.

The significant ¢ ratios signal that the regressors play an important role in
representing the dependent variable—or its limiting version, the stochastic
process B(r).

(c) The ¢ ratios, fia,o that are analyzed in Theorem 3.1 are computed using
the conventional least squares regression formulae. In their place, robust ¢
ratios which accommodate serial dependence in the residuals could be com-
puted and it is of interest to examine whether the remarks made above in (b)
continue to apply. Serial correlation robust ¢ ratios for the coefficient ¢ d, in
(9) are based on the formula 7, ; =ci 4,/ ; , where

53}(&;; =c;(((pk(px)‘](nﬁf(n"/zﬁr%(%])](cpk(p}{)_lck,
and

o ‘

— J . . _

Ivar(X,) = Y, k(-ﬂ;{-)c(},X), c(,X)=n"' ¥ XX,
j=-M

It t+j=<n

Here, Irvar(-) signifies a kernel estimate of the long run variance of its argu-
ment, k() is a lag kernel, and M is a bandwidth parameter for which M — =,
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and M/n — 0 as n — «, Using the same approach as that developed in Phillips
(1991) for analyzing the asymptotic properties of kernel estimates based on I(1)
data, it can be shown that

g var| nT e - _sz—M ag Jelisn i e n)

[ e (]

1t follows that
n 1 1 o 1 !
ﬁff;(a,(:(f_lk(s)dS)(fo qoxao}() (fo Bﬁ,(wxqo}c)(fﬂ svxfpk)
=(f1 k(s)ds)(j‘Bququo;(),
-1 0

and thus the serial correlation robust ¢ ratio 7, ; has the asymptotic behavior

. kix O _0 nl/?
tc’xﬁk_ ic’xriK - M2 —~p MI/Z ’
Op nl/?

We deduce that the robust ¢ ratios of the coefficients also diverge as n — o, but
at the rate (n/M)"/?, which is slower than the conventional ¢ ratio f.; by a
factor, M'/?, which depends on the bandwidth M. Hence, the conclusion of
Theorem 3.1 regarding the inevitable statistical significance of the coefficients
applies even when serial correlation corrections are made to the standard errors
of the estimated coefficients,

(d} An important feature of the true model (11} is that the coefficients 7, are
random variables, whereas the variables ¢, (r) are deterministic. The empirical
regression (9) correctly reproduces this feature of the true model as n — =, as is
clear from (12}.

{e) With some changes in notation, Theorem 3.1 holds if the limiting behavior
of the dependent variable is a general continuous stochastic process X(r) rather
than Brownian motion. Suppose that for some a > 0,n7 %y, = X("), a continu-
ous stochastic process on [0,1] with continuous covariance function y(r,s)
whose eigenfunctions and eigenvalues are given by ¢, and A, . Instead of (9), we
run the empirical regression
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Then, in place of (a), (b}, and (c) of Theorem 3.1, we have the following limiting
behavior:

(a') Cdy= cj([flcpKX] 2 N(O, ck[j;)lj;lcp,((r)y(r, s)ei(s)
0 )
=N, ¢l Agcg),

I
1
{142 ~2 2
®) "‘)Eu,:j;}(%,
i=1

Cx dsdr]

where X, (1) =X() — ([ Xoi X [fox @k ) 'pe(-), and

1/2
- e 1
(c') n l/th’xﬁ?x =>cK[j(; quXjI/(fOXﬁK) .

Thus, the empirical regression asymptotics correctly reproduce the form of the
random coefficients in the general Loéve-Karhunen representation of X(-)
given by (2) and correctly signal their significance. These results apply, for
example, to the linear diffusion process J,(r} = [le"" ¥ dW(s) in (7) for some
constant ¢, and thereby (i)—(iii) above cover the important case of near inte-
grated time series y, (i.e., time series with a root, 1 + ¢ /n, that is near to unity)
for which we have n='/2y, = J.().

(f) As mentioned in the Introduction, the type of limit theory we are using in
Theorem 3.1 can be characterized as a limit theory of the sample period fit or
“snapshot asymptotics.” The terminology can be explained as follows. The
dependent variable y, in the empirical regression (8) is transformed into a
standardized random element n~'/?y, | in the function space C[0, 1]. According
to (10) the sample behavior of n7'/2y,, | is approximated by the limit Brownian
motion process B(-). Indeed, as discussed in the Section 6 (see (22) below), the
probability space can be expanded so that the sample path can be approximated
by the Brownian motion up to an error of o, ,(1). In effect, the sample
trajectory of n™'/2y,, , on C[0,1] is a snapshot of the full limiting trajectory of
B(-) on the same space. From the Loé¢ve-Karhunen representation of B(-), we
know that there is a representation of B(-)} in terms of the deterministic
functions ¢, with random coefficients. Likewise, the regression (9) gives us an
empirical “snapshot” of this limiting representation.

