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Summary This paper proposes an Augmented Dickey–Fuller (ADF) coefficient test for
detecting the presence of a unit root in autoregressive moving average (ARMA) models of
unknown order. Although the limit distribution of the coefficient estimate depends on nui-
sance parameters, a simple transformation can be applied to eliminate the nuisance parameter
asymptotically, providing an ADF coefficient test for this case. When the time series has an
unknown deterministic trend, we propose a modified version of the ADF coefficient test based
on quasi-differencing in the construction of the detrending regression as in Elliottet al. (1996).
The limit distributions of these test statistics are derived. Empirical applications of these tests
for common macroeconomic time series in the US economy are reported and compared with
the usual ADFt-test.
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1. Introduction

Tests for a unit root have attracted a considerable amount of work in the last ten years. One
important reason is that these tests can help to evaluate the nature of the nonstationarity that
many macroeconomic data exhibit. In particular, they help in determining whether the trend
is stochastic, deterministic or a combination of both. Following Nelson and Plosser (1982),
much empirical research has been done and evidence has accumulated that many macroeconomic
variables have structures with a unit root. The literature on testing for a unit root is immense.
The most commonly used tests for a unit root are the Dickey–Fuller test and the PhillipsZ-tests.
The Dickey–Fuller test (1979) is based on the regression of the observed variable on its one-
period lagged value, sometimes including an intercept and time trend. In an important extension
of Dickey and Fuller (1979), Said and Dickey (1984) show that the Dickey–Fullert-test for
a unit root, which was originally developed for AR representations of known order, remains
asymptotically valid for a general ARMA process of unknown order. Thist-test is usually called
the Augmented Dickey–Fuller (ADF) test. An alternative semiparametric approach to detecting
the presence of a unit root in general time series setting was proposed by Phillips (1987a) and
extended in Phillips and Perron (1988). These tests are known as PhillipsZα andZt tests. The
Z -tests allow for a wide class of time series with heterogeneously and serially correlated errors.

The ADF test is at-test in a long autoregression. Said and Dickey (1984) prove the validity
of this test in general time series models provided the lag length in the autoregression increases
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with the sample size at a rate less thann1/3, wheren = sample size. No such extension of the
Dickey–Fuller coefficient test is recommended in their work, since even as the lag length goes to
infinity, the coefficient estimate has a limit distribution that is dependent on nuisance parameters.
However, theZα test is a coefficient based test with a nonparametric correction which successfully
eliminates nuisance parameters. A similar idea can be applied to construct an ADF coefficient
based test. In particular, the nuisance parameters can be consistently estimated and the coefficient
estimate transformed to eliminate the nuisance parameters asymptotically, providing an ADF
coefficient test with the same limit distribution as the original Dickey–Fuller coefficient test and
the Zα test.

The ADF coefficient test can also be extended to models with a deterministic trend. The
traditional way in dealing with trending data is to detrend the data by ordinary least squares
(OLS), and then apply a unit root test to the detrended time series. This is usually done by
including a deterministic trend in the ADF regression model. Like the case with no deterministic
trend, the limit distribution of the estimated autoregressive coefficient depends on a nuisance
parameter and transformation is needed to eliminate this dependence. A natural way to compare
tests is to examine their power in large samples. Recent study shows that power gains can be
achieved when there is a deterministic trend and detrending is performed in a way that is efficient
under the alternative hypothesis in constructing the test. Such detrending procedures use quasi-
differenced (QD) data and were suggested in Elliottet al. (1996) to increase the power of unit root
tests for models with deterministic trends. An analysis of the efficiency gain from this detrending
procedure (which we call QD detrending) and its effects on test efficiency is given in Phillips and
Lee (1996). As yet, few empirical applications of QD detrended unit root tests have appeared in
the literature.

This paper develops an ADF-type coefficient based unit root test (calledADFα) for ARMA
models of unknown order, with a parametric correction that frees the limit distribution of the test
statistic of nuisance parameters. We also extend this test to models with a deterministic trend and
a modified ADF coefficient test based on QD detrending is developed. The limit distributions of
the ADF coefficient test and its QD detrended version are the same as those of theZα test and QD
detrendedZα test. Empirical applications of these tests to the post-war quarterly US data and the
extended Nelson–Plosser data are also reported. We compare the OLS detrendedADFα test with
the QD detrendedADFα test, and examine the QD detrendedADFα tests for different choices of
c (the quasi-differencing parameter).

The paper is organized as follows. Section 2 develops the theory for the ADF coefficient test.
The QD detrended ADF coefficient test and its limit theory are given in Section 3. Section 4
reports some empirical applications to a variety of macroeconomic time series data. Proofs of
theorems are given in the Appendix. Our notation is standard. We use the symbol ‘⇒’ to signify
weak convergence of the associated probability measures. Continuous stochastic process such
as the Brownian motionB(r ) on (0,1) are usually written simply asB and integrals like

∫
are

understood to be Lebesgue integrals over the interval(0,1), the measure of integration ‘dr ’ being
omitted for simplicity.

