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Abstract

This paper develops a general theory of insttumenta! variables (IV) estimation that
allows for both /(1) and [(0} regressors and instruments. The main goal of this paper
is to develop a theory in which one does not need to know the integration properties of
the regressors in order to obtain efficient estimators, The estimation techniques involve an
extension of the fully modified (FM) regression procedure that was introduced in earlier
work by Phillips and Hansen (1990). FM versions of the generalized instrumental variable
estimation (GIVE) method and the gencralized method of moments (GMM) estimator are
developed. In models with both stationary and nonstationary components, the FM-GIVE
and FM-GMM techniques provide efficiency gains over FM-IV in the estimation of the
stationary components of a model that has both stationary and non-stationary regressors.
The paper exploits a result of Phillips (1991a) that we can apply FM techniques in
models with cointegrated regressors and even in stationary regression models without
losing the method's good asymptotic properties. The present paper shows how to take
advantage jointly of the good asymptotic properties of FM estimators with respect to the
non-stationary elements of & modei and the good asymptotic propertics of the GIVE and
GMM estimators with respect to the stationary components. The theory applies even when
there is no prior knowledge of the number of unit roots in the system or the dimension
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Table 1

Table of notation for variable and estimator affixes

Symbol Meaning

X vector of regressors )

X (= uy) vector of the /{0) components of regressors
X vector of the /{|) components of regressors
Ut = Ax;

2y = dxy,

o vector of instruments

i (= bzy) vector of the /(0) components of instruments
I vector of the 7(1) components of instruments
Uy = AZ;

Uy = Az

subscript ‘a’ clements comesponding to uyr and u joimtly
subscript b elements corresponding to &y, and -3 jointly
superscript ‘4’ endogeneity comection with respect to {ua}
superscript **’ serial comrelation correction

£ long-run covariance of {wi} and {u;}

Ay one-sided long-run covariance of {w;} and {u;}
4 = dyj — il 44

affix *+ 7 estimator without FM corrections

affix * " estimator with FM corrections

The paper proceeds as follows. Section 2 gives a preliminary outline of the
problem and explains the general idea behind FM estimators. Section 3 details
the general mode! that will concern us, lays out some of the key assumptions
and gives a lemma whose results are important in motivating the construction of
our estimators. Section 4 develops a gencral theory for FM-IV estimators that
allows for cointegrated regressors and cointegrated instrumental variables. Sec-
tion 5 shows how to extend this theory to FM-GMM and FM-GIVE estimators.
Section 6 gives asymptotic chi-squared tests for the validity of the instruments in
GMM and GIVE estimation. Section 7 concludes the paper with a brief summary
of our main formulae and results so that these are more accessible to empirical
researchers. Derivations and proofs are given in a technical appendix. A table of
the main notation that we use to distinguish the variables and the estimators in
the paper by the various affixes is included.

A summary word on notation in the paper which is not explained in the table
is necessary. We use vec(A4) to stack the rows of a matrix 4 into a column vector,

P, to signify the projection matrix onto the space spanned by a matrix 4, and

[x] to denote the smallest integer <x. We use the symbols 4, Py and ‘=

to signify convergence in distribution, convergence in probability, and equality
in distribution, respectively. The inequality ‘> 0" denotes positive definite (p.d.)
when applied to matrices. We use /(d) to signify a time series that is integrated
of order d, BM(£2) to denote a vector Brownian motion with covariance matrix
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Q. We write integrals with respect to Lebesgue measure such as fol B(s}ds more

simply as fol B to achieve notational economy. The symbolism MN(0, '} signifies
the mixture normal distribution MN(O,¥) = [, N(0,V}dP(V). Finally, all
limits given in this paper are taken as the sample size T tends to oo unless
otherwise stated.

2. Some preliminary discussion of the problem

In this section we present some informal arguments that use a simple model
to illustrate the problems discussed in the paper. We consider the regression

ye = B'x; + uo, (1)

where {ug} is a stationary time series, and {x,} is a vector time series which is
either /(1) or [(0). In cither case, we allow for endogeneity in the regressors:
when x, is /(0), some elements of x; can be correlated with uy,, and when x, is
I(1), some elements of dx, = uy can be correlated with ug, for some s. For the
time being, in the /(1) case we assume that x; is a full rank /(1) process, i.e.
the number of unit roots in the stochastic process x; is equal to the dimension of
x, (and thus the elements of x; are not cointegrated). When y, and x; arc I(1),
Eq. (1) is usually called a cointegrating regression.

In the /(D) case, the use of OLS generally yields an inconsistent estimator of
B, and the instrumental variable (V) method is commonly employed to deal with
this problem. In order to apply 1V methods successfully, we need valid instru-
ments, and we can test the validity of the instruments that we use by following
the approach of Sargan (1958, 1959). On the other hand, nowadays it is well
known that OLS estimators are T-consistent in cointegrating regressions, though
they do involve nuisance parameters and are not asymptotically unbiased. In the
I(1) case, as in Phillips and Loretan (1991), the asymptotic distribution of the
OLS estimator of § (denoted by f, say) is given by

G- (o 8:8) ([fo BedBoa+ om0z 8] +0), @

where 8 = 7, E(ugktizn), (Bo, B;Y = BM(R), Boz = Bo — weally; By and € is
the *long-run variance’ matrix of u, = (ug, uy, ) and is partitioned conformably.
Observe that the second term in the parentheses involving the coefficient w0225,
and the term involving & both induce bias, asymmetry and nuisance parameters
(i.e. @2, wyy, ) into the limit distribution.

