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1. Introduction

Twenty years ago Christ (1975) published a study that set out to judge the
performance of several well-established structural econometric models of the US
economy. Christ’s study appeared as part of a general symposium on econometric
model performance that was published in the futernational Economic Review dur-
ing 1974-75. His study compared the post-sample, post-model building forecast
performance of nine different models, using forecast root mean squared errors
{(RMSFEs) to cvaluate the results. In addition, Christ considered the multiplier
effects over time of certain monetary and fiscal policy shocks to thc models’
exogenous variables. One of Christ’s key discoveries was that there was great
uncertainty across models about the macroeconomic cffects that follow from im-
portant fiscal and monetary policy actions. For instance, in studying the effect of
an easing of monetary policy (measured as an increase of $1 billion in unbor-
rowed reserves) on real GNP, Christ found that serious disagreement among the
models set in almost immediately after the policy change. Some models showed
only positive effects, others showed positive and negative effects on real GNP over
time; some gave monotonic effects, others showed cyclical effects; some seemed
to converge, others to diverge. Against this background of disparity among lead-
ing econometric models of the US economy, Christ concluded that the models
could not be relied upon as guides to the effects of cconomic policies even though
their forecasting performance was quite respectable.

Since the 1970s there has been less reliance, at least in academic research,
on large structural econometric models (of the type studied in Christ’s paper)
for policy analysis purposes. Instead, more attention has been given to small-
scale time-series models like vector autoregressions (VARs) as instruments of
policy analysis, and VARs and Bayesian VARs (BVARs) as tools of prediction,
Thesc models are often regarded by their users as having fewer subjective design
elements than Targe structural econometric models. Nevertheless, they are far
from being objective tools of prediction or policy analysis and, at least as they
stand, they are certamnly not automated modelling devices. Similar remarks apply
to reduced rank regression (RRR) models and error correction models (ECMs),
which are now becoming popular in the analysis of macroeconomic time series.
These models come within the general category of VAR systems but explicitly
incorporate certain information about the existence of unit roots and the presence
of cointegrating relations among the variables. Such information can be either
specified a priori or data-based (i.e. determined by the sample data). Either way,
it constitutes a design feature that will certainly affect both forecasts and policy
analysis.

The present paper studies how design features of the type just mentioned af-
fect the large sample behaviour of VAR forecasts and policy analyses. Although
they are certainly an important element in practical VAR modelling and do in-
deed enter into our simulation exercises, we will not be specifically concerned in
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this paper with model selection or model comparison issues. These have recently
been extensively discussed in this context in other work by the author (1996).
Instead, this paper seeks to develop an asymptotic theory for forecasting and
policy analysis with VARs that allows for nonstationary elements (specifically,
unit roots, near-unit roots and cointegration) and evaluates how design features in
the models that accommodate these clements affect the asymptotic performance
of these model characteristics. We are specifically interested in comparing unre-
stricted VARs with RRRs and ECMs in forecasting and policy analysis, because
these models are the backbone of much ongoing empirical analysis and because
they highlight the differences that are known to occur in the asymptotic theory
of estimation of nonstationary VARs. In that theory, the role of prior informa-
tion in the asymptotics is substantial and determines not only whether coefficient
estimators are efficient but also whether they are asymptotically unbiased — see
Phillips (1991) for details. This paper examines the rolc of prior information (or
data-determined model selection) on asymptotic forecast performance and policy
analysis by considering the limiting behavior of a system’s impulse responses, its
estimated forecast error variance matrices and their associated decompositions.

We start our analysis by showing that impulse rcsponses that are calculated
from unrestricted VARs with roots near unity have long period estimated impulse
responses that are inconsistent. In fact, these estimated impulse responses tend
to random variables rather than the true impulse responses as the sample size
increases. Hence, policy analysis that is undertaken from unrestricted VARS using
estimated impulse responses can be expected to be inherently uncertain even
in large samples as the horizon increases. Models that explicitly determine the
presence and number of unit roots like data-based RRRs (see Phillips, 1994,
1996), in which the cointegrating rank is consistently estimated, do not suffer
from this difficulty asympiotically. However, these models as well as BVARs
that are formulated with unit root priors all suffer from the same problem to
a greater or lesser extent in finite samples.

Forecast error variance decompositions arc also inconsistent in unrestricted
VAR models with near unit roots. An interesting feature of this finding is that
since the estimated prediction error varance of an unrestricted VAR with some
roots near unity is a random variable in the limit, it turns out that there is an
appreciable probability {0.68 in a random-walk model) that the estimatcd predic-
tion error variance is less than the actual prediction error variance of the optimal
predictor. This means that unrestricted VAR regressions give inconsistent esti-
mates of the forecast error variance at long horizons, and also have a tendency
to understate this variance.

We conduct simulation exercises to assess the sensitivity of forecasting per-
formance and policy analysis to specific design features of models within the
general VAR class. We look at short and long period ahead forecasts and multi-
plier effects, and we consider models with and without unit roots and cointegrat-
ing relations. Our general conclusion, like Christ’s, is that, while there are some
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notable differences in forecasting performance, the biggest differences occur in
policy analysis. Apparently, minor differences in models that seem to have little
overall elfect on average forecasting performance can have really substantial ef-
fects on policy analyscs. This is especially true when there are unit roots or near
unit roots in the fitted model.

2. Impulse response asymptotics with some roots at, or near, unity

In stationary VARS the system’s estimated impulse responses and forecast crror
variance decompositions are +/#-consistent and, upon appropriate centering and
scaling, thcy have asymptotic normal distributions. The calculations lcading to
the limit theory are straightforward and simply make use of the functional rep-
resentations of these quantities in terms of the estimated VAR coefficients, the
limiting normal distribution of the latter and the continuous mapping theorem,
Lutkepohl (1994, Chapter 3.7) provides derivations along these lines. When
there are some unit roots in the VAR system, the limit theory of the estimated
VAR coctlicients changes and has some nonnormal components - see Phillips
and Durlauf (1986), Park and Phillips (1988, [989) and Sims et al. (1990).
In this case the full matrix of estimated regression coeflicients in a VAR is
asymptotically normal but singular to the cxtent that there are some components
in the system like unit roots and cointegrating vectors that converge at a faster
rate. Since the estimated VAR coeflicients are consistent (and, indeed, converge at
faster rates in some directions) it might reasonably be expected that the impulse
responses are also. However, as we show bclow, this is not the case for long
horizon impulses. Moreover, since the estimated VAR coefficients have a limit
normal distribution, albeit singular, it might also be anticipated that the impulse
responses would be asymptotically normal. Again, we show this not to be the
case. There arc therefore some major differences in the limit theory of impulse
responses between stationary and nonstationary VARs and these differences do
seem to be important in the analysis of empirical results.

Let y, bc a m-vector time series generated by the following pth order VAR
model

ve=J(L)vi )+, (=1,...,n N

where J(L)y= 3.7 | J,L'"'. The system (1) is initialized at t = —p+ 1....,0 and
we may let these initial values be any random vectors including constants. It
is often convenient to set the initial conditions so that the I{})} component of
(1) is stationary and we will proceed as if this has been done. The presence of
deterministic components in (1) does not affect our conclusions in any substantive
way, s0 we will proceed as if they are absent just to keep the derivations as
simple as possible. Tt is also convenient to write (1) in levels and differences
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this paper with model sclection or model comparison issues. These have recently
been cxtensively discussed in this context in other work by the author (1996).
Instead, this paper seeks to develop an asymptotic theory for forecasting and
policy analysis with VARs that allows for nonstationary elements (specifically,
unit roots, near-unit roots and cointegration) and evaluates how design features in
the models that accommodate these elements affect the asymptotic performance
of these model characteristics. We are specifically interested in comparing unre-
stricted VARs with RRRs and ECMs in forecasting and policy analysis, because
these models are the backbone of much ongoing empirical analysis and because
they highlight the differences that are known to occur in the asymptotic theory
of estimation of nonstationary VARs. In that theory, the role of prior informa-
tion in the asymptotics is substantial and determines not only whether coefficient
estimatots are efficient but also whether they are asymptotically unbiased — see
Phillips (1991} for details. This paper examines the role of prior information (or
data-determined model selection) on asymptotic forecast performance and policy
analysis by considering the limiting behavior of a system’s impulse responses, its
estimated forecast error variance matrices and their associated decompositions.