We now proceed to consider what happens when the number of regressors in
(9) tends to infinity with ».

3.3 THEOREM: As K->, ¢y Agcy tends to a positive constant o = c'Ac,
where ¢ = (¢, ), A = diag( Ay, A,,...) and c’c = 1. Moreover, if K > = and K/n — 0
as n — o, we have:

(a) C'}(é\K:N(Os 0-52)3

n
_ ~g P
(b) n Y @2 -0,
=1
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(c) n 7%, ; diverges,
(d) r25 1,

3.4 REMARKS: (a) Part (a) of Theorem 3.3 gives the limiting distribution of the
coefficients of both K and n — . In this case, ¢, becomes infinite dimensional
and ¢ d; becomes an /, inner product. As in the finite dimensional case, cdg
converges weakly to a random variable, but in place of (12) we now have

N R
¢y = N0, c'Ac) = c'n,

and the limit distribution is the same as that of the variate ¢'n = Lic,n, from
the orthonormal representation (11).

(b) Part (c) of Theorem 3.3 shows that the ¢ ratio ¢, ; diverges as both K and
n—o. As in the fixed K regressor case, all of the fitted coefficients are
statistically significant as »n — o, according to the usual regression f tests.
However, the rate of divergence of the ¢ ratio is greater in the case where
K — @ than it is when K is fixed. In other words, the regression coefficients
appear more significant, not less significant, with the addition of regressors as
n — =, This is explained by the fact that the residual variance in the regression
(9) tends in probability to zero when both K and n — <, i.e., there is no residual
variance from this regression in the limit, as indicated in part (b) of the
Theorem. In effect, as K, n — =, the regression (9) succeeds in reproducing the
entire Lo¢ve-Karhunen representation of the limit process B(-) and thereby
fully represents the dependent variable in the limit. The fact that the empirical
regression fully captures the series representation in the limit is confirmed by
the limiting regression R? of unity.

(¢) In the same way as for Theorem 3.1—see Remark 3.2(d)—Theorem 3.3
can be extended to apply to more general stochastic processes than Brownian
motion. The proof of Theorem 3.3 relies on the use of an extended probability
space in which a strong invariance principle applies—see (22) in the Appendix.
Strong invariance principles like (22) have been proved in the literature for
standardized partial sums that converge to Brownian motion. These results can
be extended to apply to linear diffusions, like J.(r) in (7) above, as shown in
Lemma 6.3 below. It follows that Theorem 3.3 is valid for both integrated and
near integrated time series with the appropriate changes in notation.

(d) Theorems 3.1 and 3.3 give results for empirical regressions like (9) where
the regressors are the eigenfunctions that appear in the Log¢ve-Karhunen
representation. As discussed in Section 2, there are other representations of
limiting processes like Brownian motion and diffusions that are of a similar
form, but for which the coefficients may not be independent and/or the
functions may not be linearly independent. In such cases, it is possible to
develop a limit theory for the empirical regressions, but effects such as the
possible collinearity of the regressors in the limit as K — = need to be taken
into account. The earlier version of this paper (1996) explored such conse-



1310 P. C. B. PHILLIPS

quences for the case of an empirical version of equation (6) and can be obtained
from the author on request.

4. WIENER PROCESS APPROXIMATION THEORY

The above analysis uses series of deterministic functions with random coeffi-
cients to represent stochastic processes like Brownian motion. It is of some
interest to ask if the reverse is possible, viz. can we represent an arbitrary
deterministic function on a certain interval in terms of stochastic processes? To
deal with this question we will take a slightly different approach and try to
approximate an arbitrary continuous function on the [0,1] interval in terms of
independent Brownian motion processes. The idea is analogous to that of the
uniform approximation of a continuous function by polynomials or trigonomet-
ric functions. The following shows that there is, in fact, a Wiener process version
of the famous Weierstrass approximation theorem.

4.1 THEOREM: Let f(-) be any continuous function on the interval [0,1], and let
£> 0 be arbitrarily small. Then we can find a sequence of independent standard
Brownian motions {W}} |, and a sequence of random variables {d )Y | such that as
N — o,

N
=¥ dw(r)

i=1

(a) sup

refo,1]

<E a.s.,

N 2
1
(b) f [f(r) -y diW}(r)J dr<e a.s.
0 i=1
4.2 REMARKS: (a) The Weierstrass approximation theorem tells us that any
continuous function f(r) can be uniformly approximated on the interval [0,1] by
a trigonometric polynomial of the form

K
(13) ag+ Y (aysin(2mkr) + B,cos(2arkr)).
k=1

In this series approximation, the coefficients {«,, 8,} are nonrandom and the
functions are deterministic continuous functions. In an analogous way, Part (a)
of Theorem 4.1 shows that we can find a set of N independent Wiener processes
on C[0,1] and a sequence of N random variables such that, with probability one
as N — «, the function f(r) can be uniformly approximated on the interval [0, 1]
by the linear combination L., d,Wi(r) of Wiener processes.

