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Summary  This paper proposes an Augmented Dickey—Fuller (ADF) coefficient test for
detecting the presence of a unit root in autoregressive moving average (ARMA) models of
unknown order. Although the limit distribution of the coefficient estimate depends on nui-
sance parameters, a simple transformation can be applied to eliminate the nuisance parameter
asymptotically, providing an ADF coefficient test for this case. When the time series has an
unknown deterministic trend, we propose a modified version of the ADF coefficient test based
on quasi-differencing in the construction of the detrending regression as in Efllaht{1996).

The limit distributions of these test statistics are derived. Empirical applications of these tests
for common macroeconomic time series in the US economy are reported and compared with
the usual ADR-test.
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1. INTRODUCTION

Tests for a unit root have attracted a considerable amount of work in the last ten years. One

important reason is that these tests can help to evaluate the nature of the nonstationarity that

many macroeconomic data exhibit. In particular, they help in determining whether the trend

is stochastic, deterministic or a combination of both. Following Nelson and Plosser (1982),

much empirical research has been done and evidence has accumulated that many macroeconomic

variables have structures with a unit root. The literature on testing for a unit root is immense.

The most commonly used tests for a unit root are the Dickey—Fuller test and the Phitigsss.

The Dickey—Fuller test (1979) is based on the regression of the observed variable on its one-

period lagged value, sometimes including an intercept and time trend. In an important extension

of Dickey and Fuller (1979), Said and Dickey (1984) show that the Dickey—Fttiest for

a unit root, which was originally developed for AR representations of known order, remains

asymptotically valid for a general ARMA process of unknown order. THest is usually called

the Augmented Dickey—Fuller (ADF) test. An alternative semiparametric approach to detecting

the presence of a unit root in general time series setting was proposed by Phillips (1987a) and

extended in Phillips and Perron (1988). These tests are known as PHjlipsd Z; tests. The

Z -tests allow for a wide class of time series with heterogeneously and serially correlated errors.
The ADF test is d-test in a long autoregression. Said and Dickey (1984) prove the validity

of this test in general time series models provided the lag length in the autoregression increases
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28 Zhijie Xiao and Peter C.B. Phillips

with the sample size at a rate less tef?, wheren = sample size. No such extension of the
Dickey—Fuller coefficient test is recommended in their work, since even as the lag length goes to
infinity, the coefficient estimate has a limit distribution that is dependent on nuisance parameters.
However, theZ, testis a coefficient based test with a nonparametric correction which successfully
eliminates nuisance parameters. A similar idea can be applied to construct an ADF coefficient
based test. In particular, the nuisance parameters can be consistently estimated and the coefficient
estimate transformed to eliminate the nuisance parameters asymptotically, providing an ADF
coefficient test with the same limit distribution as the original Dickey—Fuller coefficient test and

the Z, test.

The ADF coefficient test can also be extended to models with a deterministic trend. The
traditional way in dealing with trending data is to detrend the data by ordinary least squares
(OLS), and then apply a unit root test to the detrended time series. This is usually done by
including a deterministic trend in the ADF regression model. Like the case with no deterministic
trend, the limit distribution of the estimated autoregressive coefficient depends on a nuisance
parameter and transformation is needed to eliminate this dependence. A natural way to compare
tests is to examine their power in large samples. Recent study shows that power gains can be
achieved when there is a deterministic trend and detrending is performed in a way that is efficient
under the alternative hypothesis in constructing the test. Such detrending procedures use quasi-
differenced (QD) data and were suggested in El&o#l. (1996) to increase the power of unit root
tests for models with deterministic trends. An analysis of the efficiency gain from this detrending
procedure (which we call QD detrending) and its effects on test efficiency is given in Phillips and
Lee (1996). As yet, few empirical applications of QD detrended unit root tests have appeared in
the literature.

This paper develops an ADF-type coefficient based unit root test (calbéd,) for ARMA
models of unknown order, with a parametric correction that frees the limit distribution of the test
statistic of nuisance parameters. We also extend this test to models with a deterministic trend and
a modified ADF coefficient test based on QD detrending is developed. The limit distributions of
the ADF coefficient test and its QD detrended version are the same as thos& gftést and QD
detrendedZ,, test. Empirical applications of these tests to the post-war quarterly US data and the
extended Nelson—Plosser data are also reported. We compare the OLS deiieRgeest with
the QD detrendedDF,, test, and examine the QD detrend&dF,, tests for different choices of
¢ (the quasi-differencing parameter).