We start our analysis by showing that impulse responses that are calculated
from unresiricted VARs with roots near unity have long period estimated impulse
responses that are inconsistent. In fact, these estimated impulse responses tend
to random variables rather than the true impulse responses as the sample size
increases. Hence, policy analysis that is undertaken from unrestricted VARs using
estimated impulse responses can be expected to be inherently uncertain even
in large samples as the horizon increases. Models that explicitly determine the
presence and number of unit roots like data-based RRRs (see Phillips, 1994,
1996), in which the cointegrating rank is consistently estimated, do not suffer
from this difficulty asymptotically. However, these models as well as BVARs
that are formulated with unit root priors all suffer from the same problem to
a greater or lesser extent in finite samples.

Forecast error variance decompositions are also inconsistent in unrestricted
VAR models with near unit roots. An interesting feature of this finding is that
since the estimated prediction error variance of an unrestricted VAR with some
roots near unity is a random variable in the limit, it turns out that there is an
appreciable probability (0.68 in a random-walk model) that the estimated predic-
tion error variance is less than the actual prediction error variance of the optimal
predictor. This means that unrestricted VAR regressions give inconsistent esti-
maies of the forecast error variance at long horizons, and also have a tendency
to understate this variance.

We conduct simulation exercises to assess the sensitivity of forecasting per-
formance and policy analysis to specific design features of models within the
general VAR class. We look at short and long period ahead forecasts and multi-
plier effects, and we consider models with and without unit roots and cointegrat-
ing relations. Our general conclusion, like Christ’s, is that, while there are some
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notable differences in forccasting performance, the biggest differences occur in
policy analysis. Apparently, minor differences in models that seem to have little
overall effect on average forccasting performance can have really substantial ef-
fects on policy analyses. This is especially true when there are unit roots or near
unit roots in the fitted model.

2. Impulse response asymptotics with some roots at, or near, unity

In stationary VARs the system’s cstimated impulse responses and forecast error
variance decompositions are \/#-consistent and, upon appropriate centering and
scaling, they have asymptotic normal distributions. The calculations lcading to
the limit theory are straightforward and simply make use of the functional rep-
resentations of these quantities in terms of the estimated VAR coefficients, the
limiting normal distribution of the latter and the continuous mapping theorem.
Lutkepohl (1994, Chapter 3.7) provides derivations along these lincs. When
there are some unit roots in the VAR system, the limit theory of the estimated
VAR cocllicients changes and has some nonnormal components — see Phillips
and Durlauf (1986), Park and Phillips (1988, 1989) and Sims et al. (1990).
In this case the full matrix of estimated regression coefficients in a VAR is
asymptotically normal but singular to the extent that there are some components
in the system like unit roots and cointegrating vectors that converge at a faster
rate. Since the estimated VAR coefficients are consistent (and, indeed, converge at
faster rates in some directions) it might reasonably be expected that the impulse
responses are also. However, as we show below, this is not the case for long
horizon impulses. Moreover, since the estimated VAR coefficients have a limit
normal distribution, albeit singular, it might also be anticipated that the impulse
responses would be asymptotically normal, Again, we show this not to be the
case. Therc are therefore some major differences in the limit theory of impulse
responses between stationary and nonstationary VARs and these differences do
seem to be important in the analysis of empirical results.

Let y, be a m-vector time series generated by the following pth order VAR
mode]

vi=J(LYvi | + & t=1,....n, (D)

where J(L)= 37 | J,L'7'. The system (1) is initialized at t=—p -+ 1....,0 and
we may let these initial values be any random vectors including constants. 1t
is often convenient to set the initial conditions so that the 1(0) component of
(1) is stationary and we will proceed as if this has been done. The presence of
deterministic components in (1} does not affect our conclusions in any substantive
way, so we will proceed as if they are absent just to keep the derivations as
simple as possible. It is also convenient to write (1) in levels and differences
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format as
vi=Ay + YUy +&, A=J(1),
(2)

p—1 ) P
V()= WL, W=- Y U
i=t h=i+1

To fix ideas for our subsequent analysis it is helpful to be specific about the roots
of (1), the dimension of the cointegrating space and the form of the cointegrating
vectors. We therefore assume the following.

Assumption 2.1 (Reduced rank regression).

(a) & is 1id with zcro mean, variance matrix 2, > 0 and finite fourth cumulants.

(b) The determinantal equation |f, — J(£L)}.| =0 has roots on or outside the
unit circle.

{¢) A=1 + 2ff/ where 2 and S ar¢ m xr matrices of full column rank r.
Without loss of generality, it will be assumed that § is orthonormal.

(d) o (P(1)—1)p. is nonsingular, where %) and f are m X (m—r) maltrices
of full column rank that are orthogonal to « and §, respectively,

These conditions ensure that (2) has a reduced rank regression format and is
the error correction mode] (ECM) of a system with some unit roots and some
stationary components — see Toda and Phillips (1993) for further discussion. In
place of condition (c) above we will also make use of the following weaker
condition, which allows for some roots to be near unity.

(c') A= B exp(n~' "B + ' + o’ where x and f§ are m x r matrices of full
column rank #, f is normalized to be orthonormal, and I' is a constant matrix of
dimension s X s with s=m — r,

We write the model (1) in companion form as

Y":CYf7|+Eh E:Z{E:,O,..._,O], Y;Is:[y:s"'sy:—p-{-l]a (3)
where
Ji Jo1 S
I 0 0
C= (4)
0 ! 0

Let M’ =[I,,0,...,0], and then, up to initial conditions and deterministic com-
ponents, the moving average (MA) representation of the sysiem is

=1 t—1 . i—1
Y, = E C"Ez_,‘, or yr = E M’CIMS,(_,' = Z @,'Sg_;, say. (5)
i=0 i=0 i=0
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The system’s impulse responses are given by the clements of the sequence of
matrices &; or certain linear combinations of the components of &, depending on
the information that is supplied concerning the ordering of the shocks or structural
relations among them. We will not be concerned with these latter issues as they
do not affect the limit theory in any material way (unless, of course, there is lack
of identification in rclations among the shocks, in which case we would need to
proceed as in the analysis of partially identified systems — see Phillips, 1989).
Instead our primary interest is the behaviour of these impulse responses as the
lcad time / — 50, and the asymptotic behaviour of estimates of these quantities
as 1 — oc.

Lemma 2.2, Under Assumption 2.1 as i — >0
QJ%QZBLﬁi+[)’LE|2(I7E22)_IQ:[)7_L[3E, say, (6)

where ' =[F,H,0,...,0] is m x (m(p — 1)+ r), and where E2 and Es are
submatrices of the companion matrix E given in (A.3) below for the transformed
system (27), i.e. system (2) above rotated into separate 1(1) and 1(0) subsystems.
For the case of near unil roots as in assumption 2.1(c'), when i= fn where
[ >0 is a fixed fraction of the sample we have as n — oo

&; — Or = f1 exp( /T (6"

According to (6) and (6'), the limiting impulse responses are nonzere only in
those directions where the model is nonstationary and has unit roots or near unit
roots, i.e. ffi . The limiting response matrices & and @y both lie in the range of
f1. The fact that these matrices are nonzero has some important implications for
inference, as our next result shows.

Theorem 2.3. Let Assumption 2.1 hold and ler ©; be the OLS estimates of the
impulse response matrices ©; in the MA representation (5):

(i) For fixed i we have: @, — @;, n'(@; — ©;)=N(0, }}) us n— o0, where
p

i—1 )
V;’:MVaN,-’ Ni:Z@i—I—J'®M'C'JK71,
j=0

Vo=2,®G: X, Gl

Here, Zeo = £(L,87), where & =[y,_ B, Ay|_\,...,Ay]_ 1 is the vector of sta-
tionary components in the system; and G; is the marrix

0
GE == B ¥
0 dap-ny
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and K is the matrix that transforms (1) into (2). Section A2 below defines
these matrices and deiails these transformations. The symbol ‘=" signifies weak
convergence and we use the convention that the matrix normal distribution is
written in terms of stacked rows of the matrix variaie.

(i) If iln—0 as n,i— oo, we have, &, — O as n— .