(b) Part (b} of Theorem 4.1 is sufficient to ensure that the system of Wiener
processes {W}"_, is complete in L,[0,1] with probability one (c.g., see Tolstov
(1976, p. 58)). It follows that, given any continuous function f(r), we can find a
sequence {W(r),d };_, such that with probability one

.1 y ?
(14} Alrllnwfu [f(r) -3 d,-W;(r)] dr=0,

i=1
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and thus

(13 fry~ % dWi(r)

i=1

in L,. We may replace the Wiener processes W;(r) by orthogonal functions V,(r}
in L,[0,1] using the Gram-Schmidt process, i.e.,

V=W,

~1
1 1
(16) V2=W24(j;} WZV‘)(fo Vlz] Vi

-1
Vy=W;— (foleV;)(folV;Va’] Ve, Vi= [Van]-

In place of (14), we then have

N 2
lim fl[f(r)— Zeil/;(r)} dr=10
0

Noe i=1

with probability one. By virtue of the orthogonality of the functions {V{r)} in
L,[0,1], we get the following stochastic Fourier representation in L,:

-1

4D f)~ T eV, with e£=(f1ﬂ/})(jll/f) ,
i=1 t] 0

and, with probability one, we have Parseval’s equality,

fir=ze(fw)

holding, but now with random coefficients.

(c) We can apply the approximation theory of Theorem 4.1 to the sample
path of an arbitrary Brownian motion B(-} on the interval [0,1]. Since the
sample path of B is continuous, we can find a probability space such that
Theorem 4.1 applies and then we have B(r) ~ Z7_, d W,(r} in the L,[0,1] sense.
We formalize this as follows.

4.3 THEOREM: Let B(-) be a Brownian motion on the interval [0,1), and let
&> 0 be arbitrarily small. Then we can find a sequence of independent standard
Brownian motions (WYY | that are independent of B, and a sequence of random
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variables {d,) | defined on an augmented probability space (03,5, P) such that, as

N —w®,

N
(a) sup ‘B(r)— Y dWir)i<e as(P),
refo,1] i—1
1 N ’
(b) f B(r)- Y d,-l/ﬂ(r)] dr<e a.s.(P),
0 i=1
{c) B(r)~ ¥ dWi(r)in L,[0,1] a.s.(P).

i=1

4.4 REMARKS: (a) Part (c) of Theorem 4.3 shows that an arbitrary Brownian
motion B(-) has an L, representation in terms of independent standard
Brownian motions with random coefficients. As is clear from the proof of this
theorem, the coefficients d; are statistically dependent on B(-).

(b) Part (c} of Theorem 4.3 also gives us a model for the classic spurious
regression of independent random walks. In this model, the role of the regres-
sors and the coefficients becomes reversed. The coefficients d; are random and
they are co-dependent with the dependent variable B(r). The variables W(r)
are functions that take the form of Brownian motion sample paths, and these
paths are independent of the dependent variable, just like the fixed coefficients
in a conventional linear regression model. Thus, instead of a spurious relation-
ship, we have a model that serves as a representation of one Brownian motion in
terms of a coilection of other independent Brownian motions. The coefficients
in this model provide the connective tissue that relates these random functions.

(c) Let us now replace {W{r)} by the orthogonal system {I(r)} defined in
(16). Then, in place of Part {c} we have, as in (17),

o -1
(18) B~ YeWlr), with ei=(lel/[-)(lef) .
i=1 0 0

(d) When we run an empirical regression of one random walk on a set of
independent random walks, we reproduce a finite sample version of the model
given in Part (c) of Theorem 6.3. Or, equivalently, if we transform the regressors
so that they are orthogonal, then we reproduce a finite sample version of the
representation (18),

4.5 ExaMPLE: As an illustration, consider the quadratic function f(r)=r2,
for — <r < w, combined with its periodic extension outside this interval. The

Fourier series for this function is (c.f. Tolstov (1976, pp. 24-25))
m? cos2r  cos3r

~ 5 —4eosr———+—— — - I,
3 T 32

r2

and this series converges to f(r) =r? in the interval [, 7] and to its periodic
extension outside of this interval.
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The function together with four terms of its Fourier series are shown in
Figure 1. Figure 2 shows the same function with its approximation in terms of N
independent Wiener processes with N = 150. The coefficients in the approxima-
tion are calculated using least squares regression of f,(r) on 1,000 observations
generated from 125 independent random walks. With this number of terms, the
Wiener process series captures the shape of the periodic quadratic function f;
comparably well.

