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Abstract

Second-order expansions and mean squared error approximations are given for
efficient frequency domain regression estimators. While bandwidth choices do not figure
in first order asymptotics for these estimators, they do influence second-order terms and
it is shown how suitable choices will enhance second-order efficiency. Data-based
bandwidth selection rules are given for practical implementation of these procedures.
Two commonly used and asymptotically equivalent spectral regression estimators are
studied and shown to differ in their second-order asymptotic behavior. Some Monte
Carlo evidence is reported. € 1998 Elsevier Science S.A, All rights reserved.

JEL classification: Cl4; C22
Keywords: Data-based bandwidth selection; Higher-order approximation; Moment

expansion; Second-order efficient estimation; Semiparametric estimation; Spectral
regression

1. Intreduction

We shall consider the problem of efficiently estimating the coefficients of the
following time series regression

ve=px%+u, t=1..T (1.0
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where it is assumed that u, and x, are stationary processes independent for all ¢,
s, and have absolutely continuous spectral functions. When the autocorrelation
structure of the unobservable disturbances is not parameterized, it is not
possible to estimate the full covariance matrix of (uy, ... u7) and conventional
time domain generalized least square regression is infeasible, although paramet-
ric approximations are possible (cf. Amemiya, 1973). Since the discrete Fourier
transform (DFT) of Eq. (1.1) has residuals that are asymptotically independent,
efficient methods of estimating §§ by spectral methods are possible and have been
used in econometric applications (see, inter alia, Engle, 1974; Robinson, 1991,
Corbae et al., 1994). These methods were introduced by Hannan (1963a,b) who
showed that a frequency domain GLS estimator achieves asymptotically the
Gauss—Markov efficiency bound under general smoothness conditions on the
residual spectral density. This technique is semiparameiric since it relies upon
a nonparametric treatment of the regression errors. It has the advantage that it
is nol necessary to be explicit about the generating mechanism for the errors
other than to assume stationarity.

The nonparametric spectral density estimates that are used in the efficient
estimation of f§ entail a choice of bandwidth M. Unsuitable bandwidth selection
can produce poor estimates. However, as long as the spectral density estimates
are consistent, all such frequency domain GLS estimators are (first order)
asymptotically equivalent. The asymptotic approximation can be quite accurate
for small samples, but it is also easy to find examples where the first order
asymptotic distributions provide poor approximations even when the sample
contains hundreds of observations, and estimates can vary considerably with
bandwidth choice. For these and other reasons, it is useful to have automated
rules for bandwidth selection.

Robinson (1991) discussed frequency domain inference for time series in
which the bandwidth selection for the nonparametric spectral density estimate is
determined from the data. Robinson’s method, like that of other automated
density estimates, is based on minimizing the (integrated) mean squared error of
spectral density estimates not the mean squared error of the estimator § itself.
For many popular kernels (whose characteristic exponents equal 2), Robinson
found that the optimal order of expansion for the bandwidth M is T1/°.

We believe that higher-order approximation for the coeflicient estimates can
provide another way to distinguish among asymptotically equivalent proced-
ures in this semiparametric model. Higher-order expansions have a long history
of applications to econometric problems (see, inter alia, Sargan, 1976; Phillips,
1977). An application of second-order approximations to bandwidth selection in
partially linear regression models has been made recently by Linton {1995a).
This paper uses a similar approach in studying the higher-order properties of
estimation procedures in frequency domain time series regression. We derive
a stochastic expansion for two commonly used frequency domain semiparamet-
ric estimators, and approximations to their (standardized) mean squared errors
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(MSE). This facilitates a comparison of different estimators at the second-order
level, where differences do occur and depend on the bandwidth choice,
A method of bandwidth selection is defined by minimizing the second-order
effect in the mean squared error of estimates of . Comparisons are made at the
second-order level between the original Hannan efficient estimator and the
commonly used spectral estimator considered by Robinson {(1991).

The plan of the paper is as follows, The model and the estimators are
described in the next section. Section 3 discusses the approximation for the
nonparametric spectral density estimators. Formal expansions for the GLS
estimator and its mean squared error are contfained in Section 4, and distribu-
tional approximations are developed in Section 5. In Section 6, we study a sec-
ond estimator and compare it with the estimator in Section 2. Extensions to the
multivariate case are given in Section 7. Section 8 considers a small Monte
Carlo study of finite sample behavior. Section 9 concludes. The detailed analysis
of all these expansions and proofs of theorems are given in Appendices A—C.

2. The model

Consider the scalar version® of regression equation (1.1)
ye=0x +u, t=1,..T, (2.1}

where {x,} and {u,} are stationary time series with continuous spectral density
functions and {u,}] has mean zero and covariance matrix V. Qur analysis may
casily be extended to multiple regressions in which case x, and f are vectors and
this extension is brietfly outlined in Section 7. Distributional assumptions on
u, are generally not required, but are usefut in the development of distributional
approximations, as in Section 5, in which case we will employ a normality
assumption and then (2.1} can be written in regression format as

y=Xp+u whereu~ N,V (2.2)

We assume that T is even for simplicity of exposition. Premultiplying Eq. (2.2)

by the matrix U = [>T/ /21T], we get the discrete Fourier transform of
Eq. 2.1),

Wil = Bwl ) + wi(d), A =2mt/T,t= —T/2+1,....T/2, (2.3)

The residuals in regression {2.3), w,(l), are approximately independent but
heteroskedastic for large T. The matrix representation of {2.3) can be written

* An intercept term in the regression can be accommodated simply by omitting the zero frequency
in the estimation.
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as follows:
W,=W.p+W, 2.4)

where W, has a complex normal distribution N(0, X}, with £ = U;VU#%. Here,
the affix * indicates transposition combined with complex conjugation. How-
ever, since * will be used for some other notation in later sections, we hereafter
use simply ', with the understanding that it means complex conjugate transpose
whenever the quantities are complex, as, for example, in X = U;VUT,
L% = w{AwdY, and W2 'W_.

The GLS estimator of f in the frequency domain is given by
B=[w.27'W ™" W,2~'W,. Since the covariance matrix X is unknown, the
estimator ff is infeasible, motivating feasible estimators of the form

=W 'w] 'w.Ew, (2.5)

The properties of § depend, of course, on the choice of estimate for . We shail
first consider the following estimate of 2:

£= diag[f‘;u(ﬂ._ T2 41 e ’ﬂm(l'fﬂ}]s (2.6)

where f(4), t = — T/2+1,...,T/2, are nonparametric spectral density es-
timators. In this paper, we use the ‘leave-one-out’ type estimator, which has been
widely used in the existing literature (e.g., Robinson, 1987; Linton, 1995a,b), for
estimating f,(4,), viz.,

Juld) =m™ 1Y K — 2)udd) = Y o lully) 2.7)
AEB, s¥t 5¥t
where
T T
Bt= {(sz—m‘(ws;lf-i-m}

is a frequency band of width n/M centered on A, = 2mt/T. Let m = [T/2M],
where [ -] signifies integer part. Then each band B, contains m fundamental
frequencies ;. In (2.7), K(-) is the spectral window satisfving the properties that
it is a real, even function with (1/m)} ;1 cpwK(4s — @) = 1. We denote the cotre-
sponding lag window as k(h/M) = (1/m)} ; cpmK (4, — wle™ "™~ ). Candidate
kernel functions can be found in standard texts (e.g., Hannan, 1970; Brillinger,
1980; Priestley, 1981). [.(i) is calculated from W, (i) = wyd,) —
BorswAs). Consequently, the GLS estimator for § has the following form:

T2 12

-1
] =[ ) Ixx()tt]j;u(’ll)_l:l [ > Ixy(it)fuu(ﬂt)_l]- (2.8)

t=—Ti2+1 —Ti2+1
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Under very general conditions, § in (2.8) is first-order asymptotically equiva-
lent to the infeasible GLS estimator 3. This first-order asymptotic equivalence
holds as long as the spectral density estimators in (2.8) are consistent. No
guidance concerning bandwidth selection based on the mean squared error of
f is available since the bandwidth parameter M does not show up in the
first-order asymptotics. However, the performance of the estimator § can de-
pend greatly on this choice.