P
(ii) If i = fn where f >0 is a fixed fraction of the sample, we have
O; = fLexp( fUIBL + frexp( fUIED( — En)'Q

= Boexp(fU)By  say,

where U is random and has a matrix unit root distribution (given explicitly in
(A.6) below).
(iv) If condition (c") replaces condition (¢) and i= fn with { >0 fixed, then

O; = B exp( fURB. + BLexp( SUNELU — En) 'O

= Brexp( fUr)fig.,

where Ur is random and has a matrix local-to-unity distribution (see (A.6)
below).

Remark 2.4. Theorem 2.3 shows that when there are unit roots or near unit
roots in a VAR system, the long period ahead impulse responses estimated by
an unrestricted OLS regression arc inconsistent. In particular, the limits of the
estimated responses are random variables rather than the true impulse rcsponses.
This may seem surprising given that the presence of unit roots or near unit roots
accelerates the convergence of the coefficient estimates in an OLS regression —
on that basis one might have anticipated that the impulse responses would, if
anything, converge faster in some directions. The reason for the inconsistency is
that the true impulse responses no longer die out as the lead time increases, i.e.
the elements of ®; do not tend to zero as i — o¢, but carry the effects of the unit
roots with them indefinitely. However, the unit roots are estimated with error and
the effccts of the estimation error persist in the limit as # — oc when we consider
long period ahead impulses &; where i is some fraction ( /') of the sample size
{n). By contrast, when the system is stable the elements of @, tend to zero as
i—oc, and the estimation errors have no effect in the limit. In this case, fi: is
null, @ =0, and &, TO. Thus, (ii)—(iv) cover the stable case as well.

Remark 2.5, For fixed i we get asymptotic normal distributions for the impulse
response matrices @, just as we do in the stationary case — see Liitkepohl (1993)
for the latter. However, the limit variance mairix ¥, of the estimated VAR coef-
ficients that enter the formula is now singular because only the stationary com-
ponents of the system contribute to these /#-asymptotics.
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Example 2.6. To illustrate the formulae, take the special case of the random-
walk model y;=ay,_, + &, a=1. 1e. set m=1 and p=1 in (1). Then the
estimated impulse responses are ¢’ and when i = fir we have

5 (1 N nla — 1))r
R
) oy
éexp{f(deS) (.[SZ)
@ 0

Here, the lead time is a fraction of the sample size, and the estimated impulse
responses effectively exponentiate a random variable in the vicinity of unity and
therefore tend to an exponential unit-root distribution. When the lead time /i is
fixed, we get & ~ 1 instead, but then

} as n— oo, where S= BM(1).

-1
n(@ — D=in(a—1)+0pn~") = i(jl'SdS)(f]Sz) :
4} 0

and the limit distribution is proportional to a unit-root distribution and is again
asymmetric. In this case, G; is a null matrix (there are no stationary components
in the system) and ¥, =0 in part (i) of the theorem. In both cases, the limit
theory is nonnormal.

Fig. 1(a) shows the limit distributions of & when {= fur for various values
of f. The asymmetry of the distributions of the estimated impulsc responses is
similar to that of the usual unit-root distribution, but the support of the distribu-
tion is the positive half-linc rather than the whole real axis. The asymmetry is
strongly evident when /' =0.25 and less marked when /=0.02. The asymmetry
of estimated impulse response distributions has been noted in some simulation
work previously, and is often attributed to the nonlinearity of the impulse re-
sponses. This has led to some research on ways to adjust confidence regions
for the impulse responses to take account of the asymmetry (e.g. Quah and
Blanchard, 1993; Sims, 1994). The above limit theory shows that in cases where
there are unit roots or near unit roots, the reason for the asymmetry in the
distribution is, in fact, the nonnormal asymmetric limit theory of the estimated
impulse tesponses. As Theorem 2.3 shows, these nonnormal asymptotics domi-
nate the distributional shape of the estimated impulsc responses even when there
are stationary components in the system,

Example 2.7. Next consider the AR(2) model y =ay, |+ bdy_| + &, a=1,
|6| < 1. The impulse responses of this system are 0, =1+ b+ -+ b — (1-5)"".
The cstimated responses are

bi=a' +a bt 4B
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8
f = 0.25
f=015 /
4 f =010 U
f=0.05 Iy
f= ‘

0.02 N

2

Fig. 1(a). Limit density of OLS impulse response #-periods ahead for a random walk: & =f*n.

8 -
— f=025 -
--- =015 i
4r f = 0.0 7N 1
i I I f =005 [y
@ - — f=o002 B
5 !
pw)

2

Fig. 1(b). Limit density of OLS forecast error variance A-periods ahead for a random walk: k= f*n.

— 0, for i fixed

| 1 | - as n— o,
éexp{f(_[SdS)(sz) }(l—b)_l for i= fn
0 0

Again, the impulse responses are inconsistent and have random limits. Note that
the stationary coefhicient (b) in this system does figure in the limit distribution.
Because of the unit root, all of the stationary components are accumulated and
this leads to the presence of the scaling factor 1/{1 — &) in the above limit.

Reduced rank regression impulse responses 2.8. Tf (2) is estimated as a VAR
of reduced rank then the limit theory for the impulse responses is different. We
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may assume that the rank of the system is either known a priori to be 7 or is
consistently estimated (e.g. by the order selection technique in Phillips, 1994;
Chao and Phillips, 1994). The case where the rank of the system is incorrectly
specified can also be analysed, of course, and the unrestricted VAR regression
considered above is one instance of this. However, as we have seen, in this
case the long period ahead responses are inconsistently estimated. In the case
where the rank is correctly specified (or consistently estimated), the fact that the
systemn has s =m —r unit roots is also known (or consistently estimated) and this
knowledge then becomes part of the model. 1t turns out to have a pivotal influence
on the asymptotic theory. In a reduced rank regression the matrix product xf’
is estimated in place of an unrestricted coeflicient matrix for the lagged levels
variable in (2). In consequence, no unit roots are estimated (either explicitly or
implicitly), and this affects the limit theory for the system’s estimated impulse
responscs in a material way.

Theorem 2.9. Let Assumption 2.1 hold and let ©; be the estimates of the im-
pulse response matrices ©; obtained from a reduced rank regression on (2).
(i) For fixed i we have: @, — 0,, and n"(6; — ,)=N(0, ¥} as n— x,

where

i—1
V=NUN. N=Y 0, »MCK),
J=0

V=20 G 2 L

where X::=E(£E)), and & :[y:_l,fj’,/ly;_l,...,Ayl’_m_]]’ and G are as in
Theorem 2.3.

(it) If i —oc as n— 00 with either i= fn or ifn -0, we have: € —— @ and
P

2O — @)= N0, V) as n— o, where

7 1 - _ 1 | 4 0
V*NV;N 2 N—@X[ﬁ,H,O, 0](1 EZZ) |:0 lp [Q@H’

Remark 2.10. Theorem 2.9(i) shows that the estimated impulse responses in a
cointegrated VAR model are consistent when they are based on a reduced rank
regression in which the cointegrating rank is consistently estimated. The result
shows that it is important in a reduced rank regression to estimate the cointe-
grating rank by a consistent method. Order selection methods like those used in
Phillips (1994) are one possibility here. Another is to use classical likelihood
ratio tests, as in Johanscn (1988, 1991), that arc suitably modified to cnsure that
the size of the test goes to zero as the sample size goes to infinity. The consis-
tency of the estimated impulse responses applies to both short period and long
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period ahead responses. In the latter case, shocks have a persistent effect on the
system indefinitely into the future. It is these persistent effects that the reduced
rank regression estimates consistently. Part (i} of the theorem shows that when
there are near unit roots in the system, the reduced rank regression mistakenly
takes roots near unity as roots at unity when #— oc. The same is true when
model selection eriteria such as BIC and PIC are used to select cointegrating
rank. In consequence, the reduced rank regression long period impulse responses
are inconsistently estimated when there are near unit roots. The limit distribution
of these estimated impulses is still Gaussian.

Example 2,11, As an illustration, consider the model

Y =Yu-1+ &
Yo :by].,_] + 8¢,

R R [ B
A=ly o TR 2= B |

The impulse responses are @; =4’ =4, Vi. The estimated coeflicient matrix from
a reduced rank regression is A=/ + &', and the associated impulse responses
are A'. Let H =[f" "] where the superscript n signifies the normalized vector.
Then

e, wy=Ay, | +s&,

with

-
H'AH = ﬁl? and as 7 — 20
0 1+443
(with i — oo such that in~!' =0, or i= fin)
g |1 BEXL ey [ Bl - (14 fa}!
0 (1+p'ay PO 0
p— [ b-
"o o
Thus,
i -1 b- , . ’ ,
A= B [ = A THELE + Bbp

ey R ¥ -b[] |1 0
IR U RS B RN | el PR L
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giving consistent estimates of the impulse responses in the limit. The [imit of the
OLS estimated impulse response matrix on the other hand is the random matrix

1 0
eV .