Several ways have been proposed to resolve these problems: see Johansen
(1988), Park (1992}, Phillips (1991b,c¢), Phillips and Hansen (1990), Phillips
and Loretan (1991), Saikkonen (1991) and Stock and Watson (1992). Among
them, the fully modified (FM) estimator proposed by Phillips and Hansen seems
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to be particularly useful in practice because it enables investigators to run re-
gressions much like least squares that yield asymptotically efficient estimates of
the cointegrating coefficients. The procedure eliminates nuisance parameters in the
following way. First, we modify y, using the transfonnatlon Vo= y- a)oan dx,
and the error in (1) also, giving %} = 1o — wmﬂn 4x,. This is a correction for

endogeneity. Next we construct a serial correlation correctmn term 3+, which is

a consistent estimator of 6% = 3 po, E(ubuj,) where uf, = up — wozﬂn' ax;. .
The FM estimator combines these two corrections in the least squares regression

formula and is given by

b= () (B ).

which is asymptotically median unbiased and nuisance parameter free.

Now, what if we allow for cointegration in the regressor variables x,? This
means that there are some stationary components in x,, and therefore, a natu-
ral strategy might be to use IV estimators for the stationary components and
FM estimators for the /(1) components. If the cointegrating vectors for x, were
known, or the location of the unit roots were specified a priori, the stationary
components and the /(1) components would be identified and the above strategy
would clearly work. However, such vectors are usually unknown and need to be
determined empirically unless prior economic knowledge is sharp and very infor-
mative. Moreover, a simple and important example in practice is the case where
we do not know whether some individual regressors are either I(1) or /(0). If
some of the regressors are /{0), we sometimes say that the regressors as a whaole
are ‘trivially cointegrated’, since any vector which puts non-zero weights on the
1{0) components and zero weights on the /(1) components is a cointegrating
vector. In the following, we explore a methodology that allows us to deal with
systems of this type that have possibly non-stationary processes without using
prior information about the location of unit roots or even the full dimension of
the cointegration space.

3. The model, conditions and a useful lemma

Let {y} be an n-dimensional time series generated by
Yo = Ax; + ugr, 3)

where A is an n x m coefficient matrix and x, is an m = {m, + m;)-dimensional
vector of cointegrated regressors specified as follows:

Hixy=xy=uy 1 mx1, (4a)

Hydx, = Axy =uy : my X |, {4b)
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where H = (H,, H,) is an mxm orthogonal matrix. Using the rotations prescribed
in (4), Eg. (3) can be rewritten as

¥ = Avxy + Aaxy + gy (3’)

where A4) = AH, and 4; = AH,. We let z, denote a g-vector of instruments
driven by

Gzy=ziy=1uy : q1 x|, (52)
Gydz = Azy =y : g2 % 1. (5b)

We will use the notation u,, = Ax, and u,, = A4z,. This partition of the regressors
and the instruments will be instructive in the development of our theory. However,
as will become clear neither our methods nor our results are contingent on the
knowledge of or the nature of these partitions.

We now impose assumptions on the random variables w, = (tig,, ¥}, U3, Usy,s Yoz, )
that drive the system (3)—(4) and the instrument set z,.

Assumption EC (Error condition)

(a) {w,}®° is fourth-order stationary with absolutely summable fourth cumulant
Junction,

(b) E(w,) =0,

(©) Elwylf <00 (i=1,..n+m+q) for some 4<h < o0,

(d) {w;}$° is either @-mixing with mixing coefficients @y such that S rp,',,"" #
< 00 or a-mixing with mixing coefficients oy such that 3 | a2 < o0,

(¢) the long-run variance matrix of w, Q@ = Y. % E(ww)) (= SR i),
say) is positive definite,

Assumptions EC(a)-EC(c) imply that the regressor x, is cointegrated and that
each column of H), is its cointegrating vector. Assumption EC(e) also ensures that
23 is 1(1), but it excludes cointegration among the elements of z, and between
xy and za,. It also excludes the possibility of ‘multicointegration’ of y; and
x3, as defined by Granger and Lee (1989). The assumption of no cointegration
between x3, and z3; will be relaxed later on in the paper. For subsequent use, we
decompose the long-run covariance matrix given in (e) as follows:

N=Z+A+A4,

where £ = E(ww)) and A = 3 o0, E(wiiw]) = Yoo, T'(i); and we define the
‘one-sided long-run covariance matrix’

A=Z+A= fE(w,Hw;) = fr(f).
i=0

=0
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Under Assumption EC, 2 multivariate invariance principle (IP) for {w;} holds,
viz.

(77}
=25 w; -5 B(r) = BM(Q), 0<r<l, (6)
i=l|

as shown in Phillips and Durlauf (1986). We partition B and £ conformably with
W, as

Bo(r) Qu S0 Q02 Qo Qor
By(r) i Qn 2 e Qi
B(ry=| Bir) |, Q=0 Q Qn Qo & |,
Bu(r) ‘2110 Qz.l Qz.2 sz Qz.z;
Ba(r ) -szo Qz;l Qz;! sz Qz;z;

and define the ng,-vector
G2t = ugy ® 21, (7)

We now state some additional conditions that are important for the analysis of
the stationary components of the model.

Assumption I'V (Instrument validity conditions)

{a) E¢,, = E(up ® 2() =0 for all t (orthogonality condition);

(b) E[xi2,] = K;, is of full row rank (rank m,) (relevance condition);

(c) E[zuz|,] = M;, is non-singular (non-singular second moment);

(d) {¢:, ) satisfies the same conditions as Assumption EC(b)-EC(e) (regularity
conditions);

(e) m; <q; (order condition on I(1) instruments).