One of the objectives of this paper is to derive higher-order expansions for the
estimator J§ to compare alternative implementations of the spectral regression
procedure and to define a method of bandwidth selection by minimizing the
second-order effect in the mean squared error of f. Denote

Qr=T" P L fuuli) ™,

Qr = Ty LA fuld) ™,

Wy=T""7% PRy PN

Wp =G — Q7 = T*lg Ll &) fuddd) ™" = fuud ) ™11,

We then have /T(f — ) = 07 'Wy. Expanding Q7' about Qr to the third
term and decomposing Wy into the sum of Wy, and Wy, where
WNO = T_Uzzrlxu(}'t)ﬁm(il)_l and WNI = T_UZZtIxu()'!)mu(it)_’ _.ﬂm(il)_lj’
we get

-~

JTE - B = (@' —Qr*Wy + Q7 W3 — R)Wao + Wi, 2.9)

where R, = Q7'Q7°W3. In the above expansion for f, the leading term,
Q7 "Wy, is of order O(1), and other terms are o,(1). The key elements, W5, and
W y,, are functions of the spectral density estimate f,,(4,) . If we further expand
Foul2) " around f,,(4) ! to the third term and substitute the corresponding
truncation into the expression of W and Wy, we obtain an approximation of
these two terms. After rearranging terms, under certain assumptions on the time
series x, and u, we get an expansion of the following type:

N . L 1 1 1
ﬁ(ﬁ_ﬁ):QTIWNO“"ﬁMI +W@1 +;t=9¢z +Wﬁ2

+ higher-order terms

= ¥ + higher-order terms (2.10)
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where &7, 9#,, «/,, #, are functions of the bias and variance terms in the
nonparametric spectral density estimates (Appendix A provides explicit for-
mulae for these terms) and where the expression ‘higher-order terms’ indicates
terms of o{m ™ ') or o,(M~*). A detailed analysis of this expansion is given in
Appendix A. Our analysis is formal and further regularity conditions are likely
to be needed to justify expansions like (2.10) as valid stochastic asympiotic
expansions. The (normalized) mean squared error of the truncated expansion,
E[27*%1%, can then be calculated from the above expansion, giving

1 1
MSEPR) =1+ —of + —3B. (2.11)
m M

The second-order effect in the mean squared error, (1/m).o/ + (1/M*)4, is a func-
tion of the bandwidth choice, the kernel function and the spectral densities (see
Theorem 1, Section 4 for the definition of &/ and #). An optimal bandwidth for
the estimation of # can be determined by minimizing the second-order effect on
the MSE(f).

It will be convenient for our development to assume at various points in our
analysis some of the following properties for the time series {x,} and {u,}.

Assumption 4.1. The time series u, and x, are independent and stationary with
E(u,) = 0, covlx,, X, +) = 7.1}, cOV(th, t4,14) = y,(h), and

LIy < oy YRR < o0

where g is the characteristic exponent of the kernel function defined as
lime o {1 —k ()}/Ix]" =k, < 0.

Assumption 4.2, The spectral density of u, f,(-), is bounded away from the
origin and sup, T™**|Z — 5| = ofl), where 2, =diaglfoli 12+1);...,
JudAri2)], and ||| is the matrix norm defined by |B| = sup {||Bx|: ||x| <1,
X1l = ()2

Assumption A.3. u, 1s normally distributed.

Assumptions A.1 and A.2 are sufficient for the moment expansion, and A.3 is
not needed, but is used for the distributional approximation in Section 5. The
conditions in Assumption A.l not only imply that the spectral densities are
continuous and bounded, but also imply the uniform boundedness of f,(4),
sup;/f{A)l < oo, where fi(A) = (1/27)> 7% _ . [h|% (ke ** For many popular ker-
nels, where g = 2, the conditions in Assumption A.1 imply that the second
derivatives are bounded.



Z. Xiao, P.C.B. Phillips / Journal of Econometrics 86 (1998} 297 336 303
3. Expansions for the spectral density estimates

In expansion (2.9), the components Wy, and Wy, are functions of the spectral
density estimates. The first step in extracting the expansion is to develop
approximations for f,,(2,) and f,.(4,) %, which we do in this section. First, we
decompose the error term in the nonparametric spectral density estimator f,,(%,)
into three parts: B,, the bias term due to smoothing; V', the variance term comes
from the periodogram; and P,, an error term comes from preliminary estimation
of w,(A,). The last term, P,, is usually of smaller order of magnitude than the first
two terms, so that it can be dropped. Specifically, we have

Juld) = ful ) + Be+ Vo + P, (3.1)
where
B, = fil2) — fuld) = ), Wil fuld) — fud 2],
Vr =j_;m(jz) *fu?j(iz) = Z wts[qu(;Ls) _f;m(;‘s)]s
s#FL
Pt :f:u()'t) _ﬁu(it) = z mts[fuu(’ls) - qu(‘ls)]x
s¥#FL
ﬁm(,{!) =m" ! Z K(;‘s - ’lr)luu()-s) = Z wrsqu(;ts)s
AgB,, s#1 s+
fl;;:(/tt) =m ' Z K(As - ’It)fuu(j's) = Z ('Utsfuu(is)‘
/EB, 571 s#1

The order of magnitude for each of these terms in our decomposition is given
by the following lemma.

Lemma 1.
By~ — M7, f(4) = OM™9),
Vo= Oym™ '),

[ \
ﬁl{ 3, N(O, EJ‘ k(x)* dxﬁi(i,)), for |4, = wn/2M,
P = o,0m™ ).
where ~ denotes asymptotic equivalence.
We are principally interested in those terms that are of order O (m ') or

O,(M ™29, and will later refer to the o (m™") and o, (M ~*%) terms as ‘higher-
order’ terms.
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Next consider the expansion for f,,(4) '. In a similar way, we decompose the
error term for f,(4,)"" into three parts, which are functions of B,, V,, and P,,
respectively. The order of magnitude of these terms can then be determined from
Lemma 1. Write f,,(4,) ! as follows:

Fad2™" = Ll LA — ful2) 1]
+ &)™ = SR L)™' = Faald) ™11 (3.2
Expand f,,(4)~ " about fX(i)7", and £%(1) " about f,(i) !, giving
Jul2) ™t = FERNT — fM2) TPV, + STV + Ry,
S = £ul2)7" — ful2) 7By + fud2) T BE + Ry
Here, R;,, R;; and the errors that come from preliminary estimation can be
dropped, according to the following lemma.

Lemma 2. f;u(ﬂt)71 _f_uu(;tt)71 = Op(m_l), R3ﬂ = op(m_ 1), Rﬂb = OP(M_'Z{I).