Remark 2.12. In the above example, the cointegrating coefficient & could be es-
timated directly by regression methods, such as fully modified least squares — see
Phillips and Hansen (1990). The limit theory for the estimated impulse responses
is the same in this case as it is for reduced rank regression. Morc generally, mod-
els such as that of Example 2.11 are explicit error correction models (IECMs),
where the number and location of the unit roots and cointegrating vectors is given
as part of the specification of the system. In such cases we get the same asymp-
totic theory for ECM estimators like FM-OLS as that given in Theorem 2.9 for
the reduced rank regression. Thus, all these procedures sharc the same advantage
over unrcstricted VAR regression that they deliver consistent estimates of the
impuise responses.

Remark 2.13. The case of a reduced rank regression in the presence of near
unit roots can be handled in the same way as Theorem 2.9. In such cases, model
selection procedures like BIC and PIC will mistakenly take roots that are near
unity as roots at unity, at least in large samples. In this event, although the
true impulse responsc matrices behave as in (67, the reduced rank regression
estimates will satisfy &, T@_’ as in Theorem 2.9.

3. Forecast error variance asymptotics

The limit theory for the estimated impulse response matrices can be used to
deliver forecast error variance asymplotics. From (5), the forecast error of the
optimal A-step ahead predictor, v, and its variance matrix are:

h—1

Vion— Ver= 2 Owuen g,
=0
h—1

FF)V(}’M) :E(}“Hﬁ — Yer ) Vioh — }’r.h)l — Z @iz;;@;
i=0

=1
=3 &,@/ =F(h) say,
i=0

where @, = &,P and P is a lower triangular mairix from the Choleski decompo-
sition of X= PP’. By virtue of Lemma 2.2 and Cesaro summation we have

W 'F(h)— @X,0'=F say, and therefore F(h)~hOZ.@ as h— oo
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Let @; 4 be the jkth element of @;. Then

h—t
—1 2
Tjk,h =h Z (py,jk
i=0
is the contribution to the /s-step forecast error variance of the jth variable in the
system that is due to the (orthonormalized) innovations in variable k. Similarly,

n
Wi,k = Tik ;(21 Tit

is the proportion of the overall forecast error variance in variable j that is due to
variance k. These quantities are the critical elements in the forecast error variance
decomposition of a VAR model. They are used extensively in empirical work for
policy analysis purposes to determine the effects of unanticipated shocks to one
variable on other variables in the system over time. The following result gives
the limit theory for estimates of these quantities obtained from an unrestricted
VAR regression.

Theorem 3.1. Ler Assumprtion 2.1 hold and ler 6 be the QLS estimates of the
impulse response matrices ©; and 3, be the OLS estimate of the equation error
variance matrix. Denote by FE(h) the corresponding estimate of the forecast
error variance matrix F(h).

(i) For fixed h we have: F(h) T F(hY, n'2(F(h) = F(R)) = N(0, %) as n— x,

where

Vi = NaaValNoy + No VN,

h—1
Ny = Z [({ % ©0,2,)+ (0,2, & NKynN;
i=0

i—1 X
N=380,__;aMC/K,
J=0

A1
Ny= 3 (0;%6,)D,
i—=0

V=2.& Gézgé' G! and V;=D%(var(e ®e))D".

The above formulae employ the following notation: D i the duplication
matrix for which vec(d)=Da, where a is the vector of nonredundant ele-
ments of a symmetric matrix A; the matrix D™ =(D'D)Y"'D' is a generalized
inverse of D;Kym is the compuatator matrix for which K,vec(X)=vec(X"),
where X is an arbitrary m xm matrix. The other notation is the same as
that defined in Theorem 2.3. If the errors in (2) are normally distributed, then
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var(e, ® &) =2Pp(X, ® 2.,), where Pp=D(D'DY LY, and the covariance matrix
V. is simply 2DY(X, % XDV,
(i) If h=fn where f>0 is a fixed fraction of the sample, we have:
(a) B R (R = [ f(j/ BLetU B, BtV Bl =Vr(U), say, where U is the
unit-root matrix variate given in (A.0).
(0) w=> /7 (BiLeV BpPe)? ds,
(c) wipsr=> fJ(B,—Le‘Uﬁ’EPA_)Z ds,/fof(ﬁﬂ_ewﬂgfﬁ pee’V B ds, where f; | is
the jth row of 1 and Py is the kth column of P.

(iil) If condition (c") replaces condition (¢) in Assumption 2.1 and i = fh with

F =0 fixed, then
- j gt ')
WUE(R) = £ fBe LT, Bre’T B = Vi(Up),
i}

where Ur is the local-to-unity marrix variate given in (A.6). Similar changes
occur in the limits given in (i) (b) and (c) above.

Remark 3.2. In models with nonstationary elements, we expect the forecast error
variancc to grow in a linear way with the forecast horizon. This is precisely what
happens with the forecast error variance matrix of the optimal predictor. As shown
above, the matrix F(h) ~ h@Z, 8 as h — oc. In contrast, the cstimated forecast
error variance matrix from an estimated unrestricted VAR with some roots at or
near unity behaves like a random matrix multiple of the lead time 4 rather than
a constant matrix multiple of A, as shown in part {ii) (a} of the theorem. The
expression for Fr(U/) shows that the random matrix is a continuous average of a
matrix quadratic form in the limiting impulse responses. Thus, estimated forecast
error variance matrices for long lead times in unrestricted VARs are inconsistent,
The same conclusion follows for the corresponding estimates of the forecast error
variance decompositions.

Example 3.3 ( Example 2.6 continued), This is the scalar random-walk case, and
when A= fn we have

glfu _ |
2uf

) /
W' F(h)y=o? /7' [eP*dp=? =vr say,
0

where u = ( jU]S dS)(folSz)*' is the scalar unit-root distribution. Note that when
J =1, we have the ¢lementary inequality ¢* > 1 +x, Vx # 0 so that
P(vp<al)=Pe™ — 1>2fu;u<0)=Pu<0)=P(;} < 1)=068.

Since limy, g A~ F(R)= fr;’;, it follows that vy underestimates the actual forecast
error variance of the optimal predictor with a probability of 0.68 in the limit
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as h— o0, This means that unrestricted OLS regression estimates not only give
inconsistent estimates of the forecast error variance of a random walk at long
horizons, but also have a clear tendency to underestimate this variance.
Fig. 1(b) shows the limit distribution, v, of the forecast error variance when
h= fn for various values of f. The distributions are similar to those of the
impulse responses. Again the asymmetry is strongest when f is largest.

Theorem 3.4. Let 3, , be the h-step ahead forecast of yp.y from an unrestricted
VAR regression (1), using sample data t<n. Under Assumption 2 und when
h= fin we have the following limit theory as n—oc:

(i) 1m0 = BLPES(L);

(i) n="2 3, = fu exp(fUIBLS();

(1) 77" (pat — F ) = BLUT — exp(FUIBES() + 1 1S ()

(V) 772 (Wnn — yua) = BLBES(S).

In the above formulae, S and S, are independent Brownian motions with the

same varignce matrix given by Irvar(u,).

(v) When (") repluces (¢) in Assumprion 2, the matrix U in the above limits is
replaced with Ur, the unit-root matrix I is replaced with exp(fT), and the
Brownian motions S and 8, are replaced with Jr(r)= [, exp((r —s)I")dS,

and J7(f)= [, exp((r — 5))dS ..