The paper is organized as follows. Section 2 develops the theory for the ADF coefficient test.
The QD detrended ADF coefficient test and its limit theory are given in Section 3. Section 4
reports some empirical applications to a variety of macroeconomic time series data. Proofs of
theorems are given in the Appendix. Our notation is standard. We use the sysiliolSignify
weak convergence of the associated probability measures. Continuous stochastic process such
as the Brownian motiol(r) on (0, 1) are usually written simply aB and integrals like/ are
understood to be Lebesgue integrals over the intébvdl), the measure of integratiodr’ being
omitted for simplicity.

2. AN ADF COEFFICIENT TEST FOR A UNIT ROOT

Consider a time series
Ve =ay—1+U, t=12...,n, (1)
satisfying the following conditions:
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An ADF coefficient test in ARMA models 29

Assumption Al.y; is initialized at t= 0 by yp, a random variable with finite variance.

Assumption A2.u; is a stationary and invertible ARMA, q) process satisfying @)u; =
b(L)er, whereg; = i.i.d.(0,02), a(L) = Jf’zoaju, b(L) = ?:Ob,-LJ, a = by =1,
and L is the lag operator.

Assumption A3.n" 2"y = B(r) = wW(r), n" Y2 (") g = B.(r) = o W(r), where
w? = E(U3) + 2) 7%, E(uiuk) = o2{b(1)/a(1)}?> = long run variance of y and Wr) is a
standard Brownian motion.

Notice that the limits of partial sums af ande; depend on the same standard Brownian
motion W(r). From A2, we obtain the AR representationigf(e.g. Fuller (1976), Theorem
2.7.2)

00
8t=d(L)Ut=Zdet_j, do:l
j=0

Rewrite the above representation as
et = d(L){Ayt — (@ — Dyr—1} = d(L) Ay — (@ — Dd(L) -1,

and use a Beveridge—Nelson (BN) decompositiordfdr) asd(L) = d(1) + d*(L)(1 — L), we
obtain

et = d(L)AY — (@ — DA*(L)Ayi—1 — d(D) (@ — Dyt
={d(L) = (@ = HLA" (L)} Ayt — (@ — DHA(D)yr-1.
Definef(L) =1 —d(L) + (@ — 1)Ld*(L) = B1L + BoL2+ - -+, anda = d(1)(« — 1), we then
have the following regression
Ay = ay—1+ (L) Ayt + &,
or
AVt = ay—1+ f1AYt-1 + f2AVt—2 + - + &t (2)

The null hypothesis of interest, which whlg : @« = 1 in (1), is equivalenttddp : a = 0. In
place of the infinite AR regression (2), we consider the ADF regression model

Ay = ay—1+ B1AYi—1+ - - - + BcAYi—k + €, 3

whereey isdefined ag\y; —ayi—1—B1AYi—1—- - - — Bk AYi—k. We useZ to denote the x (k+1)
matrix of explanatory variables and partition it in the following way/= (y_1, Zx), wherey_1
is then x 1 vector of lagged variables, aiZgt is then x k matrix of observations of thielagged
difference variablesAy;_1, ..., Ay;_k). Thus we have the following matrix representation

Ay = ZB + &,

whereg = (@, B1, ..., Bk) & = (&, ..., &n) .
We shall be concerned with the limit behavior of the conventional least squares regression
coefficienta for a in (3) given by

a=(y ,Py-1)ty ,P,Ay,

whereP, = | — Zk(Z{< Zk)‘lz((. We make the following condition on the expansion rate of the
lag lengthk.
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30 Zhijie Xiao and Peter C.B. Phillips

Assumption A4.n~Y3k — 0as n— oo, and there exist & 0, r > 0, such that ck> n/".
The limit distribution ofé is given by the following theorem.

Theorem 1.Under assumptions Al to A4, when= 1,

o/WdW

(;)/‘W2

Remark 1. The limit distribution of the regression coefficignlepends on unknown scale param-
etersw ando, and thus the statistigd can not be used directly for unit root testing. Howeweand

o can be consistently estimated, and there exists a simple transformation of the statigtich
eliminates the nuisance parameters asymptotically. In particifas étzk/n is a consistent
estimator ofr2, andw? can be consistently estimated by the AR estimafoe= 62/(1— Y ).
Thus, we define

na =

ADF, = (&/6)na.

Under the null hypothesis that= 1, it is apparent that the modified coefficient test statistic

/de
ADFy =— £

Jre

has the same limit distribution as that of the Philligs test and the original Dickey—Fuller
coefficient test.

A minimal condition for a satisfactory statistical test is that it should be able to discriminate
between the null hypothesis and a fixed alternative with probability one in large samples. The
next theorem guarantees this property (for a definition of the spectral density, see the proof of
Theorem 1 in the Appendix).