2. An ADF Coefficient Test for a Unit Root

Consider a time series
yt = αyt−1+ ut , t = 1,2, . . . ,n, (1)

satisfying the following conditions:
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Assumption A1. yt is initialized at t= 0 by y0, a random variable with finite variance.

Assumption A2.ut is a stationary and invertible ARMA(p,q) process satisfying a(L)ut =
b(L)εt , whereεt = i.i.d.(0, σ 2), a(L) = ∑p

j=0 aj L j , b(L) = ∑q
j=0 bj L j , a0 = b0 = 1,

and L is the lag operator.

Assumption A3.n−1/2∑(nr)
t=1 ut ⇒ B(r ) = ωW(r ), n−1/2∑(nr)

t=1 εt ⇒ Bε(r ) = σW(r ), where
ω2 = E(u2

1) + 2
∑∞

k=2 E(u1uk) = σ 2{b(1)/a(1)}2 = long run variance of ut , and W(r ) is a
standard Brownian motion.

Notice that the limits of partial sums ofut andεt depend on the same standard Brownian
motion W(r ). From A2, we obtain the AR representation ofut (e.g. Fuller (1976), Theorem
2.7.2)

εt = d(L)ut =
∞∑
j=0

dj ut− j , d0 = 1.

Rewrite the above representation as

εt = d(L){1yt − (α − 1)yt−1} = d(L)1yt − (α − 1)d(L)yt−1,

and use a Beveridge–Nelson (BN) decomposition ford(L) asd(L) = d(1)+ d∗(L)(1− L), we
obtain

εt = d(L)1yt − (α − 1)d∗(L)1yt−1− d(1)(α − 1)yt−1

= {d(L)− (α − 1)Ld∗(L)}1yt − (α − 1)d(1)yt−1.

Defineβ(L) = 1− d(L)+ (α− 1)Ld∗(L) = β1L + β2L2+ · · ·, anda = d(1)(α− 1), we then
have the following regression

1yt = ayt−1+ β(L)1yt + εt ,

or
1yt = ayt−1+ β11yt−1+ β21yt−2+ · · · + εt . (2)

The null hypothesis of interest, which wasH0 : α = 1 in (1), is equivalent toH0 : a = 0. In
place of the infinite AR regression (2), we consider the ADF regression model

1yt = ayt−1+ β11yt−1+ · · · + βk1yt−k + etk, (3)

whereetk is defined as1yt−ayt−1−β11yt−1−· · ·−βk1yt−k. We useZ to denote then×(k+1)
matrix of explanatory variables and partition it in the following way:Z = (y−1, Zk), wherey−1
is then× 1 vector of lagged variables, andZk is then× k matrix of observations of thek lagged
difference variables (1yt−1, . . . , 1yt−k). Thus we have the following matrix representation

1y = Zβ + ek,

whereβ = (a, β1, . . . , βk)
′, ek = (ek1, . . . ,ekn)

′.
We shall be concerned with the limit behavior of the conventional least squares regression

coefficientâ for a in (3) given by

â = (y′−1Pzy−1)
−1y′−1Pz1y,

wherePz = I − Zk(Z′k Zk)
−1Z′k. We make the following condition on the expansion rate of the

lag lengthk.
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Assumption A4.n−1/3k→ 0 as n→∞, and there exist c> 0, r > 0, such that ck> n1/r .

The limit distribution ofâ is given by the following theorem.

Theorem 1.Under assumptions A1 to A4, whenα = 1,

nâ⇒
σ

∫
WdW

ω

∫
W2

.

Remark 1.The limit distribution of the regression coefficientâ depends on unknown scale param-
etersω andσ , and thus the statisticnâ can not be used directly for unit root testing. However,ω and
σ can be consistently estimated, and there exists a simple transformation of the statisticnâ which
eliminates the nuisance parameters asymptotically. In particular,σ̂ 2 = ∑ ê2

tk/n is a consistent
estimator ofσ 2, andω2 can be consistently estimated by the AR estimatorω̂2 = σ̂ 2/(1−∑ β̂ j )

2.
Thus, we define

ADFα = (ω̂/σ̂ )nâ.

Under the null hypothesis thatα = 1, it is apparent that the modified coefficient test statistic

ADFα H⇒

∫
W dW∫

W2
,

has the same limit distribution as that of the PhillipsZα test and the original Dickey–Fuller
coefficient test.

A minimal condition for a satisfactory statistical test is that it should be able to discriminate
between the null hypothesis and a fixed alternative with probability one in large samples. The
next theorem guarantees this property (for a definition of the spectral density, see the proof of
Theorem 1 in the Appendix).

Theorem 2.If yt is generated by(1) with α < 1, then ADFα = Op(n). The divergence rate is
sharp in the sense that n−1 ADFα →p c for some c6= 0.