We thus obtain the following expansion for f,,(1,)7*,
Juld ™ = Fuld) T = STV, + SRR TIVE — ful2)72By + fuddy) B
+ higher-order terms. (3.3)

4. The expansion of

With the preliminary results in Section 3, we can now calculate the stochastic
expansion for the estimator f. Let W3 and W3, be the corresponding approxi-
mations of Wp, and Wy, with f,(2,) " replaced by the truncated expansion in
Eq. (3.3). Substituting W and Wy, with W} and W}, in Eq. (2.9) then gives the
expansion (2.10) for the estimator f. The remainder term in Eq. {2.10) includes
R, as well as the remainders from replacing W, and Wy, by W} and W%,. Let
MSE(f) be the standardized mean squared error of § (multiplied by T)

MSE(f) = E[Q'*¥7]?, 4.1y

where €2 is the limit of 2 defined in Eq. (4.3) below. The asymptotic expansion
for MSE(f) is given by the following theorem.

Theorem 1. Under Assumptions A.1 and A.2,

MSE(f) =1 +ﬁ“

— o0

o0

2

kix)* dx} o [Q711(f) — Q7% 5(f)"]

M
+ higher-order terms, 4.2)
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where
2| fertuier *ao @y
Vil =35 | Sl o dos @4
13 =52 || Sl g 5

Remark 1. The term

1 w 2 kﬁ -1 -2 2
fzﬂ[f k(x) dx]+m[9 Vi) — Q7S]

—

measures the second-order effect on the asymptotic mean squared error of §. To
minimize the order of magnitude of the second-order effect, we need to balance
the impact of the two terms in %" and this requires m and M>? to be of the same
order. If M = O(T#), (0 < u < 1/2), then m = O(T* ™*), and thus 1 — u = 2gu,
ie, g =(1 +2g)~ ' To simplify notation, set 2t = 1 — u = 2qu = 2q/(1 + 2g),
and then the second-order effect in the mean squared error is of order T~
When g = 2, we get u = 1/5, and t = 2/5. Since nonparametric techniques are
used in estimating the spectral density, the second-order effect is larger than the
O,(T ™"} effect in parametric models. However, as g increases, 2t = 2g/(2g + 1)
approaches 1. Thus the second-order term in the mean squared error gets close
as g increases to the O(T ~Y) effect that applies in the parametric case. As a result,
we should be able to accelerate the convergence rate of the spectral estimates by
the use of higher-order kernels so that the second-order correction in the mean
squared error approaches the O(T 1) rate in parametric models.

Remark 2. The second-order term % is positive since

@fudo) 40| Sl o) HoP do

2| [ et st oo |

by the Cauchy-Schwarz inequality. As a result, the (second-order) variance
of B is generally greater than that of f, indicating that the feasible GLS
estimator has a larger second-order asymptotic variance than the GLS
estimator f.
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Remark 3. An optimal bandwidth can be found by minimizing the second-order
effect in the mean squared error, i.e. we can choose M such that it minimizes

17 (= k2
2m[ j‘ k(x)? dx:| + quq[Q'l"l/‘l — Q%3]

The optimal bandwidth is then given by

M 2£1k;‘[§2_'“/f1 — Q_ZIV%.] 1”(Zq‘k1)T1,'(2q+ 1)
12k (x)*dx

= §(k,f)T"/?4* V), say (4.6)

where the coefficient 3(k,f) is a function of the kernel function & and the spectral
density /. To make the above bandwidth selection criterion feasible, the plug-
in method can be used to obtain an estimator of 4. That is, we specify a para-
metric model for the error structure and estimators of these parameters are used
to obtain preliminary estimates of the spectral density functions and these are
then plugged into Eq. (4.6). For example, suppose x, is generated by MA(1)
process

X =n+ 0 4.7
and u, is generated by AR(1) process
Uy = Oy — | + & (4.8)

where # and ¢ are both iid N(0,1) variates and are independent of each other. If
the Daniell window is used so that K(4, — w;) =1 for A, B; and ¢ = 2, the
optimal bandwidth is calculated to be

_ 264(o6) 26 5(0t,0) s s
N |:1 + 05292 + (0!,’ — 6)2 B [1 + &'292 + (01 _ 8)2]2:| T s (49)

where d; and 3, are defined by the formulae

dy(o,0) =

a2n3r sin*w(l + 0% 4+ 20cos w)
dw

18 | . (14 a* —2xcosw)®

oc%raj”‘ cos 2m(l + 0% + 26 cos w)
de

288, 1 +o® —20cosw

at%rsJ"’ sin*m cos w(l + 0* 4 20 cos )
_ dw,

36 )., (1 + o — 2xcos w)?
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and

&yle8) =

a’*m (™ sinw(l + 6* + ZBCosw)d
— 7]
6 ], 1+ o 2xcosw

- MJ cos (1 + 6% + 20 cos w)daw.

-

Estimates of « and 8 may then be plugged into these formulae to give a data-
based optimal bandwidth formula (4.9).

Remark 4. Asymptotic expansions for other regression statistics like standard
error estimates, t-ratios and Wald statistics can all be developed in a similar
way. To conserve space, we do not provide formulae here but details of these
expansions are available in Xiao (1997).

5. Distributional approximation
Under Assumption A.3, W, ~ N(0, 2), and so, conditional on {x,},

VTE — B = Q: 'Who ~ N(O,2: 1), (5.1)

where Q; = T~ W, X~ 'W, W¥o = T~ Y2W'.Z~'W,. The probability distribu-
tion of § is then given by

Pr(QY2 /TR — ) <) =P /TH - p) < 12 /T8 — By.

For the estimators considered in this paper, £ and § — ff do not depend on f as
long as x, and u, do not. Since, for given X, § is a complete sufficient statistic for
£, both £ and § — f are distributed independent of 5. Thus

PI[QY2 /T — By < r — QY2 /T(B — BI{x}]
= E[&(r — Q¥ /T — P)lix.}],

where @(-) is the ¢.d.f. of a standard normal variate. To develop a distributional
expansion for B, we now just need to approximate the expectation of
®[r — QY2 /T(f — By]. Our arguments in this section are all conditional on
{x,}, and so we drop the conditioning symbolism in what follows to simplify
notation.

If Q42 /T(f — P) = Zr + Ry, where T'Z; possesses bounded moments in
the limit and R; has well behaved tail probabilities in the sense that
Pr{T*1ogT|[R7]| > ¢] = o{T ~*") for some constant c, then restricting our atten-
tion to the region where |[R;| < ¢/T*" log T yields an error of order o{ T~ ") — see
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Sargan and Mikhail (1971) and Rothenberg (1984a,b). It follows that
Pr(Q}? /T — B < 1) = B¢ — Z1)) + 0T %)
= &(r) — E(Z7)o(r) — $EZTro(r) + o(T %)
= @(r) — FE(ZT)ro(r) + 0p(T %)

= @[r(1 — EZ%/2}] + o (T~ %), (5.2)
where ¢ is the standard normal p.d.f. It is verified in Appendix B that
Pr[T* log T| Ry > ¢] = of T~ ). (5.3)

Thus, we get the following theorem.

Theorem 2. Under Assumptions A.1-A.3, the probability distribution of the GLS
estimator (2.8) can be expanded in the form

Pr[(l—EZZ/2)Q”2\/_(ﬁ By <r]=d(r) + o(T™*9, (5.4)

where
2

E22=ﬁjw K dx + QT ¥, f) — @A + o (5

Ye
Remark 5. The theorem shows that § is asymptotically normal to the second-
order with an error of o(T~%%) and where 7 = g/(1 + 2g). Thus, the effect of
feasible frequency domain GLS estimation on second-order asymptotics is
simply to scale the limiting normal distribution of the GLS estimator by a factor
which depends on the spectral estimates and the bandwidth choice.