Remark 3.5. In a stationary VAR the forecast error of the optimal predictor is a
random sequence that converges to a limit random vector as the forecast horizon
tends to infinity. When there are nonstationary components in a VAR, the error
in the optimal predictor behaves like a random walk, is of the same order as
the square root of the forecast horizon, and when appropriately standardized it
tends to a Brownian motion process, as shown in part (iv) of Theorem 3.4. Part
(i1} of the theorem shows that the feasible predictor obtained from an estimated
VAR does not have the same limit behaviour as that of the optimal predictor,
but carries with it the effects of the estimated unit roots (or near unit roots) in
the model. In consequence, the error in the feasible predictor has two indepen-
dent components in the limit: one component is the same as that of the crror in
the optimal predictor; the other component measures the difference in the limit
between the feasible and the optimal predictor and results from the estimated
nonstationary components in the model. Hence, the latter component figures only
in nonstationary directions, as is apparent from the form of the limit shown in
part (i) of the theorem. The upshot of this result is that prediction from an
unresiricted nonstationary VAR regression is not asymptotically optimal in the
sense that the predictions do not converge to the optimal predictors, at least
over long forecast horizons. This result is in direct contrast to that of a station-
ary VAR, where the coeflicient estimation errors have no effects asymptotically
and the difference between the feasible and optimal predictors tends to zero as
H— X,
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Reduced rank regression asymptotics 3.6. As shown in Sections 2.8-2.9, the
limit theory for impulse responses that are estimated by a reduced rank regres-
sion differs from that of an unrestricted VAR. As a consequence, forecast error
variance asymptotics also differ. When the cointegrating rank of the VAR is con-
sistently estimated, then so are the forecast error variances and forecast error
variance decompositions.

Theorem 3.7. Let Assumption 2.1 hold and asswme that (2) is estimated by
a reduced rank regression with cointegrating rank v either known a priori or
consistently estimated as in Chao and Phillips (1994). Let ©; be the estimates of
the impulse response matrices ©,, and 2, be the estimate of the equation error
variance matrix obtained from the residuals of the reduced rank regression.
Denote by F(h) the corresponding estimate of the forecast error variance matrix
F(h).

(i) For fixed h we have: F(hY — F(h), n" 2(F(h)—=F(h))=N(0,¥}) as n — oo,
p

where the variance matrix V is the same as that given in Theorem 3.1 (i).
(i) If h— o0 as n— oo with cither h= fnn or hin — 0, we have

h_lF(h) TF, ‘Ejk‘f, T?jk and (,"jj;(_,z, T wj’k.

Here Ty = lim, _. o h_lz?__ol q);"_}.k :'qafk, and Oy = @‘k/Z?:]fjka where @ is the
Jkth element of & =@P,

Remark 3.8. Theorem 3.7 shows that fixed period horizon dccompositions of
the forecast error variances that are estimated from a reduced rank regression
have the same limit theory as unrestricted VAR estimates. But when the fore-
cast horizon tends to infinity with the sample size, the reduced rank regression
estimates continue to be consistent, whereas those from an unrestricted VAR are
inconsistent and have random limits,

Theorem 3.9. Let 3, be the h-step ahead forecast of y,.4 from a reduced
rank regression on (2), using sample data t <n. Under Assumption 2 and when
h= fn we have the following limit theory as n — oc:

(1) i 2w, n™ 25, = B BES(L);

(1) nil;z(.vﬂ-é—h ~ Yuh )« ”_I"‘;Z(}’nlh - ,ﬁ”‘ﬁ) = ﬁl_ﬁ_;jS+(f)

When (') replaces (c) in Assumption 2 we have

(i) n='2 3, = B fedr(1),

(V) 02 ynn — yuu) = JLBp TP, _

(V) 1 nin — By )= Bulexp(f Ty = NBEr(1 )+ BLBES ().

The notation in the above formulae is defined in Theorem 3.4,
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Remark 3.10. Parts (i} and (ii) of Theorem 3.9 show that forecasts from a
correctly specified reduced rank regression are asymptotically equivalent to the
optimal predictor. Again, the same result holds if a consistent estimate of the
cointegrating rank is used in the fitted model. However, when the system has
near unit roots instead of unit roots, the reduced rank regression forecasts are no
longer asymptotically equivalent to those of the optimal predictor. As is apparent
from the first term on the right-hand side of part (v), within sample estimation
errors figure in the limit formula for the error in the reduced rank regression
forecasts. Thus, we lose the consistency of the reduced rank regression predictor
for the optimal predictor as the model itself drifts because of the presence of near
unit roots and the localizing parameter matrix I" is not consistently estimable.

4. Simulation evidence

4.1. DGP, impulse responses and FEVD

Some small-scale simulations were conducted to assess the accuracy of fore-
casting and policy analysis of models in the VAR class. We used the following
data generating mechanism so that we could focus attention on the effects of a
unit root and cointegration on the forecasts and impulse responses.

yf - AJ’).!—] + 8,3, EI :iidN(O,]3 )-:

1o o 0 0], .
A=|2 0 o|=L+|1 0 [f | _01]
1 -1 0 0 1

This system has one unit root (in the first equation) and two cointegrating vectors.
The impulse responses are:

6 0
A=12 0 0], Vviz2 (8)
-1 0 0
and the forecast error variance matrix is
=1 1
Fihy=Y A4"=h|2 [t 2 —1]
i=0 -1

so that 7' F(ly=1 2 4 =2
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The VAR estimated impulse responses, and estimated FEV and the FEVD quan-
tities have the following limits;

1 0 0
O, =eVpp=e/Y 2 0 0},
-1 0 0

r
hE(h) = ( f' e ds) BLBpE: BefiL
0

Qh_1 12 -1
=01 2 ﬁLﬁJ_:VF 2 4 -2 .
-1 =2 1
n vFﬁjL) k:11
ke = Ve O =
T = Ve i1 O {O, kL1,

I k=1,

0, k#1. ®)

Bin = (Bridu) /(BiL) = {

Note that the VAR estimated FEVD quantity @ 5 has a nonrandom limit in this
case, and 1s consistent. Also, 100% of the FEVD for each of the 3 variables in
the model is due to error 1 in the limit, and this is explained by the fact that the
error in the first equation is the only persistent error in the model. Finally, note
that the VAR estimated FEVD is consistent in this casc — the random component
that arises from the estimated unit root in the model scales out of the numerator
and denominator of the FEVD formula.

4.2 Model classes, model selection and parameter settings

Our simulation experiments employed the range of models listed below for
comparative purposes. In the Bayesian vector autoregression (BVAR) models we
used a pre-set trend degree =0 (i.e. an intercept was included in the regression),
a uniform prior on the intercept, and a Minnesota prior (see Litterman, 1986;
Todd, 1990) on the AR coeflicients with hoth Litterman (designated as ‘lit’) and
data-determined (designated as ‘opt’) settings for the tightness hyperparameter.
The data-determined hyperparameters were selected using the predictive PIC cri-
terion given in Phillips (1994, Eq. (45)) applied to the hyperparameters over the
tollowing intervals: A €{0.01,0.60] for the general tightness hyperparameter; and
#<0.01, 1.00] for the cross variable hyperparameter in the symmetric Minnesota
prior. Lag length, trend degree and cointegrating rank were all data-determined
using the predictive PIC criterion in the reduced rank regression (RRR) model
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and the error correction model (ECM) — again see Phillips (1994) for details of
the implementation of this model determination criterion. The models are:

1. VAR(p) + Tr(ty: A VAR model with trend degree ¢ and lag length p, both
determined by predictive PIC.

2. BVAR(lit & opt): BVAR models with pre-set trend degree =0, uniform
prior on the intercept, and a symmetric Minnesota prior on the matrices of AR
coefficients using both Litterman(lit) and data-determined{opt) settings for the
tightness hyperparameters.

3. RRR: a VAR( p)+ Tr(z) model with lag-one coefficient matrix of possible
reduced rank(r) to allow for cointegration among the variables. Lag length( p),
trend degree(¢) and cointegrating rank(r) are all data-determined by predictive
PIC.

4. ECM: a VAR( p) + TR(?) model formulated in differences with a coefficient
matrix on the lag-one levels variable that allows for cointegration of the specific
form given in the DGP above (i.e., the structural component of the model is
assumed to be correctly specified). The lag length ( p) and the trend degree ()
are determined by using predictive PIC,

Our settings for the maximum lag length and trend degrees in model classes
1, 4 and 5 above are as follows: lag length, pmax =4; trend degree, ¢ max = L.
In the BVAR models we sct the parameters to p=4, 7 =0. Past experience with
BVAR models in forecasting has shown that the inclusion of a linear trend gen-
crally causes a deterioration in forecasting performance — some recent evidence
is reported in Phillips (1992, 1995a), Our setting of t=0 in the BVAR models
reflects this experience and is designed to make the BVAR results more realistic
from this perspective, In the other models, the trend degree is selected using pre-
dictive PIC, and we therefore allowed for a search over the cases of no intercept
{t=—1), mtercept ({ =0) and linear trend (t=1).