In conventional TV estimation, we choose instruments satisfying (a} whose
dimension is equal to or greater than the dimension of the regressors. In our
case, we wish to maintain m, <gq,, which is a necessary condition for part (b),
but m, is unknown a priori. Therefore, in the above model specification the set
of instruments is required to be ‘large enough’ so that m<gq and the necessary
order condition in terms of dimension is satisfied. Part (d) (given part (a)) allows
for the use of a central limit theorem (CLT) with respect to ¢,,,. Other sets of
conditions, are possible in place of (d), of course, and are explored elsewhere,
e.g. in White (1984). Part (¢) is a non-stationary counterpart of part (b). Note
that it suffices to impose an ‘order condition’ here, since the sample moment
matrix 77 Y xzj, converges in distribution to a random matrix that is of full
rank almost surely as long as both x3 and zy, carry full rank stochastic trends.
This point arises from the asymptotic theory of spurious regression and has been
shown by Phillips and Hansen (1990, Lemma A3).
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Define the data matrices Uy = [ug), .. #or]’s X = [x1, ., x7), and Z =
{z1, ... zr]’. Similarly, we write XH = [X), X2] = Xy and ZG = (£, Z2] = Zg,
where the subscripts ‘H’ and ‘G’ signify that rotations by # and G have been

+0o0

performed. We also define the ng x ng matrix S, =3 _ R. (i), where

R, (/)= E(“O.ru:);+j ®21;Z{j+‘ ).

Then, under mild regularity conditions such as Assumption IV (a) and 1V(d), we
have the central limit theorem (CLT)

20z L NGO, 82,), (8)

where we use the conventional normal random matrix notation {see, for example,
Muirhead, 1982). Next define a sequence of n x m random matrices {Cr}, which
will be used to illustrate some properties that are common to all 1V estimators
in this paper, by

Cr = (UP: — ¥r)X(X'P.X) . (9

The matrix Cr represents a generic form of the matrix of 1V estimation errors
for the parameter 4. In (2), ¥r is an # x T random matrix of abstract correction
terms. It is convenient for us now to impose the following conditions on the
asymptotic behavior of ¥ and later we will justify them under more primitive
conditions.

Condition CT (Correction term conditions)
(C1) ¥rX, = 0p(VT)

(C2) T-'¥rxy L ¥, say

where ¥3; may be a random matrix.

The following lemma is fundamentally important in our subsequent theory.

Lemma 3.1.  Suppose Assumptions EC, IV and Condition CT hold. Then
(a)  VTCrHy = VTUP X, (XIP, %)™ +0pl(1)
0N, J,, 5L,
(b) TCrHy = T(UP., — Pr)Xa(XIP,X2)~" + 05(1)
- -1
o, (fo' dBy B + Au, (fo' 3325;!) 8.8, — *Pz)
P |

x ( A 3235) :
where J,, = [I, @ (K, M 'K, Y 'K, M, '} K, and M;, are as defined in As-
sumption IV (b) and IV (c) and By = fo' BB, ( fo' B..B,)"'B,,

Part (a) of Lemma 3.1 shows we can add any correction terms that satisfy
(C1) and (C2) without affecting the asymptotic behavior of Crf. Morcover,
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CrH| is asymptotically equivalent to the estimation error that obtains when we
apply the conventional IV estimator to a stationary regression model with the
regressor vector xy, and the instrumental variable vector z),. Part (b) of Lemma
3.1 shows that CrH, has the usual asymptotics of a cointegrating IV regression
with the additional term ;. In sum, if we construct a correction term ¥ so that
it satisfies (C1) and (C2) and yields a limit matrix ¥, that correctly adjusts the
asymptotics in part (b), then the limit behavior of Cr and its various functionals
may become nuisance parameter free and have some other good properties like
asymptotic median unbiasedness and possibly even optimality, In fact, the FM-
1V estimator and its variants that are proposed in this paper are designed so that
their correction terms satisfy the conditions just mentioned. The lemma is helpful
in understanding the key elements in and the motivation behind the construction
of these estimators. We will use it frequently in the analysis that follows.

4. Estimation theory

This section studies the estimation of the model proposed in Section 3, allow-
ing for the regressors to be cointegrated and to be correlated with the errors.
Cointegration among the instruments is also allowed for. In the construction of
the estimator, we use the vector of instruments z,, consisting of both stationary
and non-stationary components.

The following formula defines the FM-IV estimator of the coefficient matrix
A in (3)

A=z - 1A )22y 27X (X'P.X)
=[Y'P, — BoaQ2 UIP, — TA(Z'Z)"' 21X (X' P, X)) (10)

where 7' = ¥/ — ﬁmﬁa‘a' ul, A“u_: = do, - flo‘,f);,' Az do; denotes the estimate
of the one-sided long-run covariance between wp and »,. We use the subscript ‘a’
in these formula to signify elements that correspond to u,, and u,, taken together.
Note that in the definition (10), the second term in the square bracket is the
correction term for the endogeneity of the non-stationary instrument z; and the
regressor x;, while the third term corrects for serial correlation.