6. The expansion for Hannan’s estimator

Another version of the frequency domain GLS estimator that has been widely
used in the literature is the following one suggested by Hannan (1963a,b):

Buo =[ 5 ﬂx(w,-)ﬁ.,,(wj)l]_[ 3 ﬂy(wf)f;u{co,-)‘l]- 61)

i=—M+1 j=-Mtl

This estimator of § is based on consistent spectral estimates fxx(co f;u(mj) and
fx,,(wj such as

ﬁm(wj) = m_l E K(;{'s - wj)fuu(ls) = Z mjsfuu(is)a

AkB,

fxx(CU -1 2 K(/t - CO xx ) ) - Z G)J'i xx{Ac):

2£B;

fxy(cuj ot Z K(;"s wj)Ixy(’ls) = Z szlxy(&s)-

A8,
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Each frequency band B; = {w: w; — n/2M < @ < w; + n/2M} is centered on
w,=mi/M, j= — M+ 1,... .M. In this section, we consider the following
‘leave-one-out’ estimator for £, (w;)

1

5 L Wl — a)lulh), (6.2)

A.eB*
7

ﬁu(wj) =

where Bf = B,_,;uB,,;, and W{-) works as a spectral window with the prop-
erty that (1/2m)} W(i; — w;) = 1. The use of such an estimator is primarily
motivated by technical convenience. In particular, it simplifies the calculation of
the second-order effect without changing the order of magnitude. A simple
example of this type estimator is

.}:m(wj) = %[f:u(wﬁ )+ f;u(wj+ ] (6.3)

For simplicity, we will use this estimator in our analysis although the more
complicated estimator (6.2) with the spectral window W({-) could be used
without changing the results below in a significant way. (In particular, the orders
of magnitude of the correction terms stay the same.) Let

M -1 M
ﬁH = |: Z fxx(wj)ﬁu(wj)_ 1:] |: Z fxy(wj)ﬁm(wj)7 ]]' (64)
j=-M+1 j=-M+i
The estimator By is first-order asymptotically equivalent to the estimator f§ in
Eq. (2.8), studied in the previous section. However, we see here that these two
estimators do differ at the second-order level. Denote

1 M e 1 M »
Ip= m}ﬁ _ZM+ lfxx(wj)ﬁm(wj) , &r = M, _ZA:HI Ferd) Fulew) ™1,
Xu= oo y fudopf, 1 Xpp = e v 7 -1

N= mj:_zﬂ}fﬂ ) fad )™, Xyg = Wj=—zb4+1fxu(wj)ﬁu(wj) .

Then

Er2X, rix:
T D+ T D

Jm m

ﬁ(BH ~ P =2'Xy= (21_"1 - + RT)XNa (6.5)

where

Xp= \/;i(fr - ZT),

and

| P
RT= —WETIZTSXJS).
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Without much loss of generality, we will consider the most common case g = 2
in the following analysis. Notice that under Assumption A.1, the second deriv-
atives of the spectral density functions are bounded. Proceeding in the
same way as for the estimator f3, we obtain the following stochastic expansion
for B

" 7 1 1 1 1
ﬁ(ﬁﬂ_ﬁ)=zT1XN0+ﬁAl +%A2+M281 M4Bz
+ higher-order terms.
= ¥4 + higher-order terms. (6.6)

The terms, A,, A,, By, B, in Eq. (6.6) are functions of B, V,;, B}, V,,; which are
the bias and variance terms in the nonparametric estimators of f,(w;) and
Juder;). A detailed analysis of the expansion is given in Appendix C of the paper,
which provides explicit formulae for the expansion of fiy and its asymptotic
mean square error. Here we will give only the main results and discuss their
implications.

The mean squared error of \/_ T{fu — P} can be approximated by the second
moment of the truncated expansion Z7'Xy, + 1/f mA; + (1/mA; +
(1/M?B, + (1/M*)B, from Eq. (6. 6) It turns out that the calculation of the
mean squared error expansion of By, involves the approximation of E fx,,(wj) .
Conditional on {x,}, we have

M) ~ NO,forl@)ffer)) + higher-order terms.

We can show that the conditional variance E[,/m f;u(w 1% can be approximated
by @) fulw) + OLfM ™ ?), where the O, (M ~?) term is the cumulated bias term
due to approximating f.{A) by f.(w) in ecach frequency band B;=
{orw; — n/2M < o < w; + n/2M}. This term plays an important role in the
second-order effects of the mean squared error of fy. It turns out that this term
dominates (in order of magnitude) the squared bias terms which come from
B,; and B,; and, as a result, the normalized mean squared error of By, can be
approximated by an expression of the form

1 1 .
1+ EA + WB + higher-order terms.

The second-order effect, (1/m)4 + (1/M?)B (see Appendix C for the definition
of A and B) differs from that of MSE(f) in previous sections of the paper.
Let MSE(B,) be the standardlzed mean squared error of By, ie.
E[a™12QV2% 1%, and let a = 1[® k(x)* dx be the limit of(l/m)z K (A — w)*
as T — oo, and K(f) = K(9/2M) The expansion for MSE(By) is given in the
following resuit.
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Theorem 3. Under Assumptions A.1, A.2

1 1
MSE(ﬁH)~1+ vl [”ffa+2kz“1f4], (6.7)
where
J Sl ) frud )™ deo, (6.8)

¥3 = f (9)292':19[ ff A0)ful@) ™ do
lén

1 T
+ 5 Sad @) frud) ™ Hfirskw)? deo
n 4
1 T
+ ﬂj Sed ) fial 0) frud ) ™2 dw], (6.9)
1 [ i
Vi= iﬁj_ nf;u(w) Jealm)do. (6.10)

Remark 6. Among the second-order effects, the O (m ') term, a/2m, comes from
the variance of the nonparametric spectral density estimate, and the coefficient,
a/2, reflects a scaling effect which depends on the kernel function. The Oy(M 2)
term, (1/M%)Q~[(1/a)y¥ + 2k,#7,], is a bias term that comes from Ef,m(w)

when we estimate f.(w;) by El,(4) in the frequency band B;. This Oy (M ?)
effect depends on the kernel function and on the slope of the spectral dens1ty.

Remark 7. When we calculate the mean squared error of a spectral density
estimator, we have a squared bias term which is of order O(M ~* ). However,
in the expression for MSE(f,), not only are there O(M™%) terms from the
squared bias, but there are also O(M ~?} bias terms that originate in the
second-order bias effect in Ef, (w;)* and these dominate the O(M ~*) terms.
When this term is positive, in order to minimize the order of magnitude of the
second-order effect

2 + #Q [11/3 + 2k2“V4i|,

we have to set m and M? to be the same order. If M = O(T*), (0 < it < 1/2), then
m=0O(T' #,andthus 1 — g = 2y, ie, i = 1/3, and MSE(By) = 1 + O(T 27,
As a result, the trade-oftf between bias and variance yields an optimal rate of
M ~ T'? for the bandwidth to minimize the second-order effect of the es-
timator fiy. This order of magnitude differs from the optimal order for the
bandwidth obtained for the estimator (2.8). It also differs from the optimal order
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in estimating a spectral density at a single point (in which case M ~ T/,
Specifically, we let the frequency band shrink more quickly (at a rate of T~ /%)
here than in the case of estimator (2.8). As a result, the second-order effect in the
mean squared error of the estimator fy is of order T™2/3,