The purpose of this example is simply to illustrate the feasibility of the
approximation by Wiener processes and to give some idea of the number of
terms that are needed to achieve a level of approximation comparable to that of
a Fourier series for a simple continuous function like f,(r). Needless to say,
empirical regressions of the type (15} are not being recommended for practical
use, nor do we develop a theory for the selection of the number of Wiener
processes in such regressions.

4.6 ExaMPLE: Finally, we consider the standard Gaussian random walk y, =
T ty;, where ug; = iid N(0,1). Let x, = (x,,) = (Ej_ )¢~ be K indepen-
dent Gaussian random walks, all of which are independent of y,. Consider the
linear regression y, = b, x, +i,, based on n(> K) observations of these series.
The large n asymptotic behavior of &, is given by (Phillips (1986))

AN

where W, and W, are the standard Brownian motion weak limits of the
standardized partial sum processes n~'/%x,.; and n~'/2y ., respectively.

10

filr]

10 14

FiGURE t.—Fourier series fi(r): 3 terms.
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fi(r]

FiGURE 2.—f\(r): 125 Wiener terms.

Suppose we orthogonalize the regressors {x, ={x;,)}: k= 1,..., K} using the
Gram Schmidt process

21 =Xy

Zy, =g — (x50, 0x0x,) 7 xy,,

2y =xy — G X)XX) xy,  X,=lx,x,]=[x,], etc.
By standard weak convergence arguments, we find

n 2, = Vi), T Py = (0, n 2z = V0, et

Now let z, = (zk,)l, and consider the regression y, =5z, +#,. In this case,
writing b, = (b, )X, we have the limit

-1
ARG RIS

as in (18). Thus, the empirical regression of y, on z, reproduces the first K
terms in the orthonormal representation of the limit Browmdn motion W,
terms of an orthogonalized coordinate system formed from K mdependent
standard Brownian motions. The regression ¢ ratios are th, = b./s5, and these
have the limiting behavior

4

k
Lo 1 2]/2’
| [z v

no l/ztb =
&
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where Wy (1) = W,() = (ffW, VX f{ Vi Vi) V() and Vi () = (V. (DE_ . Asin
the case of deterministic regressors (cf. Theorem 4.1), the regression ¢ ratios
diverge at the rate n'/? (shown in Phillips (1986)), indicating certain significance
of the regressors in the limit. Moreover, in view of (18), [IWZ — 0 as. as
K — =, and we can expect the divergence rate of these ¢ ratios to increase when
both K,n — . Figure 3 shows the sampling densities of the f ratio, 1, with
K=1,10,20 and n =100 based on 30,000 simulations. The increase in the
divergence rate of the ¢ ratio as K increases is apparent in these graphs,
Finally, the behavior of the R? in the regression y, = B; kZ,+0,is

R'=1— folerK/folPﬂ?, for fixed K,

r
R 51 when K—owo as n— o,

It follows that the empirical spurious regression fully explains y, in the limit
when the number of independent random walk regressors goes to infinity.

5. CONCLUSION

This paper shows that there are mathematical models underlying the classic
spurious regressions of a random walk on deterministic trends and the regres-
sion of a random walk on random walks. The empirical regressions just pick off
the first few terms in the series representation of the stochastic process that is
the weak limit of a suitably standardized version of the dependent variable in
the regression. Moreover, it is shown that, if the number of regressors in such
regressions is allowed to grow with the sample size (n), these empirical regres-

0.040

0.036¢
0.032r
0.028¢

0.024 -
0.020¢

density

0.016¢
0.012}
0.008¢
0.0C4+

i

0.000 . " wj- ! .
~-200 -160 -50 C 50 100 150 200

FIGURE 3.—Densities of # ratio 7, : 7 = 100.
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sions succeed in accurately reproducing the full series representation in the limit
as n — = and that the regression R’ tends to unity. The theory also explains
why it is natural in these regressions for the fitted coefficients to be random
variables in the limit—they are exactly this in the underlying model! Thus, not
only is there a valid mathematical model underlying such regressions, but the
complete modcl is consistently estimable in the limit as n — =.

While these results are definitive in that they fully explain what happens in
regressions of this sort and why it happens, there is room for considerable
debate about the implications of these results for empirical research. One
viewpoint was clearly stated by a referee of the paper in the following way;

“We use the term spurious regression in contrast to say the concept of cointegrated
regressions, i.e., the possibility that certain sets of variables explain the trend of the
dependent process in an economically sensible way. The fact that trending time series
have valid representations in terms of other independent processes or deterministic
functions of time is not of much interest from an economic viewpoint, unless it helps
separalc the wheat from the chaff.”