We ran 1000 replications of 112 sample observations generated by the system
{6). For each replication the parameters of the various models described in the
preceding section were estimated from the first 100 sample observations, forecasts
were generated up to 12 periods ahead, and impulse response coefficients {up to
30 periods) and forecast error decompositions were calculated.

4.3. Forecasting results

The forecasting results are shown in Figs. 2(a} (c). These figures plot the
average forecast root mean squared errors (RMSEs) over the 1000 replications
for forecasts of the three variables obtaincd by the methods described above.
Specifically, we calculated forecasts and performed policy analyses using:
(1) unrestricted vector autoregression (denoted OLS); (ii) restricted ECM esti-
mation (denoted ECM}; (iii) reduced rank regression (denoted RRR); (iv) and
(v) Bayesian vector autoregression with Litterman settings for the Minnesota
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priors (denoted BVAR(lit)), and optimum data-determined settings for the hy-
perparameters obtained by the predictive PIC criterion (denoted BVAR(opt)).
The graphs show the forecast RMSEs from the simulations with these estimated
models against those of the optimal predictor (which is calculated analytically for
the above system (6) with the true parameter settings). The latter graph (shown
as the solid line in the figures) represents the optimal forecast envelope for this
system. The conclusions to emerge are as follows:

(1) The data-determined RRR and ECM models produce better forecasts on av-
crage than the BVARs and the unrestricted VAR. This is so uniformty over
the fuit forecast horizon and for all variables in the system. There is a ten-
dency for the dominance of these methods to increase as the forecast horizon
increases, again for all variables in the system.

(it) For the cointegrated variables (Figs. 2(b) and (c}), the BVARC(lit) forecasts
are poor relative to the other methods, especially for the first few periods
ahead, where the forecast RMSE is 50-100% greater than that of the other
methods. For these cointegrated variables, there is a clear advantage to using
data-determined hyperparameters, as the BVAR(opt) model does, to allow
for the effects of other variables in the system.

(ii1) For the random-walk variable (Fig. 2(a)), the BVAR(opt) forecasts are
marginally superior to the BVAR(lit) forecasts. This is explained by the
fact that the data-determined hyperparameters allow for a choice that can
shrink the coefficients closer to those of a random walk, and this tends to
produce slightly better forecasts on average than those with the Litterman
settings.

(iv) Overall, these figures show that there is a benefit to the use of data-
determined procedures in forecasting. Not only is the use of a consistent
cointegrating rank model selection method like PIC useful in forecasting
from a reduced rank regression, but it is also clear that BVAR forecasts are
improved by the use of data-determined selection of the hyperparameters.

4.4. Policy analysis results

The impulse response results are shown in Figs. 3(a)—(d). These figures graph
the median (of the 1000 replications} impulse responses 1-30 periods out for the
BVAR, RRR and ECM models against the true impulse responses (the solid line
in each figure, as given in Eq. (7)). The median (rather than mean) responses are
used so that the results are less affected by occasional very large responses that
occur in the simulations. The impulse responses calculated from the unrestricted
VAR regression had so many large responses that the graphs cannot be shown
on the same figures without so distorting the scale that the graphs for the other
models are indistinguishable. Instead, Figs. 5(a) and (b) show the full sampling
distributions of the OLS responses 5 and 10 periods out. The dispersion of these
distributions is enormous and the figures clearly show how unreliable the impulse
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Fig. 3{a)-(d). Impulse responses.

responses calculated from an unrcstricted VAR regression are, at least when there
i$ a unit root in the system. We must conclude that in such cases the unrestricted
OLS cstimated impulse responses seem to be so unreliable that no meaningful
inferences about policy effects can be drawn from them.

The results shown in Figs. 3(a)—(d) for the other methods of estimation seem
much more reasonable. The main points to cmerge arc as follows:

(1)

The median ECM responses ar¢ highly accurate. This is explained by the
fact that in the ECM model, the form of the cointegrating links between the
vartables and the presence of a unit root in the first equation of the model is
part of the prior specification. (Note that the cointegrating coefficients and the
stationary dynamics, including lag order, are estimated in the ECM system).
Thus, it is apparent that accurate structural knowledge pays off handsomely
in delivering highly accurate impulse responses.

(i1) The median RRR impulse responses are also very accurate. Again this is

explained by the fact that the correct cointegrating rank is selected in a
large number of the simulations. In those cases the fitted model correctly
incorporates a single unit root, and the estimated impulse responses then
exhibit the persistence of shocks to the first equation on the first and second
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variables — see Figs. 3(a) and (c). Since the figures give median responses,
they do not show that when the cointegrating rank is chosen incorrectly,
the estimated impulse responses from the RRR tend to suffer from the same
problem as those of an unrestricted VAR, viz. that some impulse response
paths can be poorly estimated and even diverge if there is an explosive root.
Nonetheless, the RRR responses are decidedly superior to the unrestricted
VAR responses in general.

The median BVAR(opt) impulse responses appear to be more accurate for
the first few periods than those of the BVAR(lit) — see Figs. 3(c) and
{d) especially — but also seem to be more variable for the longer pe-
riod responses. The most likely explanation of this phenomena is that the
BVAR(opt) estimates arc more influenced by cross equation effects because
the data-determined tightness hyperparameter is generally larger than the
Litterman setting (due to the presence of two cointegrating vectors in the
truc system).

gs. 4a)—(d) graph the mean simulated forecast crror variance decomposi-

tions (FEVDs) against the true FEVDs as given in Eq. (8). As discussed earlier,
for this system the FEVDs estimated by an unrestricted VAR are consistent be-
cause the random component in the forecast error variance is a scalar and scales
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out inn the FEVD calculation — see (8) above. So this is a case where we may
expect unrestricted VARs to perform satisfactorily. The main results can be sum-
marized as follows.

(i) The unrestricted VAR estimated FEVDs display the most bias, especially with
respect to the effect of shocks on the first variable,

(ii) The BVAR(lit) estimated FEVD’s are also biased, especially with respect to
the effect of the shocks in the first equation on the second and third variables.
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(iii} The other methods generally seem to perform well in estimating the FEVDs,
both in cases where there is shock persistence (Figs. 4(a), (¢) and (d)) and
where there is not (Fig. 4(b)).

(iv) In general, these simulations suggest that unrestricted VAR regression and
BVAR(lit) regression are the least reliable methods for estimating FEVDs,
at least when some unit roots and some cointegrated variables are present
in the system,

Obviously, it is of interest to extend the simulations reported here to cases
of different cointegrating rank, different cointegrating vector configurations, near
unit roots and completely stationary systems. However, provided consistent model
selection techniques that allow for the presence of some unit roots and cointegra-
tion are employed, it seems reasonable to expect that such automated methods of
model-based policy analysis will generally perform better than unrestricted VAR
regressions {see Fig. 5).

5. Conclusion

Unrestricted VARs have been extensively used in recent empirical research to
assess the evidence in support of central propositions of macroeconomics, such
as the role of money in the determination of aggregate output. Estimated impulse
responses and forecast error decompositions have played a key role in these
exercises. The calculation of long horizon impulse responses are now routine
in this type of research and stem from the desire to learn about the long-run
effects of shocks on the system. The approach has been vigorously pursued, for
example, in studying the long-run effects of unanticipated monetary shocks on
output, following the research of Sims (1980).