Remark 8. We can choose the optimal bandwidth by minimizing the second-
order effect in the MSE, i.e., we choose M such that it minimizes

a 117v; _
e | 2 2,7 !
2m+M2[ = + 2k 4}9

The optimal bandwidth is then

71 1/3
M= |:2V3 +24ak2“f 4] TS — 8k, £YTY, (6.11)
a“Q
Like formula (4.6), the coefficient d'(k,f) depends on the kernel function k and
the spectral density. A feasible procedure is again obtained by using plug-in
estimates based on a simple parametric model like an AR(1). For the example
considered in Remark 3, i.e., processes (4.7) and {4.8), the corresponding formula
for the optimal bandwidth (6.11) is

3 72 [3(0,6) + 308 ”3T1 5
T2+ 0207 + (o — 0] ’

where &, is defined by
d3(xb) =

1 ™ [8a?sin*m —2acosol + o> —2xcosw)]* (1 + 8% +20cosw) 4
e 0.
an?|_, (1 + o — 2z cos w)*

Fig. 1 plots the second-order adjusted asymptotic MSE of the two estimators for
certain AR and MA processes. We call fin (2.8) estimator 1 and 3y in (6.4) estimator
2 in these graphs. The two curves in each graph depict the value of

1 i k2
1+ %U sok(x)2 dx} + M—"zq[szflq/‘l(j;) — OS]

for § with (4.6) plugged in, and the value of

1 1
1+ % + WQ“[E% + 21@%}
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Fig. 1. Mean squared errors of the two estimators.

with (6.11) plugged in. The models considered are

X

Wy

=+ 058,14,

= o1 + &,

(6.12)
(6.13)

313
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and
X =n — 05y, (6.14)
u, =g — g _|. {6.15)

We let « and 0 take values from 0.05 to 0.9, and Fig. 1 shows how the adjusted MSE
changes with these parameters settings.

Remark 9. These graphs show that, generally speaking, estimator 1 is superior at
the second-order level. Intuitively, § wuses T unsmoothed regressors,
Yic1LalAdfulA) ™", in estimation, while By uses 2M smoothed regressors,
Y st 1Sk fudd) 2. As a result, the first estimator has a stronger signal than
the second since the smoothing reduces the strength of the signal. However, these
differences do not show up in the first-order asymptotics but play an important role
in second-order effects, including the order of magnitude of the error.

7. Multivariate extension

Our analysis can be extended to the multivariable case where x, and f are px 1
vectors. In this section, I, and f,, are p x p matrices, and I, I,, are px 1 vectors.
For convenience, we work with the scalar standardized quantities of these two
estimators,

[eQ™ ] 2/ Te(B - )
and
[¢Q™'e 12T (B — )
where ¢ is any p x 1 vector. By a geometric series expansion, we get the representa-
tion
TP — f =107 — Q7 Wp2y!
+ Q7 W ' W07 "Wy — Ry = @ — Ry,

where Ry = /7 'WpQ5 lliV,,Q-F‘W 87 'Wy. Let MSE/f) denote the standard-
ized mean squared error of 8, ie, MSE(B) = E{[¢'Q¢]™ “2®}2. The expansion of

MSEJfp) is then given by the following theorem.

Theorem 4. Under Assumptions A.1 and A.2,

N i~
MSE(f)~ 1+ —[—j k(x)? dx:|
ml2)_
ki {eQ [y — 9507 3]0 e
qul ¢ e ’

where Q, ¥, V3 are p x p matrices defined by the formulae (4.3}-(4.5).
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Remark 10. We continue to use the notation Q, £, ¥, ¥, W Wy here (and
similar formulae to that of previous sections), even though they are now matrices or
vectors rather than scalars in this section.

Similar results to those of Section 6 also apply for the Hannan estimator S Let
MSEJ{f,) be the standardized mean squarefl error 9f the truncated expansion of Sy
Theorem 5 gives the expansion of MSE( fiy) for By,

Theorem 5. Under Assumptions A.1, 4.2,

. a 1 (eQ7[y5 + 2ak,¥,] Q'
R
MSE{fw) + 2m + M 2{ acQ e ’

where £, ¥5, ¥, are px p matrices defined by matrix analogues of the  for-
mulae (6.846.10).

8. Monte Carlo results

A small simulation experiment was conducted to evaluate the bandwidth selec-
tion procedures and the sampling performance of estimators that use these auto-
mated bandwidth choices. The model used for data generation was the following:

Ve=px 4w, =1,
Xx=n+M_, 0=05

Two different specifications of u, were considered, and they are denoted DGP(1) and
DGP(2):

DGP(ly. AR(l), u,=ou_; +¢&,a=09
DGP(2):. MA(l), w,=¢ + og_q, =05

In each case, 7, and &, are both iid N(Q,1) variates and are independent of each other.
The sampling performance of the frequency domain estimators f, f and the simple
OLS estimator were examined for the case of each DGP and for different sample
sizes. We use the following notation in our discussion.

1. OLS: OLS estimator for §.

2. GLS!: Frequency domain GLS estimator ffin (2.8) by using the bandwidth (4.6).

3. GGLS2: Frequency domain GLS estimator § in (2.8) using the simple ‘rule-of-
thumb’ bandwidth M = T*7.

4. GLS3: Frequency domain GLS estimator f# in (2.8) using the simple ‘rule-of-
thumb’ bandwidth M = T°.
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5. GLS1H: Frequency domain GLS estimator (6.4) using the bandwidth (6.11),

6. GLS2H: Frequency domain GLS estimator (6.4) using the simple ‘rule-of-thumb’
bandwidth M = T,

7. GLS3H: Frequency domain GLS estimator (6.4) using the simple ‘rule-of-thumb’
bandwidth M = T,

We tried the sample sizes T = 2° = 64, 27 = 128, 2® = 256. These highly com-
posite sample sizes were chosen, as in Robinson (1991), to take advantage of fast
discrete Fourier transform routines. The number of replications was 4000 for each
case. Since our interest is primarily in bandwidth selection, we just used the Daniell
window K(/, —w) =1 for A,eB; In Figs. 2-7, true formulae were used for
approximations (4.6) and (6.11} in estimates GLS1 and GLSIH. A comparison
between the results of using true bandwidth formulae and the plug-in method is
shown in Figs. 8 and 9. Figs. 2 and 3 plot the empirical distributions of the
estimator f in (2.8) (GLS1, GLS2) and the QLS estimator for the sample sizes
T =27 and T = 2° when the data werc generated by DGP(1). We can see that as
the sample size increases, the performance of the frequency domain GLS estimator
isimproved. I'igs. 4 and 5 give the empirical distributions of these estimators for the
sample sizes T =2" and T = 2 when the data were generated by DGP(2). The
sampling performance differs across data generating processes. The frequency
domain GLS estimator has better small sample performance in the case of DGP(1)

Empirical Distribution: Different Bandwidth, DEP(1), T = 258

T T

24 2B 32 38
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0.8
T

o4

©na 0.6 0.8 10 12 14 16
Fig. 2. GLS1 (solid), GLS2 {dots and dashes), OLS (dotted).
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Empirical Distribution: Different Bandwidth, DEP(1), T = 128
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Empirical Distribution: Different Bandwidth,DGP(2),T= 128
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Empirical Distribution: Different Bandwidth,DGP{2),T =256
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Fig. 5. GLS1 (solid), GLS2 (dots and dashes), OLS (dashed).

Empirical Distribution: Different Bandwidth, DEP(1), T = 256
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Fig. 6. GLS1H {solid), GLS2H (dots and dashes), GLSIH (dashed), OLS (dotted).
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Empirical Distribution: Different Bandwidth, DGP(13, T = 128
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Fig. 7. GLS1H (solid), GLS2H (dots and dashes), GLS3H {(dashed), OLS (dotted).

than in DGP(2). Similar phenomenon can be found for the Hannan estimator
(Figs. 6 and 7).