Remark 2.As the sample sizen increases, the test statisticADFα diverges faster underH1 than
the ADF t-ratio statistic, which is of orderOp(n1/2). This suggests that the coefficient based
statistic is likely to have higher power than thet-ratio statistic in large samples. Another way of
comparing power of statistical tests is to look at their behavior under the local alternative. It can
be verified that underHc : α = 1+ c/n, the limit theory for the two tests is as follows

ADFα ⇒ c+
{∫

Jc(r )
2 dr

}−1 ∫
Jc(r )dW(r ),

and

ADFt ⇒ c

{∫
Jc(r )dr

}−1/2

+
{∫

Jc(r )
2 dr

}−1/2 ∫
Jc(r )dW(r ),

where Jc(r ) =
∫ r

0 e(r−s)c dW(s), which are the same as those of the semiparametricZα and
Zt tests derived in Phillips (1987b). Although bothADFα andADFt areOp(1) under the local
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Table 1. Size corrected power of ADF tests, 5% level.

AR(1) MA(1)

α ρ = 0.5 ρ = −0.5 θ = 0.5 θ = −0.8

ADFα 0.95 0.216 0.234 0.181 0.251

0.90 0.458 0.524 0.478 0.566

0.85 0.622 0.717 0.650 0.758

ADFt 0.95 0.211 0.233 0.171 0.248

0.90 0.448 0.522 0.472 0.565

0.85 0.618 0.716 0.649 0.761

alternative for finite c, whenc→−∞, it is easy to show using the results in Lemma 2 of Phillips
(1987b) thatADFα = Op(|c|), whereasADFt = Op(|c|1/2). In fact, asc → −∞, it can be
shown thatADFα ∼ (−2c)1/2 ADFt ∼ c+ (−2c)1/2ξ , whereξ is N(0,1). These results, like
those of the simple divergence rates, indicate that coefficient tests may be expected to have higher
power than t-ratio based statistics, at least for large deviations from the null hypothesis.1

Table 1 reports some results from a Monte Carlo experiment on the finite sample power of an
ADFα test. In order to provide a comparison between theADFα andADFt test, we give here the
size corrected power. The data generating process is (1) and four designs for the error structures
are considered: AR(1) processesut = ρut−1 + εt with ρ = 0.5, −0.5; and MA(1) processes
ut = εt − θεt−1 with θ = 0.5,−0.8, with εt being i.i.d.N(0,1), andn = 100 in both cases. The
number of repetition in the experiment is 15 000. These results corroborate the findings of other
simulation experiments that coefficient based tests have relatively higher power.

3. An Efficiently Detrended ADF Coefficient Test

Many macroeconomics variables, such as income, or consumption, are often characterized as
‘integrated processes with drift’, and can be expressed as the sum of a unit root process with
zero-mean increments and a linear trend. Generally, if we allow for a deterministic trend in time
seriesyt , we have the following representation

yt = γ ′xt + ys
t (4)

ys
t = αys

t−1+ ut (5)

whereut is defined as in the Appendix, Section A2 andxt is thep× 1 deterministic trend which
satisfies the property that there exists ap× p scaling matrixDn and a piecewise continuous limit

1These divergence rate arguments for local power, like those asn→∞, are only suggestive. As pointed out by the
referees,ADF3

t is a directionalt-test with greater divergence rate than theADFα test. This alternative test also has faster
divergence for local power asc→−∞. However, on the basis of the analysis in Phillips and Park (1988), there are good
reasons for wanting to avoid power statistics likeADF3

t , as tests based on such functions can be expected to have greater
size distortion than those based onADFt .

One can similarly analyse local power asc→ 0, giving the form of the power function in the immediate neighbourhood
of the null hypothesis. In this case, bothADFt andADFα differ from their respective null variates by a term ofOp(c).
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trend functionX(r ) such thatDnx(nr) → X(r ), asn → ∞, uniformly in r ∈ (0,1). Without
loss of generality and to simplify the proof, we consider the leading case of a linear trend where
xt = (1, t)′, Dn = diag(1,n−1), andX(r ) = (1, r )′.

The traditional way of removing this deterministic component in unit root tests is to run an
OLS regression on an augmented equation. In the present case, this is simply

1yt = µ′xt + ayt−1+ β11yt−1+ · · · + βk1yt−k + etk, (6)

and we can construct the test statistics from the above regression. Including the deterministic trend
in the ADF regression equation is equivalent to detrending the time seriesyt by OLS regression,
and then applying the ADF regression to the detrended dataŷs

t = yt− γ̂ ′xt . The limit distribution

of the estimate
_
a of a in regression (6) is given as follows.

Theorem 3.Under assumptions A1 to A4, whenα = 1,

n
_
a⇒ (σ/ω)

∫
WX dW/

∫
W2

X,

where WX is the detrended Brownian motion

WX(r ) = W(r )−
(∫

W X′
)(∫

X X′
)−1

X(r ),

which depends on the limit trend function X(r ).

The corresponding detrended ADF coefficient test can then be constructed as

ADFτα =
(
ω̂

σ̂

)
n
_
a⇒

∫
WX dW/

∫
W2

X .