Before studying the asymptotics of the FM-IV estimator, we will prove two
lemmas which are useful in evalvating the asymptotic contribution of the correc-
tion terms in our estimators. In these lemmas, the long-run covariance matrices
can be estimated by the use of kernel estimators or smoothed periodogram es-
timators. Kemel estimators of the long-run covariance and one-sided long-run
covariance matrices between {u,} and {u;} take the following forms:

=1

-~ ~ - T ~
Qup = E w /KW () dup = Zw(j/K)F,.,.,,,(j), {11)
i=—T+1 =0
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where w(-) is a kernel function, f,, () =T Zug, iy, and K is a lag truncation
or bandwidth parameter satisfying X = o(T'/?) as T — co. In some cases (e.g.
for the quadratic spectral estimator) the kernel function w(:) is non-zero outside
the interval [—1,1) and then there is no truncation in the summation in (1)
Suppose #(> 0) is the largest integer such that

. 1=
lim L= ®)
e T

(12}

This implies that

fim dw(:t_)l/du
u— u

= W) < 00, (13)

In fact, r is what Parzen (1957) calls the characteristic exponent of the kemel
w(-) using the expression (12). For our purposes expression (13) turns out to be
the more useful. We will be concerned mainly with kemels whose characteristic
exponent r = 2. Among these we have the following (noting that the Tukey—
Hanning does not satisfy the positivity requirement, which is desirable but not
essential):

1-6x +6x for 0<|x|<1/2,
Parzen: w(x) = { 2(1 — |x])* for 1/2< x| <1,
0 otherwise,

{(l +cos(mx))/2  for x| <,
0

Tukey —Hanning : w(x) = otherwise

Quadratic spectral : w(x) = 25 ( sin(6mx/5)

225 e cos(61tx/5)) .

In practice we need to estimate the unknown sequence {ug} to construct esti-

mators of long-run covariance matrices such as £g,. Conventional 1V estimators
and residuals defined by

A=YPXX'PX)"' and fig =y — A (14)

can be used for this purpose. A  is consistent for 4 under Assumptions EC and
IV, since the estimator A, = = AH, is vT-consistent for A; and the estimator
A = AH, is T-consistent for A3. It is straightforward to justify these consistency
results using Lemma 3.1, since ¥ = 0 in this ‘naive’ IV regression. In finite
samples there may, of course, be some advantage to using a third stage FM-
IV estimator in which the estimates of long-run covariance matrices like Qq, are
refined by using the residuals from the second state FM-IV regression to estimate
ug;. This is a matter that will be explored in subsequent simulation experiments
with our methods and reported elsewhere.
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Finally, we assume

Assumption LR (Long run covariance matrix estimation). Any of the Parzen,
Tukey—Hanning or the quadratic spectral (QS) kernel estimators are used in
the estimation of the long-run covariance matrices. The covariance functions
T gy () and I uay(*) satisfy the summability condition

$ M < 0o (15)

J=—ca

where uy = {(u3,, ul,,) and ug = (u,,ul,, Y. The parameter K in (11) grows at
the rate of T* for some k € (1/4, 2/3).

The kernel estimators specified in Assumption LR are all commonly used in
long-run covariance matrix estimation. The summability condition (15) allows
for a wide range of time series including quite general finite-order stationary
vector ARMA specifications for the error processes. Under stationary ARMA
specifications, of course, I'(j) decays exponentially and (15) is automatic.

Now we postulate an additional condition concerning the unknown stationary
component {z,}:

Assumption NF (No feedback). Elugs; ® 21,1 =0 for all j=1.

Assumption NF does not seem restrictive in empirical applications, since it
holds in two situations where conventional instrumental variable methods are
most frequently used. First, the assumption is trivially satisfied when all the
stationary instruments are strictly exogenous. Second, the hypothesis of rational
expectations will usually entail that there is no feedback from the regressors or
instruments to the errors. In typical rational expectations models components of
stationary variables involving past information are orthogonal to current errors,
and this fact provides the opportunity for instrumental variables estimation of ra-
tional expectation models. Research along these lines was initiated by McCallum
{1979) and extended by Hansen and Singleton (1982) and many others, particu-
larly to the estimation of rational expectations models with future expectations. In
the case of non-stationary models, the rational expectations assumption imposes
restrictions on the stationary linear combinations of non-stationary variables, i.e.
the cointegrated variables, as pointed out in Hansen and Sargent (19%91). In our
model, the stationary linear combinations of non-stationary instrumental variables
are denoted by z;,, and their past values must be orthogonal to the current sta-
tionary error ug. This implies Assumption NF.

Define up, = (4u},, u5,) (= Axp, = H'uy) and zy = (4iel,,, uly,) (= 4zg =
G'uy), where we use the subscript ‘4 and ‘g’ to denote elements corresponding
to {Au,} and {uz} ({8u;1,} and {u;2}) taken together. The following lemma
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describes the asymptotic behavior of the component elements of the FM-TV es-
timator.

Lemma 4.1.  Under Assumptions EC, IV and LR

@  Quldy (T'UjZo = dig) = To(IVT) | Qa3 Ny + 0,1 .

[ 1
(Z\Z))"'Zix + 0, (T)

1 3
- ef3)
[ 0p(1)
- MT
d 1 ; d 1 ’ =b o ’
where N - [, B:B,,, and My - ([, B,B,) [, BB

(b) (2626)7'20Xx =

(Z&ZG )_ IZ&Xg =

Lemma 4.2 Under Assumptions EC, 1V, LR and NF,
(a}) B0(ZLZ6) ' ZEXy = T USPL Xy + op(1/VT) = 0p(1/VT),

—~ —1
B0f(Z526)™" 25Xy = Ao, (foE Bz:BL) Jo B85,
®  Buldy' (L4XP., - AnlZ5Z0)"Z5) Xi = op( /YT, and
©  Quly (FAX)P. - Ak Z52Z6)'25) Xy <+ Q007 [, 4B, B,

(JoBa8,) fy BBy

With these results in hand we now tum to study the asymptotic behavior of
the FM-IV estimator A. We rotate coordinates in R™ by the orthogonal matrix H
that was introduced in Section 3 so that we can analyze the component matrices
Ay = AH, and A; = AH, separately. The asymptotic behavior of these two
components is quite different as the following theorem shows.