These simulation results emphasize the importance of bandwidth selection.
Variation across M is apparent in the figures. For the Hannan estimator fy,
a bandwidth selection for M of order T/ generally provides better estimation for
f than M of order T**, corroborating second-order asymptotic theory. An unsuit-
able choice of bandwidth can lead to poor estimation for #. In the case of DGP(1),
substantial efficiency gains are achieved by choosing the bandwidth to be of order
M*'?3 for the Hannan’s estimator. However, less favorable conclusions are found
when the error term is generated by DGP(2),

The parametric plug-in method of using an AR(1) formula for the error
process has also been tried. Figs. 8 and 9 graph the empirical distributions for
estimators GLS1H using the true bandwidth formula and the plug-in formula when
the sample size is 2°. Fig. 8 compares the distributions for estimator GLS1H when
the error process was generated by AR(1} model and an AR(1) structure was used in
the plug-in formula. Fig. 9 graphs these distributions when the error process was
generated by MA(1) model and we used an AR(1) plug-in formula. When the
prespecified model is close to the true error process, there is no big difference
between the empirical distribution of the estimator that uses the true optimal
bandwidth formula and the estimator using a plug-in formula.

Feasible GLS and infeasible GLS are also compared. Fig. 10 reports the results
for the case of DGP(2) with sample size T = 2’, other cases being similar. The
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relative performance of the frequency domain estimator and the OLS estimator
depends on the exact distribution of the errors in small samples. Generally speaking,
the frequency domain estimators are more cfficient than the OLS estimator for
DGP(1). But OLS does do better than the GLS estimators in the case of DGP(2) for
relatively small samples. The main reason for this phenomenon is that the asymp-
totic relative efficiency of GLS over OLS (ARE = Var(Bg )/ Var(BoLs) is much
higher in the case of DGP(1) than in PGP(2). Fig. 11 plots the ARE of GLS over
OLS for AR and MA errors. The solid line corresponds to an AR(1) error process
u, = oty + & with o taking values from 0.1 to 0.9. The dashed line is for an MA
eITOT #, = & + tE -4, with o taking values from 0.1 to 0.9. The greater potential
gains from GLS estimation in the AR(1) case are apparent in the figure.

9. Conclusion

This paper develops second-order expansions for efficient, frequency domain
semiparametric estimators and gives second-order approximations to their mean
squared errors. While choice of the bandwidth parameter does not figure in the first
order asymptotics for these estimators, it does influence the second-order terms. It
can therefore be chosen in such a way as to minimize second-order effects and
thereby enhance second-order efficiency. Second-order formulae also provide
a mechanism for data-based bandwidth selection rules that are useful for the
practical implementation of these procedures. Under normality assumptions,
a more specific distributional approximation for the estimator is possible and is
given in Section 5. Two commonly used versions of the frequency domain estimator
are studied. One of these (By) is due originally to Hannan (1963a,b) and involves
more smoothing over frequencies than the other (5). It is shown that while these
two estimators are asymptotically equivalent, they do differ at the second-order
level. As a result, different bandwidths should be set for these two estimation
procedures to minimize the second-order effect in the asymptotic mean squared
error. For the commonly occurring quadratic kernel functions, the optimal expan-
sion rate for the bandwidth parameter M for these two estimators (fy, f) are
T'7 and T respectively. Monte Carlo evidence emphasizes the importance of
bandwidth selection in practical applications. Although the relative performance of
different estimation procedures depends on the form of the error process, we find
that the bandwidth selection procedures suggested by the second-order asymptotics
perform reasonably well for both of the frequency domain estimators f§ and f,.
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Appendix A. Expansion of estimator $: Lemmas and proofs

The following lemma shows that, in nonparametric spectral density estimation,
the bias term coming from the periodogram itself is of order T~ L.

Lemma Al Under Assumption A2, BEIA) —f(A)=OT" Y, the O(T Y
term is uniform in A (cf. Brillinger, 1980, Theorem 5.2.2)

Proof of Lemma [. The proofls for the results of B, and V, are the same as the
standard argument for the bias and variance of kernel spectral density estimates.
For P, note that

P, = Z (Uts[iuu()vs) - qu()“s):l

s¥FL

= - Z(B - ﬁ)z (utslxu("{'s) + (B - ﬁ]zz wrslxx(j-s)' (Al’)
s*Et s#t
Notice that § — f = O,(T %) and it can be verified that ¥, (4} = O4(1)
and Y., ululd) =04 m™ "3, thus the first term in Eq.{(A.1) is of order
OLT~"*m™"?) and the second term is O{T!). As a result, P, = o,m " '). O

Proof of Lemma 2. The results follow from Lemma 1. O

In view of Lemma 2, we see that R, in Eq. (2.9) i3 of higher-order of magnitude.
Substituting Eq. {3.3) into the expressions for W and Wy, we get the following:

Wp= — Wpo + Wpy —bp1 + bp + Rpy, (A1)
Wyi = — Qun1 — Ly1 + Lya + Lys + Qny + Cyy, (A2)
where
T2
WDO = T_l Z Ixx(’lx).f;:(ir)_zl/h
1= -T2 +1

Wpi = T 1Y, LA fd(2) EVE,
r

bpr = T7Y Ll ful4) ™ 2B,
t
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bp; =T ' zt: Ixx(’lr)f;m(j-r)73Br2=
Rpy = T”;In(/l:)ﬁ.’ﬁ(i;)ﬂ[Vf - EV{],
Ly=T Y er‘,wx(ﬂf)wu(lr)ﬂiu()1)72Bta
Ly, = T Y2 ) wiliwld) fai() “EVE,
t

Ly = T2 Y wlddwda) ful ) BL,

f

Ony = T2 ), wllwdd) Lk () ™2V,

Ona =T} Wx(l;)wu(ia).ﬂf(i;]’a[z Wl — EC )}

t
Crx1 =T 2 Y wildowidd)fii (i) '"3[ 2. Ol ;}
t s*j

where {, = 1,44} — f.{A). The order of magnitude for each term in Wy, and Wp is
given in the next lemma.

Lemma A.2. Wy = O[T 7'7%), Wy, =Odm™Y), bpy = OfM ™), bp, = O (M ),
RDI = Op(T_ 1f’2m7 1)’ LNl = Op(Miq)a LNZ = Op(m_l)’ LN3 = Op(M_zq)s
Oni = Op(m_ 112), Qna = Op(m_l)ﬂ Ca = Op(mAl)

Proof. The orders of Wy1,by1,bp2,1.82 follow from the results of Lemma 2. The
proofs of Rpy Ly,Lys,0n1,.0x2.Cy, follow directly by calculating the second-
order moments. [

Substituting (A.1) and (A.2) into expansion (2.9), and dropping those terms
that are of order o, (M~ Mor og{m~ ') according to the results of Lemma A.2, we
find

ﬁ(ﬁ— ﬁ) = QT_'I{WNO - [LNI - meFIWNo]
+ [Lyz — Wp1Qr ' Wyo]
+ [Lys — bpaQ7 "Wy — bpi 27 'Ly + b5 M ™ *Wy,]
— Oni + Ons + Cyi — WooQr ' Wyo — bpi£27 Qi }

+ higher-order terms (A3
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_ 1 1 1 1
= Q7 'Wyo + —=4 MZJI + .Mz +—J2
Jm
+ higher-order terms, (A.4)

where Ml = Q70 B, = Qfl(Lm — meleNo)» oy = QI_"l(LNZ -
WDIQT_“ WNO + QNZ + CNl) ﬁ2 QT (LN3 bDZQT WNO - bDIQT LNI

b1 M~ *Wyg). The following lemma, which gives correlations among terms in
Eq. (A.3), helps us to eliminate higher-order terms in the expansion of the mean
squared error.