Monte Carlo evidence indicates that unit root tests usually have low power against plausible
trend stationary alternatives (seeinter alia, Schwert (1989), Diebold and Rudebusch (1991),
DeJonget al. (1992), Phillips and Perron (1988), Ng and Perron (1995), Stock (1995)). In recent
years, much research effort has been devoted to the development of unit root tests with improved
asymptotic properties. One of the mechanisms for increasing the efficiency of the unit root tests
is related to point optimal test procedures. Under Gaussian or other distributional assumptions,
the Neyman–Pearson lemma can be used to construct the most powerful test of a unit root against
a simple alternative (see King (1988), Dufour and King (1991) and Elliottet al. (1996) among
others). In the case with no deterministic trend, recent work on the topic shows that there are
virtually no power gains from using this approach over the coefficient test. However, when the
time series contains a deterministic trend, the power of unit root tests can be improved if we
perform the detrending regression in a manner that is efficient under the alternative (Elliottet al.
(1996)).

For alternatives that are distant from unit root, the Grenander–Rosenblatt (1957) theorem
implies that OLS detrending like that in (4) will be asymptotically efficient. But a more relevant
theory in the unit root case needs to give attention to alternatives that are closer to unity. Such
alternative hypotheses can often be well modelled using local alternatives of the form

H ′1 : α = 1+ c/n,
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wherec is a fixed constant. We can estimate the trend coefficient by taking quasi-differences on
(4), and running a least squares regression of1cyt on1cxt , where1c is the quasi-difference
operator defined as1c = 1− L − (c/n)L, andL is the lag operator. If the fitted trend vector in
this regression is̃γ , we compute the QD detrended series

y∗t = yt − γ̃ ′xt ,

which can now be used in the construction of unit root tests, just as in the case where there are no
deterministic trends to be removed.

This detrending procedure is sometimes called GLS detrending in the literature because the
regression based on quasi-differenced data has a stationary residual process underH ′1 and thus
is asymptotically equivalent to GLS estimation (e.g. Elliottet al. (1996)). It is more accurate
to describe the procedure as detrending after quasi-differencing (see Phillips and Lee (1996)
and Canjels and Watson (1997), for recent implementations) since full GLS is not used in the
detrending regression, but only quasi-differencing. We therefore refer to the procedure as QD
detrending.

To derive the asymptotics for the efficiently detrendedADFα test, it is convenient to employ
the following matrix notation,

X′ = (x1, . . . , xt , . . . , xn),

y′ = (y1, . . . , yt , . . . , yn),

1cX′ = (1cx1, . . . , 1cxt , . . . , 1cxn),

1cy′ = (1cy1, . . . , 1cyt , . . . , 1cyn).

Thenγ̃ = (1cX′1cX)−11cX′1cy, and we have the following asymptotic result for the QD
detrended seriesy∗t .

Lemma 1.Under assumptions A1 to A3 and whenα = 1,

n−1/2y∗(nr) ⇒ Bc(r ) = ωWc(r ),

where

Bc(r ) = B(r )− X(r )′
{∫

Xc(r )Xc(r )
′ dr

}−1{∫
Xc(r )d B (r )− c

∫
Xc(r )B(r )dr

}
= ω

[
W(r )−X(r )′

{∫
Xc(r )Xc(r )

′ dr

}−1{∫
Xc(r )dW (r )−c

∫
Xc(r )W(r )dr

}]
= ωWc(r )

and
Xc(r ) = (−c,1− cr)′.

Remark 3.When the deterministic trend includes a constant term, the invertibility of
∫

Xc(r )
Xc(r )′ dr depends onc not equaling zero, since otherwise the constant term and the coefficient
of the linear trendt are not identified.

The detrended datay∗t can be used to construct anADFα test for a unit root by running the
following regression

1y∗t = ay∗t−1+ β11y∗t−1+ · · · + βk1y∗t−k + e∗tk. (7)
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Let ã be the estimated coefficient ofa in this regression. Then the QD detrendedADFα statistic
is

ADF∗α = (ω̂/σ̂ )nã.

Theorem 4.Under assumptions A1 to A4 and whenα = 1,

ADF∗α ⇒

∫
Wc(r )dW (r )∫

Wc(r )
2

.

Remark 4.The limit distribution of the modifiedADFα test depends on both the trend function
and the value ofc that is used in the quasi-differencing filter. This limit distribution has the same
form as that of a modified semiparametricZα test where we use efficiently detrendedy in the
construction ofZα (for an analysis of the modifiedZ tests using quasi-differencing detrended
data, see Ng and Perron (1995), among others).

For the choice of local parameterc, Elliott et al. (1996) suggestedc = −13.5 for the linear
trend case. This is the approximate value where the power functions are tangent to the power
envelope at a power of 50%. We conducted a simulation experiment to examine the effect of
the choice ofc on the finite sample performance of the tests. Table 2 reports the size corrected
power of the quasi-differecing detrendedADFα tests for different choices ofc, and compares
them with the OLS detrendedADFα test. The data generating process in the experiment is (1)
andn = 100, but the disturbance termut is now i.i.d.N(0,1). Again, the number of repetition is
15 000. The Monte Carlo results in Table 2 indicate that for quite a wide range of choices ofc, the
QD detrended tests have reasonably good finite sample performance. The Monte Carlo results
show thatc = −13.5 is generally a good default choice, and we use it in the empirical analysis
below.