Theorem 4.3. Under Assumptions EC, 1V and LR,
(@) VT - AH 5 NO, L, S, J.,)
() T - AH, —5 MNQO, Qoos @ ( 3 B.B, )).

Remarks. (a) In the statement of Theorem 4.3 we use the following notation
for limit processes that are adjusted for their conditional means. For the parti-
tioned limit process B = (B, B}) we define the process By, = B, —Qqu'z’Bz =
BM(£)1.7), which is independent of the Brownian motion B;. We use the sub-
script ‘5" to signify elements corresponding to uy, and w;, jointly. Nete that B,,
which appears in part (b) and which was defined in Lemma 3.1, is the projection
in L3[0, 1] of B, onto the subspace spanned by the elements of /,, ® B;J.
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(b) Theorem 4.3 shows some of the advantages of the FM-IV estimation pro-
cedure. The estimator A4 is v/7-consistent and its limit distribution is normal in
the direction of |, as a result of the use of valid instruments. At the same time,
in the direction of H, the estimator is T-consistent and its limit distribution is
mixed normal, symmetric and median unbiased, with nuisance parameters (other
than scale) being eliminated by the FM correction terms.

Another interesting and practically important situation which violates Assump-
tion EC(e) is one in which the /(1) instruments and the regressors are cointe-
grated. This case happens, for example, when the set of non-stationary instrumen-
tal variables includes lagged vaiues of regressors. Such instruments are commonly
used in instrumental variables estimation and in the estimation of rational expec-
tation models. Regressors and instruments that are found by lagging regressors
are naturally cointegrated if the regressors are stochastically non-stationary. For-
tunately, this case can be treated without any changes in the above definitions
and only involves a minor change in the agsymptotic properties of the estimators.
To illustrate, suppose that the /(1) processes {xz} and {z} are jointly driven
by the following cointegrated system:

v X X
Fy =u,, F34 = uc,,
Z2t 2

where {u,} and {u.,} are /- and £,-dimensional and F = (Fy, F;) is an £ x /
orthogonal matrix with £ = ¢/, + /> = m; + q2. We continue to require that
Assumption EC holds with w, = (uj,, u},, 15, uj,, u5,)’ now replaced by w, =
(uy, 4, us,, ug,,, ul. Y . This assumption implies that each column of F; is a
cointegrating vector of {(x3,,23,)'}.

With these adjustments, part (a) of Theorem 4.1 remains valid without any
changes, while part (b) holds with subscripts ‘6’ replaced by ‘cy’. The latter
result is a direct consequence of Lemma 4.2, though we need three coordinate
rotations to achieve it; rotation by H in R™ to decompose {x,} (into {x;,} and
{x2}), rotation by G in R? to decompose {z,} (into {z,,} and {z2}), and rotation
by F in R’ to decompose {(x},, z5,)'} into its /(0) and /(1) components.

5. Efficient estimation

In the analysis of systems with cointegrated regressors in the previous sec-
tion, we have shown that the FM-IV (and FM-IV/CI]) estimators of the non-
stationary components of the model are asymptotically median unbiased and
the limit distributions are nuisance parameter free (up to scale), as a result of
the ‘fully modified regression’ methodology. However, as far as the stationary
components of the model are concerned, the FM-1V procedure proposed above
uses the standard IV estimation method. So there is the potential of efficiency
gain with respect to the stationary components, for example by the use of a
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GLS-type transformation. GLS-type transformations have not been a popular tool
in the recent literature of non-stationary time series analysis, since in general
the effect of a GLS-type transformation asymptotically vanishes and no efficiency
gain is to be expected, as shown in Phillips and Park (1988). In our model,
however, both stationary -and non-stationary components are included in the re-
gressors and they are not identified a priori. Thus, it seems worthwhile applying
GLS-type transformations to the whole model including its non-stationary com-
ponents to see if an efficiency gain is realized for the coefficients of the stationary
components.

In the following we suggest the use of two well-known approaches to obtain
an efficiency gain by data transformations. The first corresponds to the
GMM procedure with optimal choice of the ‘distance matrix’ proposed by Hansen
(1982) for non-linear estimation problems. The second is the GIVE procedure,
originally proposed by Sargan (1958, 1959). Also, following Bowden and Turk-
ington (1984), one may call the former the ‘IV-OLS analog' and the latter the
‘IV-GLS analog’. The former is valid under fairly general assumptions upon the
instruments, such as those that are implied by usual rational expectations (RE)
models with predetermined but not exogenous instruments. The latter method can
be relatively efficient over the former asymptotically, as in the case where the
instruments are strictly exogenous. The limit theory of estimators of the
non-stationary components of the model is not affected by either trans-
formation.

5.1, FM-GMM (FM-IV-OLS analog) estimator

Here by the term ‘GMM’ we mean a linear version of the GMM estimator
with an ‘optimal’ choice of the distance matrix. However, unlike conventional
GMM, we need to deal with non-stationarity, both in the regressors and the
instruments. For exposition of this case, we will use the same model as that
considered in Section 4.1, i.e. the model specified as {3)-(5), with Assumptions
EC and 1V, To simplify our presentation in what follows we use capital script
letters to represent the Kronecker products of the n x n identity matrix /, with
matrices of observations. For example, we use & = ([, @ X), & ={l,® Z), and
50 on.