Lemma A.3. The following expectations are either of order o(m™') or o(M ™29

E[Wyo(Ly1 — bp1Q27 ' Wyo)], (A.5}
E[Wyo(Lyz — Wp1827 " W)l {A.6)
E[Wyo(Lys — bpa€27 ' Wyo)l, (A7)
E[Wyol — bp1Q27 ' Lyy + b1 M ™2 Wyo)1, (A.8)
E[Qn1(Ly1 — bp1 Q1 ' Wyo)], {A9)
E(WxoQn1), (A.10)
E(WyoQn2), {A.11)
E(WnoCni), (A.12)
E(Wo Wpof27 ' Wyo). (A.13)

Proof. The proofs are similar as those of Lemma A.2. [

As a result of the above lemma, we get
MSE(@ = Var(Q7 **Wyo) + Var[Q7 3Ly, — bp1Q7 ' Wo)]
+ Var(Q7 '*Qx,) + higher-order terms (A.14)

1 1
=1+ —o/ +—3# + higher-order terms, (A.15)
m M
where .o/ = 3fk(x)?dx, # = k}[Q ™'y, — Q7 *¥73].
Appendix B. Lemmas for the distributional approximation

Lemma B.1. £ and f§ — J§ do not depend on .

Proof. Notice that £ = diag [fu(Ay), ... fulA7)], and 1,(4,) is calculated from
Wyldy) = wild) — BorswlAs) where ﬁom = [W.W ] 'W,W,. Thus W, does not
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depend on § since neither x nor u do. As a result, (1) and £ do not depend on
B, and § — f is independent of §. I

The following lemmas gives some uniform convergence results which are
useful in controlling higher-order terms and help us to establish condition (5.3)
under which Theorem 2 holds.

Lemma B.2.
sup [B/| = O(M %),
t

—!f2+£)

sup |V,| = Oym for any ¢ > 0,
!

sup |Py| = o (T~ %).

¢
Proof. The results for B, and V, follow from Brillinger (1980), (Theorem 7.7.4).
The third result follows from the fact that the moments of w,(4) are uniformly
bounded under normality assumption. [
Since |f' L) — [l AE < co{|BJ” + |V IF + |P,|7} for some constant ¢, we have
sup ) — fd 2P = O(T P75y,
Let A, = {|ffA) — fuld)] > filA)/21,A = UT_ 1 A,, then
Lemma B.3. Pr{A) = o(T~*"
Proof. Omitted. [J
Restricting our attention to the region of the complement of 4, A°, we get
Lemma B.4.
sup E|Wy|? < oo,
e
sup E|W p|” < o0, Wp = MW p,
T

Proof. Omitted. O

Notice that Q’fi’-ﬁ(ﬁ — B =22 TR - B — QY /T(E - B = Zr + Ry,

where Z; = (27 — Q7 W, + Q;3WEHW,, and Ry = Q7 'Q73W3iW,. Let
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G = {T"log T|Rr| > ¢} and H = {@; > Q/2}, we have
Pr(G) < Pr(GnH) + Pr(H"),

and since that Q; —» Q, and @1 — Q > 0 in probability,
Pr(H%) = Pr{|Qy — Q| > ¢,}

= Pr{M Wy > c,}

where ¢, Is a constant whose value is not always the same. By Lemma B.3, we
focus on the region of A° since the error s of order o(T~%). Thus,
Pr(H%) = o(T %) provided p > 2 and sup ;E|Wy|” < «o. For Pr(GAH), we
have

_ — 4
GnH c {le IQTSW%WNl >W}
~ c M
= S |Wp [ Wy| > ——— 1.
i > ]

Then

E|Wo 7| W P T*"log T

PriGnH) € ¢, YD

_ E[W, | Wyltlog"T

% Trar

Therefore, provided supy E{W|*?|W " < oo, and p > 2,Pi(GAH) = of T~ ). Tt
follows that Pr(G) = o(T %), which justifies the error in (5.3) of Theorem 2.

Appendix C. The expansion of Hannan's estimator; Lemmas and proofs
C.1. The approximation for the spectral density estimator f:,,(coj)

Let
f;,:x((’:)j) = m_ ! Z K(Aa - wj)fxx(/ls) = Z szfxxUﬁ)e

2B

ij :f;ckx(wj) _fxx(wj) = Z sz[fxx(is) _fxx(wj]]-:

5
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and

~

= f.;cx((‘)j) xx (1) Z (DJS[Ixx(A ) fxx( s)]

Then

Furl®) = fslw)) + By + Vi

Lemma C.1. If lim {1 — k(x)}/|x|" =k, < o0, and

x—0

ket

Y Ry,

= -

SaZ) =5 ,

then

ij ~ = M_qkqfxq(wj) = O(M_q]

\/%ijij» N, af 2w for w; # 0,

where a = 3{% k(x)> dx is the limit of (1/m)Y K (4, — w)™.

Proof. Similar to that of Lemma 1. O

Define

f;!u(w} =m ' Z K(A'a ) u(’ls) = Z szqu(;Ls)s

AeB;

fut(w,l) =m ! Z K(As - U)j).ﬁau()'s) = Z a)jsfuu{;“s)a

AicB,
Fuder) = 3Tk 1) + Fule; 1)),
JaXop) = sl falo;- 1) + L O

= fu M) — fule)),
= ful)) — fu(e;),
Py = fudw;) — Juu)).
Then

ﬁu(wj) =f;,u(LUj) + Buj + Vuj + Puj°

(C.1)
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Lemma C.2.

1 [x? i k
B, = W[%Mm ;1) = Zf?'z(“’f“)} + oM™
L [#? O o -2
oz Enar=l K(6)6*d8 |fude) + oM™,
2mVy, 5 N0, af2( m)) for w; #0,

P=o,m™ ).

Proof. Similar to that of Lemma 1. [

By the same argument as in Section 3, we obtain the following expansion for
the reciprocal density:

Jl@) ™! = fudo) ™" = — [ ) PV + L3N w) TV
— fud @) Byj + fulw)) T Bg;
+om™t + M™Y.
C.2. Approximation of Xy and Xy

M

Z - Z'1'" ZMJ z {fxx(wj)

-M+1

(C2)

X[~ fob(w) Vo + fuk(@) 2V — fudo;) *Buj + fulw) B
+ Vil fuloo) ™! — full)) Vo + fill0) VE
= fulws}™ 2Buj+fuu(wj) *Bi;
+ Byl fulen) ™" — @) Vo + fido) PV
— ful @) 2By + fudw)) B}

+ higher-order terms.