This paper raises some important issues about what we can expect to learn
from this line of empirical rescarch. Our asymptotic analysis shows that in non-
stationary VAR models with some roots at or near unity the estimated impulse
responsc matrices are inconsistent at long horizons and tend to random matrices
rather than the true impulse responses. Thus, even in very large samples, we must
inevitably expect uncertainty about policy analyses that are conducted using im-
pulse responses that are estimated by unrestricted VARs. Our simulations indicate
that there is also substantial sampling variation in these estimated responses in
finite samples,

Some previous research {c.g. Spencer, 1989; Todd, 1990) has shown that es-
timated impulse responses and FEVDs can be very sensitive to changes in VAR
model specification, such as the inclusion of trends and additional variables; and
there has been debate about the robustness of the empirical findings in this line
of research (see Todd, 1990, for an overview of the debate and some simula-
tion analyses of sensitivity). Our results corroborate these earlier findings about
unrestricted VAR impulse responses, give clear analytical reasons why impulse



46 P.C.B. Phillips! Journal of Econometrics 83 (1998} 21-56

responses and FEVDs from unrestricted VARs are unreliable even in very large
samples, and show that different models in the VAR class produce impulse re-
sponses and FEVDs with very different behaviour. Some models, like unrestricted
VARs and Bayesian VARs produce inconsistent impulse responses and FEVDs.
Others, like reduced rank regressions that employ consistent estimates of the
cointegrating rank, and correctly specified error correction medels produce con-
sistent estimates of impulse responses and FEVDs. Tt is particularly important
that the number of cointegrating relations in a system (and henee the number
of unit roots) be estimated consistently. Model selection methods are important
in achieving this, In particular, a reduced rank regression approach to impulse
response analysis can be expected to improve upon unrestricted VARs only if
the cointegrating rank selection methods work well in practice,

In general, our results echo the earlier findings of Christ (1975) for structural
econometric models. While there certainly are differences in forecasting perfor-
mance in linear time-series models, the most serious disagreements between time-
series models arise in policy analyses. Our main conclusion is that differing treat-
ments of nonstationarity in the models plays a big role in affecting the outcomes
of palicy analysis. Although this issuc was not investigated by Christ, it seems
likely (by analogy to our rtesults for reduced rank regressions and error correc-
tion models) that similar effects to those we have discovered come into play in
structural econometric models when unit roots or near unit roots are estimated.

Appendix A. Model {formulations and proofs

Al The IR0 VAR representation

Construct the orthogonal matrix H ={#, ., ], and define z, = H'y,. The system
(2) transforms to

2y =Bz, + FW, +n, with B=HAH,
F=H'[Y, Y% -1 ®H), n=Has, (27

and where wy = (Ay,_y,..., 4y, )I & H) is the vector of transformed differ-
ence regressors. Partitioning z,, 1, and F conformably with the partition of H,
and noting that B has the explicit partitioned form

. I B o ’
0 I+ fua

we can write (2) as
zu=zu 1+ Bl aza— + Fiw, +m, =z, +uy,  say

Zy = ([r + ﬁ"”-’)zh—l + Fawp + #a.
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In this representation of the VAR system, z), is I(1), zy is I(0), there are s unit
roots in the first subsystem, and the second subsystem is stationary.

Define x, =(z3,_,,w/), the wansformed stationary components in the system,
and then

-1 By
x,z[f 0] Ayi- :[f 0] Ay,
0 IxwH 0 IgH
Ayrprr] Ayl—p—&-l
I 0 3
“lo rew |t

A.2. Alternate companion forms

It will be helpful in subsequent derivations to use alternate companion forms of
the VAR model (1) that correspond directly to the model in levels and differences
— see Eq. (2) — and the model in partitioned I(1)/1(0) format. We start by
transforming (3) and (4) into the companion form for the model (2. This can
be accomplished using the matrices

I 0 .. 0 I 0 .0
k= |0 O k=[P 0
I -1 . =T 0 - I -

giving the new companion form coefficient matrix

I+af w v
T

pox-ck—| ™ ! P! (A1)
o - 1 0

Now define the orthogonal matrix

(B B 0

G=I, % H
r 0 0 I, ,®H

=[GL.G], G| =[p.0

which we use to transform the companion matrix D again so that it corresponds
with model (2') where the variables are partitioned into I(1) and 1{0'} components.

Specifically, the matrix £ = G'K~'CKG = G'DG is the coefficient matrix in the
companion form of (2'). Note that it has the same eigenvalues as € and can be
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written in the partitioned form

rl pla W W
0 I+ fa
0 ﬁifx WI T ?{)*l
, y Iy Ep
E—-G'DG=|0 fu - , (A.2)
0 In
0 I
LO < Iy 0 |
where
1o+ Bl W ¥
ﬁj_y ?1 ?p- i
En=[fla¥ - ¥ ] and E B
s = ! I /N L= ’
1 an 1 ! [m 0 0
L 0 ¢ . 0

and where ¥, =f ¥.H. (PA_ ='W H, and ¥, ='W, /1. When we take powers
of £ we get

E = G'D'G=

I, Ep( +---+ES! I, Ep(d —En) !
wlf + 5 )] H[. 12( 2) (A3

0 Eb, 0 0

since £7; has stable roots. The impulse response matrices can be rewritten in
terms of the new companion form involving the matrix I as follows:

O, =M'CM=MKDK'M
Lo B+ + By

_ GK'M. (A4)
0 Ey

_ M'KG [
In the near integrated case under (¢’) we have

O, =MCM
exp(in™' ) exp(in™ MEp( + -+ + £y

. GK™'M.
O(n Y Ei,

—M’KG[
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A.3. Proof of Lemma 2.2
From (A.4), we have ©; — @, where

_ I Ep(f — Ep)7 !
@—M’KG[(; 1o 022) JG'K*'M:[ﬁ_L,ﬁ,o,...,O]
7
#
X[[s 512(1—522)*!} H
0 0 0
Lo ]

=8B+ B ERU - En)'Q=F15,

as required. In case of (¢/) and i = fh, we get O, — Or =, exp(fT)fL.

A4, Proof of Theorem 2.3

When (1) is estimated by unrestricted least squares we can write the estimated
impulse response matrices in a form that is similar to the representation {(A.4)
above for the true impulse response matrices, viz.

6 =M CM =MKDK'M = MKGEG'K™'M.

In this expression £ is formed from the unrestricted OLS estimate of the coeffi-
cients in the system (27). Specifically,

BOR o B B
i |B-1 A oy B
0 6 - ! 0

Now £ — E, and, for fixed i, £/ — E' as n— oo. In this case, the estimated
p p

mmpulsc respeonses €, are consistent, proving the first part of part (i} of the
theorem. The limit given in part (ii) follows using Lemma 2.2, as shown below,

The limit distribution of @; for fixed i is obtained as follows. We take differen-
tials of these impulse response estimates with respect to the coefficient estimates
giving

~ " . -~ ’_] -~ A A
d6 = MAC'M = MKGAE'G'K™'M = M'KG S BV FAEEFG'K ' M.
k=0
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Note that

Py

dE = | 0| [dB.4F, . ...dE_ 1= K~'M[dBi:dBy,dF,,....dF 1]
0
=K 'M[dB,:dB,] say,
— K 'G'GM[dB, B, = K 'G'MH[dB'dB,]| = K~'G'M[dA,d¥|G

— G'K~'MT{d4, d¥1G,

in the original coordinates of system (2). The partition [dB:dB.] above corre-
sponds to the nonstationary and stationary coeflicients in the transformed
system (2'). From Theorem 5.7 and Remark 5.8 of Phillips (1995), we have

n' A — A — P12 N0, Z, ® G2 G = N(0, 2, ® G:£7 G),

where, Z,, = E(x.x]), Zs:=FE(£E) and zf,:[y:,lﬁ,Ay;q,...,.dy;upﬂ]’ and
0
G — [ﬁ ] _
i 0 Im(p—-l]

It follows that 4@, =3 """ @y 4 [dA,dPIGEFG'K "M =314 6,y 4[dd,d¥P]
K=VCHM and n'2(60,—6;) = N(O, ¥), where ¥, = N(Z, 8 G 2 GON! = N{(Z.®
G:Z.) GLN' and N, = 34 (€ 1_4 % M'C"*K'~'. This completes the proof of
part (1) of the theorem.

When i== fn, where f is a constant, the consistent limit for E" is no longer
valid. Instead, the asymptotic distribution of the nonstationary components of B
figures in the limit, as we now demonstrate.

Working in the transformed system (2'), we note that the limit distribution of
those components of B which relate to the I(1) elements of the system (viz. the
first s columns of B) is given by

~ ] ];
(B - B1) = (de,,S,’) (.]Sle) , (A.5)
0 0

where S| is vector Brownian motion with covariance matrix = [rvar{uy;), and
S, 1is vector Brownian motion with covariance matrix =Irvar(y,)  see Phillips
{1995, Theorem 5.5) for the derivation of (5). Note that S, and 5, are correlated
Brownian motions because #), is a component of wu,. From (3) we sce that
B =[4,0]1=[B, B:2], say, so that when we partition B in the same way as B
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we get

-1

. l L .
f'l(BI] _[s):>' (de,“Sf) ( jS|Si') ={/ say, Blzzop(n—l)_
[t} 0

(A.6)
Thus,
L [ I ElzJ
£E= . and
Op(”_]) Eq
A _ Bl +00n "y 3y BIT¥E £, JrOp(”_l)] (A7)
Op(n") Ey +Opn 1) .