Theorem 2.1f y; is generated byl) with @ < 1, then ADF, = Op(n). The divergence rate is
sharp in the sense that ADF, — p € for some c£ 0.

Remark 2.As the sample size increases, the test statish®F, diverges faster undetl; than

the ADFt-ratio statistic, which is of orde®,(n*/2). This suggests that the coefficient based
statistic is likely to have higher power than theatio statistic in large samples. Another way of
comparing power of statistical tests is to look at their behavior under the local alternative. It can
be verified that unde. : « = 1+ c/n, the limit theory for the two tests is as follows

-1
ADF,, =>c+{/Jc(r)2dr} /Jc(r)dW(r),

and _172 _172
ADF, :>c{f\]c(r)dr} +{/Jc(r)2dr} /Jc(r)dW(r),

where J.(r) = for e =9¢dW(s), which are the same as those of the semiparam&griand
Z tests derived in Phillips (1987b). Although boldidF, andADF; are Op(1) under the local
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Table 1. Size corrected power of ADF tests, 5% level.

AR(1) MA(1)

o p=05 p=-05 6=05 6=-08

ADF,  0.95 0.216 0.234 0.181 0.251
0.90 0.458 0.524 0.478 0.566

0.85 0.622 0.717 0.650 0.758

ADF¢ 0.95 0.211 0.233 0.171 0.248
0.90 0.448 0.522 0.472 0.565

0.85 0.618 0.716 0.649 0.761

alternative for finite ¢, when — —oo, it is easy to show using the results in Lemma 2 of Phillips
(1987b) thatADF, = Op(|c|), whereasADF; = Op(|c|¥/?). In fact, asc — —oo, it can be

shown thatADF,, ~ (—2c)Y2 ADF; ~ ¢ + (—2c)Y2¢, whereg is N(0, 1). These results, like

those of the simple divergence rates, indicate that coefficient tests may be expected to have higher
power than t-ratio based statistics, at least for large deviations from the null hypdthesis.

Table 1 reports some results from a Monte Carlo experiment on the finite sample power of an
ADF, test. In order to provide a comparison betweenAbd-, andADF; test, we give here the
size corrected power. The data generating process is (1) and four designs for the error structures
are considered: AR(1) processas= pui_1 + & with p = 0.5, —0.5; and MA(1) processes
Ut = &t — Oer—1 with & = 0.5, —0.8, with ¢; being i.i.d.N (0, 1), andn = 100 in both cases. The
number of repetition in the experiment is 15000. These results corroborate the findings of other
simulation experiments that coefficient based tests have relatively higher power.

3. AN EFFICIENTLY DETRENDED ADF COEFFICIENT TEST

Many macroeconomics variables, such as income, or consumption, are often characterized as
‘integrated processes with drift’, and can be expressed as the sum of a unit root process with
zero-mean increments and a linear trend. Generally, if we allow for a deterministic trend in time
seriesy;, we have the following representation

Ye=v"%+ ¥ 4
Yo =ayp g+ Ut (5)

whereu; is defined as in the Appendix, Section A2 ands the p x 1 deterministic trend which
satisfies the property that there exists a p scaling matrixD, and a piecewise continuous limit

1These divergence rate arguments for local power, like those-asoo, are only suggestive. As pointed out by the
refereesADF%3 is a directionat-test with greater divergence rate than #i2F, test. This alternative test also has faster
divergence for local power &s— —oo. However, on the basis of the analysis in Phillips and Park (1988), there are good
reasons for wanting to avoid power statistics IMBF3, as tests based on such functions can be expected to have greater
size distortion than those based ADF;.

One can similarly analyse local poweras> 0, giving the form of the power function in the immediate neighbourhood
of the null hypothesis. In this case, bdiDF; andADF, differ from their respective null variates by a term@p(c).
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32 Zhijie Xiao and Peter C.B. Phillips

trend functionX(r) such thatDnxnry — X(r), asn — oo, uniformly inr € (0, 1). Without
loss of generality and to simplify the proof, we consider the leading case of a linear trend where
X = (1,t), Dy = diag(1, n™1), andX(r) = (1,r)’.

The traditional way of removing this deterministic component in unit root tests is to run an
OLS regression on an augmented equation. In the present case, this is simply

Ayt = w'X +ay-—1+ B1AY—1+ - + fkAVi—k + €. (6)

and we can construct the test statistics from the above regression. Including the deterministic trend
in the ADF regression equation is equivalent to detrending the time sgrgsOLS regression,
and then applying the ADF regression to the detrendedygatay; — y'x;. The limit distribution

of the estimatea of a in regression (6) is given as follows.