In commenting on this orthodox view, I will make only two points here and
lecave it to future debate to take the discussion further. First, it needs to be
emphasized that cointegrating regressions do not explain trends. Instead, they
relate trends in multiple time series and thereby pass the trending behavior
along to secondary variables that are usually also endogenous, leaving the trends
themselves to be explained by unit roots, time polynomials, and trend breaks. As
this paper shows, the trends themselves can be validly modelled in a variety of
ways. Thus, the central issuc addressed in this paper remains present in modern
cointegration-based models of nonstationary time series. The second point is
that the nature of trending mechanisms in economics is little understood and
econometricians have little guidance from economic theory models about mean-
mngful economic specifications. Were this not so, we would not be as heavily
dependent as we presently are on unit root models, time polynomials, trend
breaks, kernel regression fits and such like in capturing trends in empirical
research. Against this background and with the current class of nonstationary
models used in econometrics, it is virtually inevitable that the trending processes
that appear in econometric models have little intrinsic economic meaning, even
though the trends themselves may be of considerable economic interest. This
paper shows that, even in the impoverished class of trending mechanism that we
currently employ in empirical research, a limit theory of the trending process is
possible and that it will often be based, in part at least, on a “limit theory of the
sample period fit.” This limit theory brings with it attendant qualifications such
as those in the Introduction about the use of these mechanisms in a predictive
context.

The results presented here have some implications for unit root modelling
and testing. In receni years much of that literature has emphasized the impor-
tance of setting up a general maintained hypothesis that includes “alternative”
specifications to a unit root model, such as deterministic trends and trend
breaks. The results of this paper show that such specifications are not necessar-
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ily alternatives to a unit root model at all. Since unit root processes have limiting
representations entirely in terms of these functions, it is apparent that we can
mistakenly “reject” a unit root model in favor of a trend “alternative” when in
fact that alternative model is nothing other than an alternate representation of
the unit process itself. A development of the asymptotic theory in this case and a
study of the impact of such considerations on empirical work are left for a
future paper.

Cowles Foundation for Research in Economics, Department of Economics,
P.O. Box 208281, New Haven, CT 06520, U.S.A; phillips@econ.yale.edu;
http: // korora.econ.yale.edu

Manuscript received July, 1996; final revision received November, 1997,

APPENDIX
PROOFS

A.1 ProoF OF THEOREM 3.1: Since @g{[n-1/n) = g (), we have

n7t Y ex(t/me(e/n) %folqvxtpk=lx.

=1

Then, using (10), we obtain n ™ Eigg{t/n)y, /v = [Jox B. Let @y be the observation matrix of

the regressors and let y ={(y,){ in (8). Then, we have

C [ BBy Lt
(19} CK“K='-"K(T) ;‘pxﬁ =>fo0 e B
d
= N(U,C}cflflf.ﬂx(r)(r/\s)qo,((s)' dsdrcK),
00

giving the stated result. Now let the orthonormal representation of the Brownian motion B(-) be
given by B()=L7\/A, @, ()&, where the & are iid N(0,1) and A, is the eigenvalue of the
covariance function o ’r A's corresponding to . Write this representation in the form

(20) BO) =gy A%+ 0 (YA,
where the functions in ¢, are all orthonormal and orthogonal to those in the vector g, the

elements of £, are all iid N(0,1) and Ap=diag(h,,...,Ax), A =diag(Ag, A,...). Using this
representation of the Brownian motion B(-), we get

(3 ] d i l g d ’
CKJ; ‘PKB=CK(f0 ‘PK‘PK’) A}c‘/szzCKA}(/ZfK:N(OsCKAKCK)

as required for part (a). Note that the limiting form of the distribution also follows from a direct
reduction of covariance matrix, viz.

azflflﬁpx(r)(r A Sy (s) dsdr = fl‘PK(r)ﬂox(’)’ drig = Ag.
oo ¢
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For parts (b) and (c), define ¢, ; =ckdy/s., 4, . where

T
L4

n
(21 Sha = (n-l Yy (n-lﬂa,)z)c;((fb;(mx)lc,(.
=1

A simple calculation reveals that

where B, ()=B(") —{JgBek W fg ek %) "o () is the L,-projection residual of B on ¢, giving
part (b). Further,

n
AN I S R P Py, -1 Tp2
nSE G = (n 3l )CK(?‘! Drdp) x> j; B,

t=1

and we deduce that

-1/2 _
n tc’Kc'i -

as required for {c). The first half of part (d) follows immediately from (b) and the usual formuls for
the regression R”. The second half of part (d} follows from the fact that

2
L2 AR)  (/mbE(AR,)

DW=~ P 2
T(n 124, (A/n¥ein 20,

. . )
_ /w)slu, - b Aq:,f,] _o,n").
1/mE(n %)

A2 PROOF OF THEOREM 3.3: First, note that Ljcf =1, and Ija, = jly(r,r}dr= [}rdr. Hence,
T < w0, and T7A] < =. Tt follows that

K K AV 172 w Vi w 1/2
c}(AKcK=Zc%Ak£(Ec,‘:) (E/\%] S(Zc;:') (Zx\i) <L,
1 1 1 1 1

Thus, ¢ Agcy is an increasing sequence that is bounded above and is therefore convergent. We
write lim _, .y Agcg = 0,7 = cAc, say, where ¢ =(¢,), A =diag{A;, A,,...) and ¢c= 1.