We define the FM-GMM estimator A':;MM as follows:

vecdoum = (X' 257 2'%) ™ ' 287 vee(7'Z - T4y,). (16)
where the distance matrix S,r (rotated by G) is partitioned as

SZ|T SZ]Z;T) naq

G'S:yG = ,
i (Szznr SzzT nqz
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and each block must satisfy the following conditions:

p +0o0
Sar — S, = Y R (i), (17a)

i==00
Sent = (Senar) = Op(1), T™'8,7 -2 Q0 ® J B,BL,. (17b)

The notation used here is analogous in form to our earlier notation. However,
the use of the affix * ~ ' in place of * ' indicates that the estimate-of
the unknown process {uq } is not obtained through a naive IV regression, but is

instead the GMM residual #o,cmm = Vi — Agmmx;, where
vec doum = (T'ZS;'2'T) ™ 4/ 255 vee(¥'Z). (18)

In the literature, several techniques to obtain the optimal distance matrix for
the GMM estimators have been proposed, and we can use these in the FM—-GMM
procedure. The first method uses the spectral estimator

I M= . nk - nk
SzT hel mk=§‘:‘+|fuouo (H) fzz (_"M--_) * (19)
where M = o(T'/2) as T — oc. In the formula (19) the spectral density estimates
are of the form

i Tl

> wUlK)Tasl)e,
j=—T-+1
where the sample covariance matrix is
- . 1 T—i - . T~ . .
rabU) == Eaﬂ-jbn rab(_f) = rba(_])o l"<-j‘€-T!
r 1=1

the bandwidth parameter K is as before in (11}, and the lag window w(.) sat-
isfies standard conditions (see, for example, Phillips, 1991c). By following the
arguments in Hannan (1963) and Phillips (1991c) we can show that the spec-
tral estimator (19} satisfies {17a) and (17b), respectively. A second method is
to estimate a VAR model for the error process {ug} and use it to construct
an estimator of the long-run covariance matrix of {ug }. This approach will be
pursued later in the section on the ‘FM-GIVE’ estimator. In either method, we
can substitute the estimated process {#g} in (11) for the unobserved sequence
{up}, without affecting the asymptotic behavior of these estimators.

The following lemma describes the asymptotic behavior of the stationary part
of the correction term in (18).
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Lemma 5.1.  Under Assumptions EC, 1V, LR and NF

2257 vec(do) = T7' 4 2157 vee(UlommZ1) + 0p(1/VT)
=op(1/VT).

Our next resuit gives the limit theory for the FM-GMM estimator:
Theorem 5.2.  Under Assumptions EC, IV, LR and NF
- g o -
VTCawm = HHy <N (0, [.,57'#]7),

where X', = I, ® K.,]. Further, A~GMMH1 is asymptotically equivalent to IHz.
which is the FM-1V estimator of A; = AH,.

If we compare these results with those of the FM-IV estimator given in Theo-
rem 4.3, the advantage of the FM-GMM estimator should be clear. For the coef-
ficient of the stationary components of the model, we obtain an efficiency gain in
estimation as a result of the *optimal’ choice of distance matrix. This follows from
the well known inequality (X7, S; ' ¥} 17' €J,,S,J;, between the asymptotic co-
variance matrix of the two IV estimators. As far as the non-stationary components
are concerned, the two estimators of these coefficients are asymptotically equiva-
lent, because the effects of the GMM transformations of the integrated processes
cancel out, just as the effects of GLS transformations cance! out in regressions
with full rank integrated processes (as shown in Phillips and Park, 1988).

5.2. FM-GIVE (FM-IV-GLS analog) estimator

The FM-GMM estimator considered in the two last subsections is designed to
incorporate an asymptotically optimal choice of the ‘distance matrix’. Hence, we
obtain an asymptotic efficiency gain over the FM-IV estimators of Section 4, at
least with respect to the stationary components of the model. In the literature on
IV estimation, there is extensive discussion of the choice of optimal instruments
in the statiopary time series context, and the generalized instrumental variable es-
timator (GIVE) was proposed as another approach — see Sargan (1988, Chapter
54) for a recent treatment. Roughly speaking, the GIVE procedure employs a
GLS-type transformation to correct the data (including the instruments) for serial
dependence in the equation errors. Some further efficiency gains (potentially even
over GMM) may be cobtained, though some additional assumptions are needed
in order to justify the transformations. In the following, we show that efficient
estimation of the stationary components of a possibly cointegrated non-stationary
model can be achieved by the use of a fully modified version of the GIVE pro-
cedure. We shall assume strict exogeneity of the instruments in our development
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in this paper but in later work we will give an extension of the GIVE method-
ology that allows for the same setup as we have used in our GMM analysis.
As one might expect from our earlier theory on IV and GMM, estimators of the
non-stationary components are shown to be asymptotically invariant to the GLS
transformations that underlie the GIVE procedure.

We will employ a parametric GLS transformation here, though it is probably
worth pointing out that a non-parametric treatment is possible by the use of a
corresponding technique in the frequency domain. (See Corbae et al. (1994) for
the form of the frequency domain GIVE estimator and an application to non-
stationary time series.) In this subsection and the next, we assume that the error
term {ug} is generated by a pth order vector autoregression (VAR),

Assumption VR The stochastic process {uy) is generated by the VAR(p)
model

p
Uy = —Ecrum—r + &
r=I

where g, = iid(0, Z;). If C(L) = I, + £_,C,L", where L denotes the buckshift
operator, then the roots of |C(L)| = 0 are greater than one in absolute value.