4. Empirical Applications

In this section, we apply theADFα test and its QD detrended version to the US macroeconomic
time series to demonstrate the use of these tests, reassess previous empirical findings, compare
different detrending procedures and examine the QD detrended tests for different choices ofc.
In particular, we examined the extended Nelson–Plosser data, the stock price data from Standard
and Poor’s series and the post-war quarterly US macroeconomics time series data. The general
conclusion that many macroeconomic time series can be modelled by unit root processes is
supported using these statistics. We report our empirical result on the extended Nelson–Plosser
data and the post-war quarterly US macroeconomics data here. For an analysis of stock price
data with these methods, readers are referred to an early version of the paper (Xiao and Phillips
1997).

4.1. The extended Nelson–Plosser data

The ADFα test and efficient detrending QD prefilter were applied to the 14 time series of the
US economy studied in Nelson and Plosser (1982), and extended by Schotman and Van Dijk
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Table 2. Effect of parameterc on the QD detrendedADFα tests (size corrected power).

Part I

α OLS detrended QD detrended QD detrended QD detrended

c = −2.5 c = −5 c = −7.5

0.975 0.0637 0.0679 0.0657 0.0653

0.95 0.0957 0.1079 0.1052 0.1065

0.925 0.1436 0.1694 0.1679 0.1665

0.9 0.2068 0.2503 0.2503 0.2637

0.875 0.2902 0.3465 0.3497 0.3517

0.865 0.3282 0.3858 0.3917 0.3946

0.85 0.3900 0.4477 0.4548 0.4585

0.825 0.4966 0.5487 0.5598 0.5680

0.8 0.6063 0.6330 0.6520 0.6635

Part II

α QD detrended QD detrended QD detrended QD detrended

c = −10 c = −12.5 c = −13.5 c = −15

0.975 0.0667 0.0658 0.0660 0.0660

0.95 0.1093 0.1091 0.1079 0.1072

0.925 0.1682 0.1681 0.1677 0.1674

0.9 0.2539 0.2520 0.2530 0.2520

0.875 0.3552 0.3553 0.3547 0.3538

0.865 0.3994 0.3990 0.3985 0.4000

0.85 0.4658 0.4678 0.4666 0.4665

0.825 0.5789 0.5828 0.5834 0.5843

0.8 0.6762 0.6815 0.6819 0.6836

Table 3. 5% Level critical values(n = 100).

ADFα test ADFt test

c = −2.5 −15.79 −2.81

c = −5 −17.15 −2.91

c = −7.5 −18.05 −2.97

c = −10 −18.71 −3.02

c = −12.5 −19.25 −3.07

c = −13.5 −19.47 −3.09

c = −15 −19.91 −3.11

OLS detrending −20.7 −3.45

(1991). The starting dates for the series vary from 1860 for industrial production and consumer
prices through to 1909 for GNP. All series terminate in 1970 in the original Nelson–Plosser data.
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Table 4. OLS detrendedADFα andADFt tests.

Series α̂ ADFα ADFt Series α̂ ADFα ADFt

CPI 0.998 −5.23 −1.4 Employment 0.854 −19.38 −3.28

GNP Def. 0.967 −6.44 −1.63 GNP/Cap. 0.81 −24.12a −3.59a

Ind. Prod. 0.818 −25.8a −3.68a Interest rate 0.94 −6.01 −1.69

Money 0.936 −18.5 −2.89 Real GNP 0.812 −19.68 −3.05

Nom. GNP 0.938 −8.87 −2.03 Real wage 0.927 −8.49 −1.73

Stock price 0.916 −12.4 −2.42 Unemployment 0.772 −43.55a −3.94a

Velocity 0.964 −4.62 −1.44 Nominal wage 0.933 −11.56 −2.43

a Values are smaller than the 5% level critical values.

Table 5. QD detrendedADFα andADFt tests with a linear trend(c = −10).

Series α̂ ADFα ADFt Series α̂ ADFα ADFt

CPI 0.99 –3.21 –1.04 Employment 0.88 –15.5 –2.76

GNP Def. 0.98 –3.62 –1.13 GNP/Cap. 0.86 –16.74 –2.88

Ind. Prod. 0.87 –17.4 –2.92 Interest rate 0.95 –5.58 –1.61

Money 0.94 –17.5 –2.87 Real GNP 0.87 –16.85 –2.9

Nom. GNP 0.95 –7.56 –1.85 Real wage 0.94 –6.96 –1.73

Stock price 0.95 –6.89 –1.71 Unemployment 0.77 –43.6a –3.96a

Velocity 0.98 –2.43 –0.93 Nominal wage 0.95 –8.89 –2.04

aValues are smaller than the 5% level critical values.

Table 6. QD detrendedADFα andADFt tests with a linear trend(c = −13.5).