To prove part (a) we wrile, as in {19), ckdy =cl(n 1L @) Wn 1@ v, /n'/2). Using the
Hungarian strong approximation (e.g., Cstérgd and Horvith (1993)) to the partial sum process
Ye=LF |u i, We can construct an expanded probability space with a Brownian motion B(-) for which

(22) sup |y, — B(k)l =0, (n1/?), or
Usks=n
Y k)
sup |-= —Bl—||=e,,(1).
Oskin Vn (” } o
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This gives the representation

Yoo [nr]
"\/—T :B(T] +()a.5._(1),

for (t =1 /n<r<t/mt =1, 1t follows that we may write, as n - =,

= £ ¥ 1
n! (—)(—I)= (#)B(r)dr+o, (1).
Zl:(FK n \/?? L‘PK &£.5.
Also, since K/n — 0 as n — «, we have
s ¥ 1y 1 s
'Y gl = x| = =f ox Py (rY dr + 0(1) = I + o(1),
” n n 0
leading to

(23) o=l + o] [folfpx(r)B(r) dr+a, (1)

= c}(jl)lun(r)B(r)dr +o, (1)

Now usc the orthonormal representation (20) of the Brownian motion B(-) in (23}, and since the
series converges uniformly we may integrate term by term, leading to

S 2 c’Kfolng(r)[cpK(r)' A%+ e Y AYE ldr+o, (1)

= ek At ek [ exP)pL (0 dr A drvo, ()
=g A % + 0, (1),
by virtue of the orthogonality of ¢ and the elements of ¢, . Now
e AY & g NQO, oy Ageg) = N0, c'Ac),
as K — o Thus, in the original probability space, when K — ® as n — o with K/n — 0, we have
(24) Clolg & et AY % +o, . (1) 2 NO, el Ageg) + o, , (1) = N0, ¢Ac),
as required for part (a).

For parts (b) and (¢}, we have n~'/7r, , =cidg/(n' s
given in (24). The square of the denominator is

o). The behavior of the numerator is

H
-1
2 _ -2 ~2 | -1y
nscrk_ﬁx—(n Eu,]cK(n Ppdy) cg.

=1
Now

-1
cixln~ I@klﬁx)ilci{=c}([f01gox(r)gol((r)’ dr+o(l}| ex=1+o(D),



1320 P. C. B. PHILLIPS

as n — = for all K such that K/n — 0. Next
‘l n . H y{ '
wEoi ) -G E )
12 t VYT £y oy,
(rEali)li)) GEG)E]

- (le(r)Z dr+ o“,(l_)) - (le(r):pK(r)' dr+o“.(l))
0 0

1
n,

pd (j{:gox(r)qox(r)' dr+ ()(1)) (fﬂlqox(r)B(r) dr+ ()a_s‘(l))

1
= J;) )‘_{PK(r)2 dr+o, (1),

where

-1

(25) B, (r)=B(r) (f[]‘sgo;()(fo‘gw;(] o (1)
=B(r)— (leqp}() @ {r)
a

K
=B(r) - Y (J;;B(s)cpk(s)ds)gok(r).

k=1

But, (g, )] is a complete orthonormal system in L,{0,1] and, by virtue of Lemma 2.1, we have
(26) B(r}= quk(r)[fo rpk(s)B(s)dsl
1

in quadratic means. It follows from (25) and (26) that, as K — =, B__— 0 in quadratic mean. Hence,

as K — x,
1 2
E[[0 B, (r) a‘rl -0,
and it follows that

P
-2 42 a0l
L &y, n55.4. 0,

=

il

=1

giving part (b). In consequence,

;oA
Crpd
1/2 _ K%K

noo e s =
cxd
kix T 12

Sepag
diverges as n — = when K — = and K/n — 0, thereby establishing part (c}. Part (d} follows directly
from (b).