Theorem 3.Under assumptions Al to A4, when= 1,
na= <o/w)/wxdW//W§,

where W is the detrended Brownian motion

-1
Wx (r) = W(r) — (/WX’></XX’> X(r),

which depends on the limit trend functionrX.

The corresponding detrended ADF coefficient test can then be constructed as
T @ ~ 2
ADF, =< |na= | WxdW/ | Wx.
o

Monte Carlo evidence indicates that unit root tests usually have low power against plausible
trend stationary alternatives (seser alia, Schwert (1989), Diebold and Rudebusch (1991),
DeJonget al. (1992), Phillips and Perron (1988), Ng and Perron (1995), Stock (1995)). In recent
years, much research effort has been devoted to the development of unit root tests with improved
asymptotic properties. One of the mechanisms for increasing the efficiency of the unit root tests
is related to point optimal test procedures. Under Gaussian or other distributional assumptions,
the Neyman—Pearson lemma can be used to construct the most powerful test of a unit root against
a simple alternative (see King (1988), Dufour and King (1991) and Ekio#tl. (1996) among
others). In the case with no deterministic trend, recent work on the topic shows that there are
virtually no power gains from using this approach over the coefficient test. However, when the
time series contains a deterministic trend, the power of unit root tests can be improved if we
perform the detrending regression in a manner that is efficient under the alternative €EHiott
(1996)).

For alternatives that are distant from unit root, the Grenander—Rosenblatt (1957) theorem
implies that OLS detrending like that in (4) will be asymptotically efficient. But a more relevant
theory in the unit root case needs to give attention to alternatives that are closer to unity. Such
alternative hypotheses can often be well modelled using local alternatives of the form

Hi:a=1+c/n,
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wherec is a fixed constant. We can estimate the trend coefficient by taking quasi-differences on
(4), and running a least squares regression@f; on Acx;, whereA. is the quasi-difference
operator defined a&c = 1 — L — (¢/n)L, andL is the lag operator. If the fitted trend vector in
this regression ig, we compute the QD detrended series

Vi =Yt — 7%,

which can now be used in the construction of unit root tests, just as in the case where there are no
deterministic trends to be removed.

This detrending procedure is sometimes called GLS detrending in the literature because the
regression based on quasi-differenced data has a stationary residual proceds;umuatkthus
is asymptotically equivalent to GLS estimation (e.g. Elliettal. (1996)). It is more accurate
to describe the procedure as detrending after quasi-differencing (see Phillips and Lee (1996)
and Canjels and Watson (1997), for recent implementations) since full GLS is not used in the
detrending regression, but only quasi-differencing. We therefore refer to the procedure as QD
detrending.

To derive the asymptotics for the efficiently detrenddal-, test, it is convenient to employ
the following matrix notation,

X/Z(Xl»"'sxts"'sxn)s

y/:(Y1»~--aYta~--’yn)7
ACX, = (ACX]_’ ) ACXtv LR ACXI'])a

AcY = (AcYL, ...y Ach, - - ., AcYn).

Theny = (AX AcX)"TA:X'Acy, and we have the following asymptotic result for the QD
detrended serieg".

Lemma 1. Under assumptions Al to A3 and wheg-= 1,
nil/zyzknr) = Ec(r) = wa(r)s

where
1
B.(r) = B(r)—X(r)’{/xc(r)xc(r)’dr} {/Xc(r)dB(r)—C/XC(r)B(r)dr}

-1
=w[W(r)—X(r)’{/Xc(r)XC(r)/dr} {/Xc(r)dW(r)—c/Xc(r)W(r)dr”
= oW.(r)

and
Xe(r) = (—c,1—cr).

Remark 3.When the deterministic trend includes a constant term, the invertibilitf/ XE(r)
Xc(r)' dr depends or not equaling zero, since otherwise the constant term and the coefficient
of the linear trend are not identified.

The detrended datg* can be used to construct &bDF,, test for a unit root by running the
following regression

AYE = Yy + BIAYE g + -+ BRAYE . + . (7)
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Let & be the estimated coefficient afin this regression. Then the QD detrendedF, statistic
is
ADF! = (®/6)na.

Theorem 4.Under assumptions Al to A4 and whepr= 1,

/Wc(r)dw(r)
/wc(mz '

Remark 4. The limit distribution of the modified\DF, test depends on both the trend function
and the value of that is used in the quasi-differencing filter. This limit distribution has the same
form as that of a modified semiparametdg test where we use efficiently detrendgdh the
construction ofZ, (for an analysis of the modified tests using quasi-differencing detrended
data, see Ng and Perron (1995), among others).