Series α̂ ADFα ADFt Series α̂ ADFα ADFt

CPI 0.99 –3.52 –1.07 Employment 0.88 –16.5 –2.86

GNP Def. 0.978 –4.11 –1.19 GNP/Cap. 0.85 –18.6 –3.05

Ind. Prod. 0.863 –19.1 –3.05 Interest rate 0.94 –5.7 –1.63

Money 0.937 –17.9 –2.89 Real GNP 0.85 –18.5 –3.04

Nominal GNP 0.944 –7.99 –1.89 Real wage 0.94 –7.56 –1.74

Stock price 0.946 –7.86 –1.81 Unemployment 0.77 –43.7a –3.95a

Velocity 0.98 –2.67 –0.97 Nominal Wage 0.94 –9.6 –2.13

aValues are smaller than the 5% level critical values.

Schotman and Van Dijk extended all these 14 series to 1988. In their original study, Nelson and
Plosser conducted theADFt test on these series and could not reject the unit root hypothesis at
the 5% level of significance for all of the series except the unemployment rates. Perron (1988)
arrived at similar conclusions usingZ-tests.

We consider the null hypothesis that the variables are difference stationary ARMA processes
versus the trend stationary alternatives. We use three detrending procedures for theADFα test:
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Table 7. 5% Level finite sample critical values(n = 200).

ADFα test ADFt test

c = −10 −17.00 −2.88

c = −13.5 −17.60 −2.92

c = −20 −18.43 −2.99

c = −25 −19.03 −3.05

OLS detrending −21.20 −3.44

Table 8. OLS detrended tests on post-war quarterly US data.

Estimated

Series AR coefficient ADFα ADFt

Real GDP 0.97 −8.5 −1.94

Real investment 0.928 −37.28a −3.84a

Real consumption 0.938 −14.77 −3.07

Employment 0.95 −18.58 −3.114

aValues are smaller than the 5% level critical values.

Table 9. QD detrended tests on post-war quarterly US data,c = −10.

Estimated

Series AR coefficient ADFα ADFt

Real GDP 0.98 −3.88 −1.17

Real investment 0.969 −14.67 −2.339

Real consumption 0.98 −4.336 −1.4

Employment 0.979 −10.11 −2.199

(T1): OLS detrending
(T2): QD detrending with the choicec = −10
(T3): QD detrending with the choicec = −13.5.
Thus, in the first test, we estimate the following ADF regression

1yt = ayt−1+ β11yt−1+ · · · + βk1yt−k + γ0+ γ1t + et .

In the second and third tests, we run ADF regression (6) for the QD detrended datay∗t . The
valuec = −10 was chosen because the sample sizes of the Nelson–Plosser series are around 100
(80–129) and estimates of autoregressive coefficients in economic time series are often around
0.9, corresponding to 1+c/n for n = 100,c = −10. Also the c value for which local asymptotic
power is 50% is approximately−13.5 for the case of a linear trend (Elliottet al.1996), so this value
of c is another natural choice. To provide a basis for comparison, we also calculated theADFt

statistics based on these three detrending procedures. Although theoretically the lag length of the
ADF regression should grow at a rateo(n1/3), this rate does not provide much information about
lag length selection for specific sample sizes. Monte Carlo evidence shows that use of model
selection methods are useful in this respect and provide some improvement in the finite sample
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Table 10. QD detrended tests on post-war quarterly US data,c = −13.5.

Estimated

Series AR coefficient ADFα ADFt

Real GDP 0.98 −4.43 −1.23

Real investment 0.96 −17.93 −2.55

Real consumption 0.977 −5.277 −1.55

Employment 0.976 −11.6 −2.36

Table 11. QD detrended tests on post-war quarterly US data,c = −20.

Estimated

Series AR coefficient ADFα ADFt

Real GDP 0.98 −5.1 −1.33

Real investment 0.956 −21.58a −2.79

Real consumption 0.972 −6.528 −1.758

Employment 0.973 −13.26 −2.53

aValues are smaller than the 5% level critical values.

Table 12. QD detrended tests on post-war quarterly US data,c = −25.

Estimated

Series AR coefficient ADFα ADFt

Real GDP 0.98 −5.79 −1.44

Real investment 0.969 −14.67 −2.34

Real consumption 0.966 −7.926 −1.98

Employment 0.969 −14.8 −2.7

performance of theADFt test. We use the BIC criterion of Schwarz (1978) and Rissanen (1978) in
selecting the appropriate lag length of the autoregression for all three data sets considered in this
paper. Since critical values of these QD detrended tests are not available in the existing literature,
we calculate the critical values of the QD detrendedADFα and ADFt tests corresponding to
different choices ofc values by simulation experiments with data generated by (1) withα = 1
and Gaussian white noiseut , based on 15 000 replications. Table 3 and Table 7 provides the finite
sample critical values for the cases ofN = 100 andN = 200 respectively.