A3 LEMMmA: Lery, = Eie' ™%/ "y, be a near integrated time series for some constant ¢, where u, is
stationary with zero mean, finite absolute moments to order p > 2 and has partial sums that satisfy the
invariance principle n™" " £ \u, = W(:) = BMQ1). Then, there exists a probability space containing {y,}
and a diffusion process J (r) = [[e¥ ™5 dW{s) in which y, satisfies the strong approximation

y[nr]

Vi

sup
rel0,1]

=0,,;{1}.
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A4 PROOF OF LEMMA 6.3: It is known (cf. Phillips (1987, Lemma 11)) that y, satisfics the
invariance principle n~ /2y, = J.(r), and from (7) we have

@n T =Wy e [ e Wis) ds.
0
As in the proof of Theorem 3.2, use the Hungarian strong approximation (e.g., Csbrgd and Horvith

(1993)) to the partial sum process £f_,u, and construct an cxpanded probability space that contains
{et;, 3.} and the Brownian motion W(-) and for which the following strong approximation holds:

[p’:?“j
sup —-W(r)|=o0,,(1).
reli, 1] \/’T
Set Xn(-)=n”/22'1""uj, and write
{nr] [nr] i
(28) nflf'ly[”r]=n7!/2Ze([fir]—j)c/nuj:n—l/l Ee([m]fj)r/nff/!i an(S)
1 | G—1D/n
[nr] .
= ¥ ellrri=ise/m 7 axAs)
1 G—ND/n
[rr]
_ i/n e(r—s)(‘+[([nr]/ri*r)+(j/f:—.\)}(‘an(S)
T li-tim

=fre"‘”/‘dX,,(s)[l +o,, (D]
4]

= [ ax (5) o, ),
0

since gl n=n+Gn=sic — p00 ) = | 4 5(1) uniformly in re[0,1), and in se[(j— 1/n, j/n)
and uniformly over j=1,...,a.

Next, apply integration by parts to the first term of (28) which is justified because e!"~*" is
continuous and X, (s} is of bounded variation for finite ». Hence

(29 n! /ZY[m’] =X, (r)+ Cfre(r_”{:Xn(s) ds+o,,(1).
0

It foliows from (27) and (29) that

y'[m]

Vn

sup
reld, 1}

-7 g sup | X, () — W)l

relu,1]

+ sup [cfre(””‘ds] sup | X, (s} — W(s) +o,, (1)
refo,l 70 a0,

=0,, (1),

iving a strong approximation for n~/?y,_ . in terms of the diffusion J.(r).
g g g app. [nr] e

A5 Proor oF THEOREM 4.1: Let {(W(r)} be any sequence of independent Wiener processes in
the [0, 1] interval. Using the series representation (4) for cach process Wi{#) in the sequence we may
write

sin[(k — 1/2)7r]

(30) Wir)=y2 Y. W&m

k=1
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where the £ are independent N(0,1) variates. It is well known (cf. Tolstov (1976)) that the
continuous function f(r) can be uniformly approximated on the interval [0,1] by a trigonometric
polynomial of the form

K
ag+ 3, (eysin(2mkr) + Bocos(2mkr)).

k=1
Since {2 sin[(k — 1/2)7wrlf;_, is a complete orthonormal system for L,[0,1], a slight modification
to the preef of this approximation theorem (using a piecewise linear approximation to f(r) and the
fact that the Fourier series of a continuous, piecewise smooth, and arbitrarily close approximation to
f(r) is convergent uniformly—sce, e.g., Tolstov (1976, Thecrem 2, p. 81)) shows that the function
F(r) can also be uniformly approximated by a trigonometric polynomial of the form

& V2 sinltk - 1ar]
k§1ak( (k—1/2)m )_“'K‘!"K(f), sdy,

for some K; i.e., given &3> 0, there exist coefficients (&,)f_, and some X for which

K V2 sin[(k —1,/2)7r]
k; * (k—1/2)7

&
(31} sup

refo, 1]

< =.
2

We now seek to combine (30) and (31) to produce an arbitrarily close approximation to f(r) by
Wiener processes. Given a fixed K for which (31) holds, we take a probability space on which the
sequence {W(r)} of Wicner processes and the random variables {£,} are defined and we emplay the
representations

=, sin[(k—1/2)
(32) m(r)=ﬁz%‘}2)%ﬂ

k=1
where &x =& .0 &) & = [k 1 Sik sy b and

B sin[( K+ 1/2}wr] sin[(K+3/2)7r]
"t'*(ry_ﬁ[ (K+1/2 ° (K+3/Dx ]

Sa = (Y b+ Y&,

As discussed earlier in connection with (4), the series (32} converge almost surely and uniformly in
rel0,1].