For the choice of local parameterElliott et al. (1996) suggested = —13.5 for the linear
trend case. This is the approximate value where the power functions are tangent to the power
envelope at a power of 50%. We conducted a simulation experiment to examine the effect of
the choice oft on the finite sample performance of the tests. Table 2 reports the size corrected
power of the quasi-differecing detrend@@dF,, tests for different choices af, and compares
them with the OLS detrendedDF,, test. The data generating process in the experiment is (1)
andn = 100, but the disturbance tenmis now i.i.d.N (0, 1). Again, the number of repetition is
15000. The Monte Carlo results in Table 2 indicate that for quite a wide range of choeéh®f
QD detrended tests have reasonably good finite sample performance. The Monte Carlo results
show thatc = —13.5 is generally a good default choice, and we use it in the empirical analysis
below.

ADF* =

4. EMPIRICAL APPLICATIONS

In this section, we apply thADF,, test and its QD detrended version to the US macroeconomic
time series to demonstrate the use of these tests, reassess previous empirical findings, compare
different detrending procedures and examine the QD detrended tests for different chaices of

In particular, we examined the extended Nelson—Plosser data, the stock price data from Standard
and Poor’s series and the post-war quarterly US macroeconomics time series data. The general
conclusion that many macroeconomic time series can be modelled by unit root processes is
supported using these statistics. We report our empirical result on the extended Nelson—Plosser
data and the post-war quarterly US macroeconomics data here. For an analysis of stock price
data with these methods, readers are referred to an early version of the paper (Xiao and Phillips
1997).

4.1. The extended Nelson—-Plosser data

The ADF, test and efficient detrending QD prefilter were applied to the 14 time series of the
US economy studied in Nelson and Plosser (1982), and extended by Schotman and Van Dijk
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Table 2. Effect of parametec on the QD detrendedDF,, tests (size corrected power).

Part |
o OLS detrended QD detrended QD detrended QD detrended
c=-25 c=-5 c=-75
0.975 0.0637 0.0679 0.0657 0.0653
0.95 0.0957 0.1079 0.1052 0.1065
0.925 0.1436 0.1694 0.1679 0.1665
0.9 0.2068 0.2503 0.2503 0.2637
0.875 0.2902 0.3465 0.3497 0.3517
0.865 0.3282 0.3858 0.3917 0.3946
0.85 0.3900 0.4477 0.4548 0.4585
0.825 0.4966 0.5487 0.5598 0.5680
0.8 0.6063 0.6330 0.6520 0.6635
Part I
o QD detrended QD detrended QD detrended QD detrended
c=-10 c=-125 c=-135 c=-15
0.975 0.0667 0.0658 0.0660 0.0660
0.95 0.1093 0.1091 0.1079 0.1072
0.925 0.1682 0.1681 0.1677 0.1674
0.9 0.2539 0.2520 0.2530 0.2520
0.875 0.3552 0.3553 0.3547 0.3538
0.865 0.3994 0.3990 0.3985 0.4000
0.85 0.4658 0.4678 0.4666 0.4665
0.825 0.5789 0.5828 0.5834 0.5843
0.8 0.6762 0.6815 0.6819 0.6836

Table 3. 5% Level critical valuegn = 100).
ADF, test ADF test

c=-25 —1579 —2.81
c=-5 —-17.15 —-291
c=-75 —18.05 —2.97
c=-10 -1871 -3.02
c=-125 —19.25 -3.07
c=-135 —1947 —3.09
c=-15 —-1991 -3.11
OLS detrending —-20.7 —3.45

(1991). The starting dates for the series vary from 1860 for industrial production and consumer
prices through to 1909 for GNP. All series terminate in 1970 in the original Nelson—Plosser data.
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Table 4. OLS detrendedDF, andADF; tests.

Series a ADF, ADF¢ Series a ADF, ADFt
CPI 0.998 -5.23 -14 Employment 0.854 —-19.38 —3.28
GNP Def. 0.967 -6.44 -1.63 GNP/Cap. 0.81 —2412 359
Ind. Prod. 0.818 -258% —3.68% Interestrate 094 -6.01 —-1.69
Money 0.936 -185 —-2.89 Real GNP 0.812 —-19.68 —-3.05
Nom. GNP  0.938 -8.87 —-2.03 Real wage 0.927 -849 -173
Stock price  0.916 —124 —2.42  Unemployment 0.772 —4355% —3.942
Velocity 0.964 —-4.62 —-1.44 Nominal wage 0.933 -11.56 —243

2 Values are smaller than the 5% level critical values.

Table 5. QD detrended\DF, andADF; tests with a linear trentc = —10).