Dropping those terms that are of order o(m ™) and o(M ~*), we get
m M
Xp= fxx((u )
TR A

X[ —fik(w) 2V + fillw) "V _f;m(wj)_zBuj + fudlco )™ 333;
+ Vil fudew)) ™! — fube) ™2V oy — fudw)) "B,

+ By fudoo) ™" — ful(0) TV — fulew) T B0}

+ higher-order terms
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1, xx(wj)fuf(wj) w2 V;u'

—
I
+
—

2 2Dz Mz DME Dz

fxx(wj)f;!u(wj) - ZBuj

~,
]
+

-

+

Fed) fudw)) > B

ey
il

+

fxx(wj).ﬁtf(“)j) B 3E VL;:'J
+1

.,
I

+

Y fudepfile) IV — EV

j=-M+1

=+

S
i
[~ fME

e,
Il
+
—

.
I
+

—-

+

ﬁm(wj)u lej

.
I

+

—_

5 En Ee e ES 2S5 2e Bs B

fuu(wj) N szjBuj

Lo
I
+
-

g M= 2z M= &

XY 2 ﬁit(w ')7sz'Vu'
2M j= —ZM-i—l 7 1 J

+ higher-order terms,

I m Mo - L
XN = ﬁ i _§I+ lfxu(wj)fw(wj)

M
m ~
= AT fxu((u )
2M ;_ -ZM+ 1 ’
[ fudeo) ' ~ L) ™ Vi + L) 2V
7f;m((gj)7zBuj +fl‘m(wf)_3B|3'j

+ higher-order terms

and
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M

- % i _zﬂ:{ . Lf;u(‘”ﬂ.ﬁu(m )

— _

~a &, Jdedtie) T,
m X .

T o, L S i@V
m ¥ .

~am . &, Jelodfulw) B,
m M -~

t o, L, S ule) B

The order of magnitude for cach term in X, and Xy is given in the following
lemma.

Lemma C.3.

M
Lul = ﬂ Z fxx(wj)f;tt(wj)_ : I/uj = OP(M7 ”2),
2M Gy

m M B ~
b, = —f Y fud) i) 2B,y = O(M ™~ 2m2),
2Mj=—M+ 1

m M _ _
by = ym Y fulo)fudo) T BY = O(M ™ *m'?),
M j=-M+1

M
bu3 = ﬂ Z fxx(wj)ﬁat(wj)_3EV5j = O(m_ 1;2),
2Mj=—M+1

M
R = \/—E Z fxx(wj)ﬁt:(wj)is[]/zj — EV,‘:} =0ym" L2pg— 12y,
2M - Si4

Jm &
Ly = )T = O M1,
x1 2Mj: §f+ lfuu(wj) J p( )

M
m - — —
Lxu = \2/]\; Z f;‘:’:((ﬂ‘)) szjVuj = Op(m UzM 1;’2)’
j==M+1
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M
m _ _
L= —f Y fulw) EBV = Ol (M),
2Mj= -M+1

M
=_\/__T 31 = 1/2M -2
bxl Zsz _ZA4+IJ:IN((’UJ) Bx} O(m ]:

M
bxu = ﬂ ZA‘,{ lfuu(wj)_szjBuj = O(M74m”2)a
j=—M+

M
m _ _
Lo= Y 5 o) BV = OM
j=-M+1

M -~
Xoo= [g7 % Sulodfulw)* = 04D,

; " S fuepfie) Wy=Om ),

N1 = _[5as
2Mj:—MH

m M - _ -
Co= 3 2 Fulw)bo) Vi =On™)
H mo$z 2 o
D= gy X falode) By = 04M ™)
j=—-M+1

M
m - — -
W= [ L fu@)fulo) Bl = 04M™),
j=-M+1

Proof. Similar to that of Lemma A2, O

Thus
Xp=1(bx1 — but) + (Ly — Lu1) + bz + b3
— b+ Ry — Law — Lz — Liz
Xy=Xyo— QN+ Cu — Ly + 1Y

C.3. Expansion for the moments Ej@,‘,(cu“,-)2

(C.3)
(C4)

The square of ﬁ (f — p) is approximated by the moment of the truncated

expansion

(-5
. m m
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and the calculation of EW 2, involves Efxu( ;)>. Notice that

Ef @ )? ~ ; Y K(h — 0)EL(4)ELJA,).

AeR,;
We decompose EI, (/) for i e B; as follows:
EIxx(;Ls) =fxx(wj) + [fxx(/ts) *f;:x(w,u)] + [EIxx(’Ls) _fxx(’q*s)]'

Under very general conditions (e.g. Assumption A.l1), the last term,
[El{4s) — fA)], is of smaller order of magnitude, oy (m™ '), than the bias term
[ fexl4 5) — foxl;)], which represents the bias due to smoothing. Thus,

— 2 K(%, — o) BL (A ELA)
- n% % KUy = 0 el 2)
%; (s = @)L Sl ) — frakeo;)]
;;m — ) feslh) = Frel07)]
% % Kl = 0L fuld) — Fod )1 fu) — fud2)]

+o{m™ ).
For the second term, notice that, under our assumptions,
f;m s — Juy wj) f:u(wj)(is - wj) + %f;:r(w])(ﬂs - wj)z + Op((’ls - wj)z)'
Thus

T KU, = 0) T fuld) — ful)]

1
"’ful;(wj)T Z Ky — wj)z()ﬂ - wj]2-
m
Let A, —w; =0,/2M, then 0, = —n + 2np/m, p=1,....m. and K(4i, — w)} =
K(BP/Q.M) = K(Gp) = (1/2M)ZE/:27 T/2+ lk(h/M)c_i(hIZM)ﬂp . ThUS,
1
; Z K(;{s - wj)zﬁx(wj)[fuu(is) _.ﬁm(w})]
Ay

1

~ T .2, KOO

16M2 j K(Q) 02 dgfxx ])f u(wj)-
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Similar]y,

p Z K — ) fuud ) frerlh) — frle ]
1 L ,
~ 16 j | K670 db ) ko),

and

1
E‘Z K(;Ls — (Uj)z[fxx(/'{s) *fxx ][f;m s fuu U)J):l

T M

L jn R(0)*0* d0f, Aw ) fifw)
1 L ) )
" mf K(O26* a8 sl fufor):
Thus

- 1
Efxu((gj)z ~ E[afxx(cuj)f;u((ﬂj)

1 "o 202 iz
+ MJHK(Q) 0 dgfuu(wj)fxx(wj)

T 202 " ;
+ 16M27TJAEK(0) 0 dg.fuu(wj)fxx(wj

1 T _ ,
+ SM%J_ "K(G)zgz A8 f o) fidw)].

C. 4. Second-order expansion of ﬁ (Pu —

Plugging Eqgs. (C.3) and (C.4) in expression (6.5), and dropping those terms
that are o,(m™') and o,(M ~?), we get,

1
NAT= {XNO oY, - [Lﬁl - ﬁ(bul —by)Er XNO]

1

N

1
+ Cy +T(Lul — Lo)Z7 ' Xno — bu3ET1XN0}

m
+ higher-order terms

-1 1 1
""ET XNO+ A + [C5)

NCRAE
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where A4, = 270Ny, and By = Zr'[L¥: — (1/y/m)buy — bo)E7 ' Xxo). The
following lemma gives the correlations among the terms in BEq. (C.22).

Lemma C. 4.

1
EX%;O = aQ + W’lf/},,
2

a
E(QN,)* = ol
m

EXyoQN: =0,

1 2 a’
E—=b.327 Xno = EXpoCo1 = =9,
2m

Jm
EZ;Z(Ln - Lu1)X§'0 = 09
i

N

ak,

e

EXNO|:LIN{1 + (byy — bul)z;lXN()] =

Proof. Omitted. O

Proof of Theorem 3
MSE) = Ea 1971

1 _
X {Xﬁo + Q%1 — 2XnoOx1 — ZXNO[LNI - T(bau —b)2r 1XN0:|
m

1 2
+ 2XN0|:Cu1 ——=b3Z1 lXNO] + T(Lu - Lxl)zj_"lxj%m} + 0p(*)
m

m

_ [4] 1 '1/.1 - 1
—1+2m+W|:7+2k2“f/2:’Q . O
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