The model can be rewritten in matrx form as
2 ! ]
= _ZC’UO_,- +E .
r=I

where U§_, and E' denote observation matrices of up_, and ¢,, respectively.
Now set the first » rows of Uj_, to be vectors of zeros (i.e. the mmal values
are ignored) and define the 7 x T matrix

0

0 1 0
0 01 0

&

0 0
which is similar to the circulant matrix, but has its (7, 1) element zero, not unity.
Letting Co = I,, we have 3.7, C,Us&: = E', or

()i‘(c, ® L )) vec(U}) = vec(E').
r=0

Thus we have

Wr vec(Ug) ~ N(0, I,r),
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where

Wr=(Z7'"" Q1) (f(cr ® 7 )) =Y.Ce £ and CF = I7C,
r=0 r=0

Therefore, the non-sphericality in the model is removed by the premultiplication
of the stacked observation matrices by Wr. For later use, we let Vpr denote the
nT x nT covariance matrix of vec(U;). (Then WiWr = Vg;'.) In practice, we
need estimates of Wr to achieve this GLS transform. To do so we first estimate
{ug,} using some VT-consistent estimates of 4 such as the naive IV estimator A
(see (11)). Then we estimate a pth order VAR process by OLS using {upr} and
plug the resulting estimates E‘ﬁ = 27'2C, in the above definition of Wr, giving
#r. In the following, we use the affix **’ to indicate premultiplication by Wr,
eg o = Wrel = Wr(l, ® A) and vec(4)" = Wy vec(4).

In FM-IV estimation and FM-GMM estimation, one of the key requirements
for the consistency of those methods is the (contemporaneous) orthogonality of
{ug,} and {z,}, viz. Assumption IV(a). This assumption holds, for instance, in
rational expectation models where the instruments are predetermined but not nec-
essarily exogenous, given a suitable choice of instruments. In the case FM-GIVE
estimation, the orthogonality condition E[C(L)ug ® C{L)z;,] = 0 is especially
convenient. As is well known, this does not hold for predetermined (but not ex-
ogenous) instruments. However, it does hold for strictly exogenous instruments.
Therefore we assume,

Assumption SE (Strict Exogeneity). {z;} is strictly exogenous.

This is a strong version of Assumption NF. As explained at the beginning
of this subsection, this assumption is stronger than necessary. Iin order to obtain
consistency and the asymptotically normal and mixed normal results, only the
strict exogeneity of the stationary instruments {z;,} is needed. In fact, even.
this assumption may be relaxed to allow for lagged dependent variables as in
Sargan (1988). We will continue to assume Assumption SE in this paper for the
following reasons: {i) without the exogeneity of {z}, the definition of the FM-
GIVE is much more involved, and (ii) Assumption SE is the most convenient
one in the case where we will consider cointegrated instruments. Extension of our
approach to accommodate more general assumptions than SE will be included in
later work.

For the modet (3), we define the FM—GIVE estimator as follows:

VQCA~GIVE = (.Q""P}ﬂ"‘ )~ Vgrxt gr* {(qut )";?’"vec( Yl)t
— vee[Qo 05 (U'Z — T Ay )(z'zr']}. (20)

It is possible to define the FM-GIVE estimator in other forms that are asymptoti-
cally equivalent and possibly computationally easier. We use the above definition
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chiefly for conceptual convenience. Note that unlike the instruments, the regres-
sors and the dependent variables, the correction terms in the FM-GIVE formula
[given by the expression inside square brackets in (20)] are not transformed,
since these terms are designed to persist asymptotically only in the estimator of
the coefficients Ay = AH; comresponding to non-stationary components. As stated
before, GLS transformations usually cancel out as scale effects in the estimation
of non-stationary components, and there is, therefore, no need to transform the
correction terms. As far as feasible GLS estimation is concerned, any consis-
tent estimates of {ug } may be used as in the case of FM-GMM. The following
theorem gives the limit theory for the FM-GIVE estimator.

Theorem 5.3. Under Assumptions EC, IV, LR, VR and SE,
~ ;=1
VT{dave — A)H - N (O, [fz.ﬂ;rlx';.] ) ,

where A% = pim(T~'AV2}) = pim(T~'T\Ve/'2\), and 4., =

pim(T=' 21 27) = plim(T~' 2V, 2\). Further, AgwgH, is asympiotically
equivalent 10 AH,, the FM-IV estimator of A; = AH,.

Potentially, the FM-GIVE estimator of 4, = AH, can be more cfficient than the
FM-GMM estimator. In the conventional setting, namely systems in which only
stationary variables appear, this is already known. White (1984), for instance,
gives a detailed argument about the asymptotic relative efficiency of IV-GLS type
estimators over IV-OLS type estimators and provides some sufficient conditions.
In our case, if the instrumental variables {z;,} appear as variables in the reduced
form equations of {x,}, we can show the asymptotic relative efficiency of FM-
GIVE over FM-GMM with respect to the estimation of 4;. The demonstration
is essentially the same as that for the linear simultaneous equations model with
serially dependent errors.

6. 1V validity tests for overidentifying restrictions

It is well known that in IV estimation with stationary processes a test for the
validity of instruments that was originally proposed by Sargan (1958, 1959) is
available when the total number of orthogonality conditions exceeds the total
number of unknown coefficients. Hansen (1982) extended this test to the case of
the GMM estimator. The test is also known as a test of overidentifying restrictions
or as an IV misspecification test. In what follows we will extend this IV testing
principle to the FM-IV procedure and its various generalizations that we have
studied earlier in this paper. Though we shall focus on the IV validity test in this
paper, it is possible to test parameter restrictions using the FM-IV procedures, as
shown in Kitamura (1994); see also Phillips (1995).
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We strengthen Assumption NF slightly to accommodate a limit theory of our
statistics.