Series a ADF, ADF; Series a ADF, ADF¢

CPI 099 -3.21 -1.04  Employment 0.88 -15.5 -2.76
GNP Def. 098 -3.62 -1.13  GNP/Cap. 0.86 -16.74 -2.88
Ind. Prod. 0.87 -174 -2.92 Interestrate 0.95 -5.58 -1.61
Money 094 -17.5 -2.87 Real GNP 087 -16.85 -29
Nom. GNP 0.95 -7.56 -1.85 Real wage 094 -6.96 -1.73

Stock price 095 -6.89 -1.71 Unemployment 0.77 -%3.6-3.9¢
Velocity 098 -243 -0.93 Nominal wage 0.95 -8.89 -2.04
2Values are smaller than the 5% level critical values.

Table 6. QD detrendedDF, andADF; tests with a linear trentt = —13.5).

Series a ADF, ADF; Series a ADF, ADF¢

CPI 0.99 -3.52 -1.07 Employment 0.88 -16.5 -2.86
GNP Def. 0.978 -411 -1.19 GNP/Cap. 0.85 -18.6 -3.05
Ind. Prod. 0.863 -19.1 -3.05 |Interestrate 094 57 -1.63
Money 0937 -179 -2.89 Real GNP 0.85 -185 -3.04
Nominal GNP 0.944 -7.99 -1.89 Realwage 0.94 -7.56 -1.74
Stock price 0.946 -7.86 -1.81 Unemployment 0.77 -%3.7-3.9%
Velocity 0.98 -2.67 -0.97 NominalWage 0.94 -9.6 -2.13

2Values are smaller than the 5% level critical values.

Schotman and Van Dijk extended all these 14 series to 1988. In their original study, Nelson and
Plosser conducted th&DF; test on these series and could not reject the unit root hypothesis at
the 5% level of significance for all of the series except the unemployment rates. Perron (1988)
arrived at similar conclusions usirgytests.

We consider the null hypothesis that the variables are difference stationary ARMA processes
versus the trend stationary alternatives. We use three detrending procedureADFthiest:
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Table 7. 5% Level finite sample critical valugs = 200).
ADF, test ADF; test

c=-10 —17.00 —2.88
c=-135 —17.60 —2.92
c=-20 —1843 —2.99
c=-25 —19.03 —-3.05
OLS detrending  —21.20 —3.44

Table 8. OLS detrended tests on post-war quarterly US data.

Estimated
Series AR coefficient ADF, ADF¢
Real GDP 0.97 -85 —-194
Real investment 0.928 -3728% 384
Real consumption 0.938 —-14.77 -3.07
Employment 0.95 —1858 -3.114

2Values are smaller than the 5% level critical values.

Table 9. QD detrended tests on post-war quarterly US data,—10.

Estimated
Series AR coefficient ADF, ADF
Real GDP 0.98 —3.88 -1.17
Real investment 0.969 —14.67 —2.339
Real consumption 0.98 —-4.336 -14
Employment 0.979 -1011 —2.199

(T1): OLS detrending

(T2): QD detrending with the choice= —10

(T3): QD detrending with the choiae= —13.5.

Thus, in the first test, we estimate the following ADF regression

Ayr = ay—1 + P1AYt—1+ - - - + BkAVi—k + Yo + it + &

In the second and third tests, we run ADF regression (6) for the QD detrendeg;dafiche

valuec = —10 was chosen because the sample sizes of the Nelson—Plosser series are around 100
(80—129) and estimates of autoregressive coefficients in economic time series are often around
0.9, corresponding to-t c/n for n = 100,c = —10. Also the c value for which local asymptotic

power is 50% is approximately13.5 for the case of alinear trend (Elli@t al. 1996), so this value

of ¢ is another natural choice. To provide a basis for comparison, we also calculatéBpe
statistics based on these three detrending procedures. Although theoretically the lag length of the
ADF regression should grow at a rate’/3), this rate does not provide much information about

lag length selection for specific sample sizes. Monte Carlo evidence shows that use of model
selection methods are useful in this respect and provide some improvement in the finite sample
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Table 10. QD detrended tests on post-war quarterly US data,—13.5.

Estimated
Series AR coefficient ADF, ADF¢
Real GDP 0.98 —-443  -123
Real investment 0.96 —-17.93  -255
Real consumption 0.977 —-5.277 —-155
Employment 0.976 -116 —2.36

Table 11. QD detrended tests on post-war quarterly US data,—20.

Estimated
Series AR coefficient ADF, ADF
Real GDP 0.98 —-51 -1.33
Real investment 0.956 -2158 -279
Real consumption 0.972 —6.528 —1.758
Employment 0.973 —1326 —2.53

2V/alues are smaller than the 5% level critical values.