Table 4 reports the values of the ADF tests based on OLS detrending. Table 5 and Table 6
give their values under QD detrending forc = −10 andc = −13.5. The estimated autoregressive
coefficients are reported in the columns labelled ‘α̂’. The two tests based onc = −10 and−13.5
give qualitatively the same results. We are interested in testing whether or not the AR coefficient
differs from unity. For most of the time series, we can not reject the null of unit root at the 5%
level of significance. A few series exhibit values ofADFα below the 5% level critical values. In
particular, the unit root hypothesis is rejected for the unemployment series by all these tests (i.e.
all three detrending procedures). For two series, per capita GNP and industrial production, unit
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roots were rejected in the OLS detrended test, but not rejected in the QD detrending procedure.
However, the calculated test statistics are very close to the corresponding critical values. Thus
the evidence is marginal for these two series. TheADFt test gives qualitatively the same results.
In conclusion, our results in Tables 4–6 are generally in accord with the findings in Nelson and
Plosser (1982).

4.2. Post-war quarterly US data

In this section, we analysed some post-war quarterly US macroeconomic time series data. The
data set consists of Real GDP, Real Investment, Real Consumption, and Employment. All these
variables are from Citibase, over the period 1947:1–1993:4. The number of observations for
these time series is 188. Table 7 gives the finite sample critical values for the case ofn = 200.
These critical values are calculated from simulation based on 15 000 replications. We tried the
following detrending procedures for bothADFα andADFt tests:

(T1): OLS detrending
(T2): QD detrending with the choicec = −10
(T3): QD detrending with the choicec = −13.5
(T4): QD detrending with the choicec = −20
(T5): QD detrending with the choicec = −25.
Tables 8–12 give the estimated test statistics and coefficients for these five detrending pro-

cedures. We can not reject the null hypothesis of a unit root in all these tests at the 5% level
of significance for the consumption series, which, as argued in Hall (1978), should behave as a
martingale. Thus, there is no evidence to reject the hypothesis that consumption behaves as a
unit root process. We also find support for the hypothesis of a unit root in the series of real GDP,
and employment in all these tests. For the series of real investment, the unit root hypothesis is
rejected in the OLS detrendedADFα andADFt tests. In QD detrending cases, when we choose
c = −13.5,−20, the unit root hypothesis is rejected in the real investment series by theADFα
test, but not byADFt test. For the valuesc = −10,−25, we can not reject a unit root hypoth-
esis in any series. These results are generally in agreement with the conclusion of the extended
Nelson–Plosser data that many macroeconomic time series are characterized by the presence of
a unit root.
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A. Appendix

A.1. Proof of Theorem 1

The limit distribution ofâ can be established in the following steps by using the BN (Beveridge and Nelson
1981) decomposition for the operatorsa(L)andb(L). Following the lines of Berk (1974), we use the standard
Euclidean norm, ‖x‖ = (x′x)1/2, of a column vector and use the matrix norm
‖B‖ = sup{‖Bx‖ : ‖x‖ < 1}.

Let Gn = diag(n−1,n−1/2, . . . ,n−1/2), then

G−1
n (β̂ − β) = (GnZ′ZGn)

−1GnZ′ek.

If k = o(n1/3) andk goes to∞ with n, then, under the null hypothesis, we have:

(a) k1/2‖GnZ′ZGn − Rn‖ p→ 0 andk1/2‖(GnZ′ZGn)
−1 − R−1

n ‖ p→ 0, asn, k → ∞ (Said and
Dickey1984), where

Rn = diag

[
n−2{b(1)/a(1)}2

∑
S2

t−1, 0

]
,

St−1 =
t−1∑
j=1

ε j ,

0 = (γi j )n×n, γi j = E(ui u j );
(b) ‖GnZ′ek − GnZ′ε‖ = Op(1/n), ε = (ε1, . . . , εn)′ (Said and Dickey1984);
(c) ‖β̂ − β‖ converges in probability to 0 (Said and Dickey1984).
UnderH0, we have

a(L)yt = a(L)
t∑

j=1

u j + Op(1) = b(L)
t∑

j=1

ε j + Op(1).

Use the BN decomposition, giving

a(1)yt = b(1)
t∑

j=1

ε j + Op(1) (8)

the termOp(1) including finite linear combinations of the variatesut andεt . Since
∑n

1 ε j is the I (1)
component in (8), we obtain

yt = b(1)

a(1)
St + Op(1).

From (a), (b) and (c), the limit distribution ofG−1
n (β̂ − β) is the same as that ofR−1

n GnZ′ε. Thus the
limit of nâ is the same as that of the first element inR−1

n GnZ′ε, which is(
n−2

∑
y2
t−1

)−1(
n−1

∑
yt−1εt

)
= a(1)

b(1)

(
n−2

∑
S2

t−1

)−1(
n−1

∑
St−1εt

)
.