Taking the linear least squares approximation to the first term of (32) based on N observations
(i=1,...,N), we obtain ¢y = (5}, Sgn) SxyWy, and

—_r = —1, = =
SKNSKN SKNS LN
N N

where Sy =1£4.... Eux b B n =14, ..., &y 1] and Wy = (B)y ;. The random variables ¢;
in [ B¢y, &, ] are iid N(0,1). Hence, by the strong law of large numbers, as N — @, we have

_ . a.s - a.s. a.s. ~ a.5.
N7 By By I, and N7'ELy F, o >0, so that X, >0, and gy ~ i — 0. Moreover, the

strong convergence of W, to  is uniform in r €[0,1} To see this, write

J’K“d’K:( )'wa.:X!’N"l"L’ say,

1/2

‘U'l}x - 'ﬂx‘ = [(‘f’k - 'If’x)'(J‘K* 4’;()]
[, (X X3 1 < L 1 (X X1

1,2
. k 1 2
( Sln[((k :;)):r] ) [Amax(X;\fXN )]1/2
2

2y
k=

K

1A

z = 117

; 1,2

[? Z k—z} [Amax(XNXN)]/ ]
k=K
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where A () signifies the largest cigenvalue of its argument matrix. Since X “oand Apaxt X3 Xy
is a continuous function of the elements of X, we have Amax(X}VXN)ﬂjf 0. It follows that

2 - 1 1/2
sup w“axs[ﬁ >z —2] [ Xy X012
re, 1] T ke k

1y ) 12 s,
= E [‘lmux(XNXN)] 4’0:

as N — =, Hence, given &> 0 there exists (by Egoroff’s theorem) a set Cy with P(C;) > 1 —§ and a
number N > 0 for which

sup | — | <
ref. 1] 258 lak

for all N> N;. Then, we have

IF(rY — d e () < | () = die oy () + |d i () — e i (7))

and
{33 sup () — @ (Pl sup [f(r) —adi b (P) + sup | e (7Y — g i ()]
refo, 1] rel0,1] refo, 1]
£ K ~
<7+ Y lagl sup Y (r) — (Dl < &,
k=1 re01]
for all @€ C;.
Now note that we can write

_ N

(34) il (r) = ag (Fgy Fen) ™ By Wy = X dWr)

i=1
with d; = @y ( S}y Sy )~ "%k 1t follows from (33) and (34) that
N

fry =Y. dwir

i=1

sup
relo.1)

<E& Aa.s.

as N — o, giving part (a) of the required result. Replacing & by #'/2 in the above, part (b) follows
immediately.

A.6 ProOF OF THEOREM 4.3: Let (42, = C[0,1], 5, P} be the probability space on which the
Brownian motion B(-) is defined. Let B(-, w,) be a sample path of B. There exists a C with
P,(C) =1 such that, for all w, = C, the sample path B(r, w,) is continuous. Further, there exists a
compact set Cy of C[0,1] (under the sup norm} such that with arbitrarily large probability the
sample paths B(r, w,) lie in Cg. Take any such w, € Cx. We can apply Theorem 4.1 1o B(r, w,)
noting that the theorem holds uniformly for continuous functions in a compact set like Cy.

We expand the probability space to the product space

(42,5, P) = (0, X 2y .5, X Fpy, P, X Py)

to include a sequence of independent standard Brownian motions {W;}¥ | (defined on (£2,,,5,,, Py )
and independent of B) and a sequence of random variables {d,}Y | (defined on (12,5, P)) for which

N
Blr,w) — ¥ dW(r)
=1

(35) sup
re0,1]

Ll

< £,

=1

N 2
Blriw) - Y. d,W,-(r)] dr<e as. (Py)



1324 P. C. B. PHILLIPS

as N — = This is possible for all @, € Cy and, as is clear from the construction of the coefficients
d; in the proof of Theorem 4.1, we have the dependence d; = d{w,, @, ) on the sample path
B(-, w,) as well as wy, € {2, but the functions {W;(r)} are invariant to w,. We also have the
dependence N = Naw,,, @y} on the sample path w; of the Brownian motion B and wy, € 2. But,
since Theorem 4.1(a} holds uniformly for f in a compact set, (35} holds for alt w, € C;; and N large
enough. Since P,(C) is arbitrarily close to one, we deduce that given the Brownian motion B('),
there exist independent Brownian motions {W,(r)) and random coefficients {4;} that are defined on
the augmented space ({2, 5, P) for which, as N — o, we have

N
B(ry- Y dWir)

i=1

sup
ref0.1]

N 2
<e, fﬂl{B(r)A Ed,m(r)} dr<e as.{P),

i=1

giving (a). Parts (b) and (¢) follow directly.

NOTATION

C[0,1]  space of continuous functions on [0, 1].
L,10,1] space of square integrable functions on [0, 1].

= weak convergence.

[-] integer part of.

ras min(r, 5).

@5,

— almost sure convergence.
d

distributional equivalence.
= definitional equality.

a,,(})  tends to zero almost surely.

P . .
- convergence in probability.
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