Table 12. QD detrended tests on post-war quarterly US data,—25.

Estimated
Series AR coefficient ADFy ADF¢
Real GDP 0.98 -5.79 —-1.44
Real investment 0.969 —14.67 —-2.34
Real consumption 0.966 —-7.926 —-1.98
Employment 0.969 —-14.8 2.7

performance of th&DF; test. We use the BIC criterion of Schwarz (1978) and Rissanen (1978) in
selecting the appropriate lag length of the autoregression for all three data sets considered in this
paper. Since critical values of these QD detrended tests are not available in the existing literature,
we calculate the critical values of the QD detrendddF, and ADF; tests corresponding to
different choices ot values by simulation experiments with data generated by (1) avith 1

and Gaussian white noisg, based on 15000 replications. Table 3 and Table 7 provides the finite
sample critical values for the casesMf= 100 andN = 200 respectively.

Table 4 reports the values of the ADF tests based on OLS detrending. Table 5 and Table 6
give their values under QD detrending foe= —10 andc = —13.5. The estimated autoregressive
coefficients are reported in the columns labelled The two tests based an= —10 and—-13.5
give qualitatively the same results. We are interested in testing whether or not the AR coefficient
differs from unity. For most of the time series, we can not reject the null of unit root at the 5%
level of significance. A few series exhibit valuesAidF, below the 5% level critical values. In
particular, the unit root hypothesis is rejected for the unemployment series by all these tests (i.e.
all three detrending procedures). For two series, per capita GNP and industrial production, unit
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roots were rejected in the OLS detrended test, but not rejected in the QD detrending procedure.
However, the calculated test statistics are very close to the corresponding critical values. Thus
the evidence is marginal for these two series. Abd~; test gives qualitatively the same results.

In conclusion, our results in Tables 4—6 are generally in accord with the findings in Nelson and
Plosser (1982).

4.2. Post-war quarterly US data

In this section, we analysed some post-war quarterly US macroeconomic time series data. The
data set consists of Real GDP, Real Investment, Real Consumption, and Employment. All these
variables are from Citibase, over the period 1947:1-1993:4. The number of observations for

these time series is 188. Table 7 gives the finite sample critical values for the aase 200.

These critical values are calculated from simulation based on 15000 replications. We tried the

following detrending procedures for bo#DF, andADF; tests:

(T1): OLS detrending

(T2): QD detrending with the choice= —10

(T3): QD detrending with the choiae= —13.5

(T4): QD detrending with the choice= —20

(T5): QD detrending with the choiae= —25.

Tables 8-12 give the estimated test statistics and coefficients for these five detrending pro-
cedures. We can not reject the null hypothesis of a unit root in all these tests at the 5% level
of significance for the consumption series, which, as argued in Hall (1978), should behave as a
martingale. Thus, there is no evidence to reject the hypothesis that consumption behaves as a
unit root process. We also find support for the hypothesis of a unit root in the series of real GDP,
and employment in all these tests. For the series of real investment, the unit root hypothesis is
rejected in the OLS detrendédF, andADF; tests. In QD detrending cases, when we choose
c = —135, —20, the unit root hypothesis is rejected in the real investment series ®Rg
test, but not byADF; test. For the values = —10, —25, we can not reject a unit root hypoth-
esis in any series. These results are generally in agreement with the conclusion of the extended
Nelson—Plosser data that many macroeconomic time series are characterized by the presence of
a unit root.
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A. APPENDIX
A.1. Proof of Theorem 1

The limit distribution ofa can be established in the following steps by using the BN (Beveridge and Nelson
1981) decomposition for the operatard ) andb(L). Followingthe lines of Berk (1974), we use the standard
Euclidean norm, |x|| = xX'x)Y/2 of a column vector and use the matrix norm
IBIl = sugtliBx| : lIxX]] < 1}.

LetGp = diagin=1, n=%/2, ... n=Y/2) then

Grl(B - B) = (GnZ'ZGn) 1GnZ'ex.

If k = o(n?/3) andk goes tooo with n, then, under the null hypothesis We have:

(@) kY2|GnZ'ZGn — Rall = 0 andk2(GnZ’'ZzGn)~1 — Ry = 0, asn, k — oo (Said and
Dickey1984), where

Ry = diag[n_z{b(l)/a(l)}z Y F}

t—1
S-1=) ¢,
j=1
I' = (Vij)Inxn, %j = EUUj);

(b) IGnZ'ex — GnZ'ell = Op(1/n), & = (e1, ..., en)’ (Said and Dickey1984);
(c) IIB — BIl converges in probability to 0 (Said and Dickey1984).
UnderHg, we have

t t
aL)yt =a(L) Y uj +Op() =b(L) Y ¢j + Op(d).
j=1 j=1

Use the BN decomposition, giving

t
a(lyt =b(1) Y &j + Op(1) ®)
j=1

the termOp(1) including finite linear combinations of the variateg and ;. SinceZT ej is thel (1)
component in (8), we obtain
b(1)

Yt = al) —S + Op(D.