Notice thatn−2∑ S2
t−1 ⇒

∫
B2
ε = σ2 ∫ W2, n−1∑ St−1εt ⇒

∫
Bεd Bε = σ2 ∫ WdW, andω2 =

2π fuu(0) = σ2{b(1)/a(1)}2, where fuu is the spectral density ofut defined asfuu(λ) = (2π)−1∑∞
n=−∞

γ (h)e−ihλ, and thus

nâ⇒ σ
∫

WdW

ω
∫

W2
. 2
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A.2. Proof of Theorem 2

Under the alternativeH1 : α < 1, notice thatut is a stationary and invertible ARMA process,fyy(0) =
ω2/{2π(1− α)}2 > 0, yt has a representation

∞∑
j=0

cj yt− j = et , c0 = 1 (9)

where(et ) = W N(0, σ2
e ). Following Fuller (1976), we can write (9) as

1yt = (θ1− 1)yt−1+ θ21yt−1+ θ31yt−2+ · · · + et

whereθi =
∑∞

j=i c j (i = 2,3, . . .)andθ1 = −
∑∞

j=1 cj . Sincefyy(0) > 0 andyt is stationary,θ1−1 6= 0.
In the ADF regression, ask→∞, we find that

â
p→ θ1− 1 6= 0

σ̂2 p→ σ2
e > 0

ω̂2 p→ 2π fuu(0) > 0.

Thus,ADFα = n(ω̂/σ̂ )â ∼ n{2π fuu(0)/σ2
e }1/2(θ1 − 1) = Op(n). The divergence rate is sharp because

2π fuu(0)/σ2
e > 0 andθ1− 1 6= 0. 2

A.3. Proof of Lemma 1

n−1/2ys∗
(nr) = n−1/2ys

(nr) − n−1/2x′(nr)(1cX′1cX)−11cX′1ys

= n−1/2ys
(nr) − {x(nr)Dn}(n−1Fn1cX′1cX Fn)

−1Fn1cX′(n−1/21ys).

Notice thatn−1/2ys
(nr) ⇒ B(r ) and letFn = nDn, then

n−1Fn1cX′1cX Fn = n−1Fn(1X′1X − n−1c1X′X−1− n−1cX′−11X

+n−2c2X′−1X−1)Fn

⇒
∫
{g(r )g(r )′ − cX(r )g(r )′ − cg(r )X(r )′ + c2X(r )X(r )′}dr

=
∫

Xc(r )Xc(r )
′ dr

and

Fn1cX′n−1/21ys = n−1/2Fn(1X′1ys − n−1c1X′ys−1

−n−1cX′−11ys + n−2c2X′−1ys−1)

⇒
∫
{g(r )d B (r )− cX(r )d B (r )− cg(r )B(r )+ c2X(r )B(r )}

=
∫

Xc(r )d B (r )− c
∫

Xc(r )B(r )dr.

Thus,

n−1/2y∗(nr) ⇒ B(r )− X(r )′
{∫

Xc(r )Xc(r )
′ dr

}−1{∫
Xc(r )d B (r )− c

∫
Xc(r )B(r )dr

}
= Bc(r ). 2
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A.4. Proof of Theorem 3 and Theorem 4

The proofs of Theorems 3 and 4 are similar, so we show the argument for Theorem 4. We know that
ã = (y∗′−1PM y∗−1)

−1y∗′−1PM1y∗, wherePM = I − M(M ′M)−1M ′, M is the matrix of thek lagged
difference variables(1y∗t−1, . . . , 1y∗t−k). We have

n−2y∗′−1PM y∗−1 = n−2y∗′−1{I − M(M ′M)−1M ′}y∗−1

= n−2y∗′−1y∗−1− n−1(n−1y∗′−1M)(n−1M ′M)−1(n−1M ′y∗−1)

= n−2y∗′−1y∗−1+ op(1)

⇒
∫

Bc(r )
2

= ω2
∫

Wc(r )
2.

Notice thatPM M = 0,
n−1y∗′−1PM1y∗ = n−1y∗′−1PM (y

∗−1a+ e∗k)
wheree∗k = (. . . ,e∗tk, . . .). Under the null thata = 0, n−1y∗′−1PM1y∗ = n−1y∗′−1PM e∗k . Sinceut is
stationary and invertible, there exists a sequence of real numbersdj and numbersM and 0< λ < 1 such

that|dj | < Mλ j (Fuller1976) and

1ys
t = ays

t−1− d1ut−1− d2ut−2− · · · + εt .
We denote

e∗t = 1y∗t − ay∗t−1+ d1u∗t−1+ d2u∗t−2+ · · ·
ande∗ = (. . . ,e∗t , . . .), andy∗t is the detrended time series andu∗t = 1y∗t . Notice thatk is bounded below
by a positive multiple ofn1/r for somer > 0 and there are exponentially decreasing bounds on thedi , by a
similar argument to that of Said and Dickey (1984). Hence, we can show that

n−1y∗′−1PM e∗k − n−1y∗′−1PMe∗ = op(1)

and

n−1y∗′−1PM1y∗ = n−1y∗′−1PMε + op(1)⇒
∫

Bc(r )d Bε (r ) = ωσ
∫

Wc(r )dW(r ).

It follows that

ADF∗α ⇒
∫

Wc(r )dW (r )/
∫

Wc(r )
2. 2
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