The eigenvalues of E»» converge in probability to the eigenvalues of E.y, which
are the stable roots of the system. Therefore, £), converges in probability
to a zero matrix as # — oc. On the other hand,

Bl = U+ Bu — L)) =L+ n(Biy — I)inl™ = exp( fU) (A8)

as n — oo, Let i* — oo be such that i*n~! — 0. Then,

Z B"i AElZEzz = Bn E Bn E12E22 + Z BI}ikEDE (A_9_)
k=0 k= i*

Now for k <i*, we have B''"% — J_ and the first term on the right-hand side of
p

{A.9) converges weakly to exp( fV)E;2(/ — E12)~!. The second term converges
in probability to zero since the roots of £, are stable, and 8], = O,(1). Thus

5 exp(fU) exp(fU)ERU — Exn)”!
E = = Fy say,
0 0

and so @, = M'KGE,G'K M =f§, exp(f U + B exp(fUNERT —En) 'O,
as required for part (iii) of the theorem.

Part (i1) follows by notmg that, in place of (A.8), when in” '—0asnooc
we get Bf — 7, and hence £’ —>E0 Then, &; — 8, as required.

P P

To prove part (iv} we note that when the model (1) has near unit roots rather
than unit roots, i.e. when assumption (¢’) holds in place of (¢), then we have
the new coeflicient matrix 4=, exp(n 'T)B" + B’ + af’ in (2) rather than
A=T+af’. Then, in place of (A.5) and (A.6) above, we have the alternative
limit theory

—1

1 ]
n(B) — B,):>(fd5',1.]}) (j‘J,-J;.) , (A5
] 0
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and
—1

1 i
ﬂ(.éu - B )= (j dS,“J;-) (f.][.]_,{) =Ur say, (A6r)
0 0

where Jr(r)= [ exp{(r — s)['}dS, is a vector diffusion process — see Phillips
(1988) for similar derivations. Part (iv) now follows upon appropriate redefinition
of U.

A.5. Proof of Theorem 2.9

We proceed in the same general way as the proof of Theorem 2.3. As before,
we can write @, =M'KD'K "M and now

v af ¥, i1
W W

l’jz 0 I . s
L 0 | 0

where 4 and i are the reduced rank regression estimates of o and ff. Wc can
take it here that § is normalized in such a way that its components are identified.
Thus, we can set f =[], —4], and rcquire [} to be normalized in the same way.
These matrices can subsequently be orthonormalized by using the transformation
B— B(B' B2, In the same way, we can define the coordinate system for the
orthogonal complement space in such a way that §7 :[A;j,],,,,,.] and orthonor-
malize the matrix with the transformation f, — B, (8] B )", doing the same
thing for .’;l- Then, A}; TA{;, and, in conscquence, ﬁ—p—>ﬁ and ﬁL T)[)l'

As in the proof of Theorem 2.3, we find that d@; =34 1 €;_,_,[dA,d¥ K~
C* a1, but now dd =d(&f)=daf’ + 2df’. Since ﬁ is O(r~") — consistent for
fI (recall that the components of fi are identified), the dominant contribution 0
the limit distribution comes from [ddf’,d¥]. If we define & ={x, ¥], then the
asymptotic distribution of the reduced rank regression estimator of @ is (see Ahn
and Reinsel, 1990, Theorem 2)

nl;‘Z(é _ @) = N(O, ZJ:H: ® Z;I )n

where Zee=FE(&E) and &=y f. AV_,,..., Ay
dd=[d%,d¥] and then

23— )P — W] N, 2, € G.EL G, .
It follows that
n];"Z(éi _ 91) :‘}N(O, Vl)!

7 .11 as before. Next, write
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where Vi=Ni(2, 2 G:Z~ C’ )N/ and N; has the same form as before. This
proves part (i) of the theorem

Define 7/ =[fi,,f] and G=1,% H. Let

s ﬁLOjr B %71
0 L+fa
ot i
E:Gléc}: 0 ﬁL%fA !f}l q‘i’i*l _ [5 E]2 w
0 !r + ﬁ 04 0 E‘ Y,
0 I, 0 7
L0 o Iy 0 1

where ﬂ:ﬁ’f‘f’kﬁ, k=1,....,p— 1. Then

—_—

e I 512(1+1§22+..-E£51)
E=G'D'G=
P

0 £y, 0 0

I, En(l —Ex)™! }

it follows that
6@ =MEKD'K M
Iy Ep(l — E£5)7!
0
=M B+ PLER(I —En)'0=8,

=M'KGE'G'K'M — M'KG GK'M
p

giving the required result (ii),

A.6. Proof of Theorem 3.1,

Taking differentials of # we have dF = Zf:ol {d@ff@!’-—% éjdfé;"‘ @ifd@,’},
and vectorizing yields

vee(dF ) = hf ({75 O, 2V (0,2 @ DK bvec(dB;)
=0

+(6; % @ )vec(di)]

—hE (I & .20, % 1K e }vec(dO;)+(0; & @) Dd6]

i=0

=N T % 6.5) + (6,58 DRy} Bivectdid, 1)
i=0

( ) Ddg].
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Here 4 and ¥ are the OLS estimates of the coefficient matrices in (2), N; = Z;{;})
6o i_p M C*K'! and vec(Z)= Do, a is the vector of nonredundant elements
of £ and I} is the duplication matrix. The limit distribution of the coefficient
matrices and the covariance matrix estimates are independent and are given by

A4~ A - PI=n"1E - ), ¥ - W)= N0, 2, ® G2 G,
n'2(6 — 6)Y= N(0, D" var(e, ® £, YD),

where DT =(D'D)~'D’ is a generalized inverse of D. If the errors in (2) are
normally distributed, then var(s, & &)= 2Py(Z, @ X,), where Py =D(D'D)~'D,
and the covariance matrix in the second limit distribution is simply 2D (X, & Z.)
DT’ Part (i) of the theorem follows directly.
To prove part (ii), we first write A 'F(h)y=h"" Ef';ol 0,%,0 :f“'Z?:_UI
i n©i2.0] ds. From the proof of Theorem 2.3, &, = M'KGE'G'K "M, and
for i =ns, we have as in (A.7)-(A.9)
Bi] +Op(n7}) B'i1él2(1“”é22)71 +0p(1) A
Ei= . , Bn:>exp(sU)
O(n~") Ei +0p(n)

and @; = f exp(sU)f,. Tt follows that

. A=l i z
R =f7'Y f 0,5,00ds= £ [ B exp(sUISEE fs
i=0 (j—1)n ¢

* exp(sU)F, ds,

giving the stated result (a). Result (b) follows in a similar way. We have
A N
Likh = Z qo] Lk =h" z (@ip)j‘k
=/ E f (@) ds =~ f(/)lesL BEP)5 ds,

i=0 (i—1)/n

giving the stated result. Part (c) is a direct consequence of part (b). Part (iii)
follows in a straightforward way using the near integrated asymptotics, and then
the random matrix U is replaced with U in the above formulae.

A.7. Proof of Theorem 3.4

From (5) the optimal predictor is ynh—x'.'+h e, iEnth—i. When A= fn and
n— o, we deduce from Lemma 2.2 that

i ” —
Ry e @S g = O8(1) = BLBES(L),
=1
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as required for part (i). In a similar way, since @, = B exp( fU)PL, we obtain
part (ii). Parts (iit) and (iv) are immediate.

A.8. Proof of Theorem 3.7

The proof of part (i) is the same as that of Theorem 3.2 (i) in all key respects.
However, RRR rather than OLS estimates of the coefficients in (2) are used. We
then have [4,¥]=[4f', %], and we use the limit theory (A.10) for the RRR
coeflicient estimates. The stated result follows in the same way as Theorem 3.2(i).
Part (i1) of the theorem is a consequence of the consistency of the RRR impulse
responses for long horizons that was shown in Theorem 2.9(ii).

A.9. Proof of Theorem 3.9

The stated results follow in the same way as Theorem 3.4, but rely on the
consistency of the RRR impulse responses.
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