From (a), (b) and (c), the limit distribution Gn (;3 B) is the same as that &%, 1GnZ’e. Thus the
limit of na is the same as that of the first elemenﬂm GnZ'e, which is

e o) 2hfere) ooxe)

Notice thatn ™2y ;| = [BZ =02 [W2, n"1Y. S 16t = [B.dB. = 02 [WdW, andw? =
27 fuu(0) = o2{b(1)/a(1)}2, wherefyy is the spectral density of defined asfyy(1) = (27)" 132 _
y (e~ 1h* and thus
o deW

o [W2 o
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A.2. Proof of Theorem 2

Under the alternativéd; : « < 1, notice that is a stationary and invertible ARMA procesk;y(0) =
w?/{27(1— a)}? > 0, y has a representation

00

Y ciw-j=e.c=1 ©

j=0
where(er) = W N(O, crez). Following Fuller (1976), we can write (9) as
Ayt = (01— Dyr—1+ 02A%—1 + 0342+ -+ &

whereg; = Z‘j’o:i Cj.(i =23,..) andQl =— Z‘jx;l c;. Sincefyy(0) > Oandy; is stationaryg, —1 # 0.
In the ADF regression, ds— oo, we find that

alo—1+0
&2—p>092>0
~2 P
o — 2 fyyu(0) > 0.

Thus,ADFy = n(&/6)& ~ n{2r fuu(0)/021/2(61 — 1) = Op(n). The divergence rate is sharp because
27 fuu(0)/o€ > 0 andhy — 1 # 0. 0

A.3. Proof of Lemma 1

n’l/zy(s:r) = n’l/zy(sm) - n’l/zxfnr)(ACX/ACX)’lACX’AyS
=728 = Xan Dn) (T FnAcX AcX F) Tt FnAcX (nTH2AyS).

Notice thatn—1/2 = B(r) and letF, = nDp, then

S
Y
N FnAcX AcXFr = n R (aX’'AX —n~leaX' X1 —n7leX ;AX

+n72¢?X" X _1)Fn

= /{g(r)g(r)/ —eX(N)g(r) —egr)X(r) + c2X(r)X ()} dr

= /Xc(r)Xc(r)’dr
and
FnAcX'n™Y2AyS = n™12F,(ax’ays —n~leax'ys
—n_lcx’_lAyS + n_2c2X’_1yfl)
= /{g(r) dB(r) —cX(r)dB(r) —cg(r)B(r) + X (r)B(r)}
= /Xc(r)dB(r)—cfxc(r)B(r)dr.
Thus,

n—l/ZyEknr) = B(r)—X(r)’{/xc(r)xc(r)/dr} {/Xc(r)dB(r)—c/Xc(r)B(r)dr}

= Ec(r)' O
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A.4. Proof of Theorem 3 and Theorem 4

The proofs of Theorems 3 and 4 are similar, so we show the argument for Theorem 4. We know that
a = (y";Puy*) 1y PMAY*, wherePy = | — M(M’M)~1M’, M is the matrix of thek lagged
difference variablesAy;" . ..., Ay ). We have
Ay Puyty = *Zy“{l—-M<M/M>*1M@yi
= 072y yE - n Ty M) (MM T T M Y )
=n" y_ly_l +op(D)

ﬁ/&mz
= wZ/Wc(r)z-

=1, %

n~ly¥ PmAY* =nly" Py (v a+ )

whereef = (....€}....). Under the null thae = 0, n=1y*, Py Ay* = n=1y* Pyef. Sinceu is
stationary and invertible, there exists a sequence of real nurdpensd numberds and O< A < 1 such
that|dj| < Ma! (Fuller1976) and

Notice thatPyyM = 0,

Ayts = ayts—l —dqut_1 —doug_o — -+ - + &t

We denote
ande* = (.. ..), andy;* is the detrended time series antl= Ayt Notice thatk is bounded below

by a posmve multlple ohl/" for somer > 0 and there are exponentially decreasing bounds od; tH®y a
similar argument to that of Said and Dickey (1984). Hence, we can show that

and
n- y_ PmAYy* =n~ y_ PMe+op(l):>/ C(r)st(r)—wo/WC(r)dW(r)
It follows that
ADF, = /Wc(r)dW(r)//Wc(r)z. -
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