Assumption NF?: Elugry; ® (uly,, 45 )1 =0 for all j>1.

This assumption is stronger than Assumption NF. However, the inclusion of
;3 in the orthogonality conditions probably makes little difference in practice,
since if we assume rational expectation models as we referred to in Section
4.2, it is implied that both {u;,} and {w;} are in the current information set
and orthogonal to the future prediction errors. Of course if we assume the strict
exogeneity of {z,}, Assumption NF? holds trivially. In fact, under Assumption
NF? the FM-IV (or -GMM) estimators need not be corrected for the serial
correlation between {ug} and {u.y}, thus we can remove do. and dq. from
the definitions of these estimators. Accordingly, the following replacements are
possible:

iy N A D11 .
Ay, = Ao - D0o07' Ay — — 00,85 B [in (10)), (21a)
Ay = A — 00,87 By — —B0al25) By Tin (16)). (21b)

First, we will consider the instrument validity test for the FM-GMM estimator.
The model is taken to be the same one used in Sections 4 and 5, where the
instruments are assumed to be not cointegrated among themselves. Using the
definition of the FM-GMM estimator Agum. and the residual {fiogmm,} defined
as

HogMM: = ¥ — AGMMX1
we now define {#}}, which is corrected for endogeneity with respect to u, =
(s 1)

EgGMMr = ToomM: — QOaQn—gl Ugy.
(In the calculation of Q0as {#ogmm:} may be used.) Now we define an n x g
(unstandardized) score matrix =

ot
= = U QGMMZ.

Using the corrected residuals {Hggyy,} defined above, we define the score with

the endogeneity correction as £+ = U;éMMZ. Next, in parallel with fully modified
estimation, we correct St for serial correction terms as well, giving the ‘fully
modified’ score,

E¥ = Et T4, (22)

ot - -~ -~ -~ N
and where 4,, = Ao, — Q0 A,; as earlier.
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Lemma 6.1.  Suppose Assumptions EC, 1V, NF? and LR hold Then
(a) T~12Z+G) = op(1),

- —1/2
®) T (00, ®TZZ)  vec(E**Gy) < MN(O, [hag, — Pp, ]

1 ' -1z '
where Dyyy = {1 @ () B.BL,) Jy BBy ¢

Next we construct test statistics for IV validity using the scores defined above
{ = vee(Z** W Qo0..® 2'Z) " vec(Z*). (23)

The following theorem follows directly from Lemma 6.1.
Theorem 6.2. Under the same conditions as those in Lemma 6.1,
d
{— xﬁ(qz—m:)'

However, since the cointegration structure of {z,} is unknown, so is g;. The
limit distribution of { is bounded by xﬁ(q_m) and this could be used to construct
a bounds test. However, we now propose a way to avoid such uncertainty in the
limit theory.

We suggest the use of the one-sided long-run covariance estimator do,. Rotat-
ing coordinates in RY by the orthogonal matrix G, we have

Tdo:G = [Tz, * Tdios,) 24
= [ToammZi + 0p(VT) | Tdoz, + 0p(T)]

= [ToommZi + (VT * 0,(T)].

For the second block in the matrix in the second line, see Lemma 5.1. The third
equality holds by Assumption NF?. Next, define

{4 = T vec(do,)' S vec(do,). (25)
We rotate the matrix Z by ¢ every time Z appears and using (24) it is easy to
establish that

{s = Tvec(de, 'S, jvec(dy )+ ox(1)

]
d 2
* Anigy=m ¥

Now let

=0+ (26)
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We have;
Theorem 6.3. Suppose Assumptions EC, IV, LR and NF? hold, then
;= xﬁ(q—m)-

Notice that the limit distribution of {* does not depend upon the unknown
parameter g; as a result of the augmentation of the statistic. Roughly speakmg,
the orthogonality condition E[ug, ® z),] is transferred from {; to {; by Ao
that we now do not lose ¢, degrees of freedom as we did before in 'I'heorem
6.2. The effect of the correction dy, on the size and power of the test in finite
samples, however, needs to be investigated by simulations.

It is straightforward to extend the above results to the FM-GIVE estimation
procedure. We assume strict exogeneity of the instruments as in Section 5.2. Let

ogive: = ¥ — AGivexs,
et
VBC( UOGIVE )' = WT Vec( UOG]VE ).

Also define {tif; g, }. which is corrected for endogeneity with respect to uy as
v = bociver — R0aS5 tar.

{In the calculation of ﬁo,, {Togrve;} may be used.) Using {#f;ve ), we define
the *fully-modified’ score as

- e T
:‘EIVE = UygygZ — Tdo:.
We let
Lave = vee(Zgne ) (Cuos ® Z'2) 'vec(Edive ). 27

As a direct consequence of Theorem 6.2, we have:

Theorem 6.2'. Under Assumptions EC, 1V, LR, NF and SE

d .2
CGIVE — Xa(q:—m:)-

Without augmentation, the test statistic {give converges in distribution to a
chi-squared random variable with n{g> — m) degrees of freedom as in the case
of the FM-GMM procedure and the uncertainty with respect to the parameter ¢;
arises again.

We therefore proceed to construct augmented test statistics. First define the
autocorrelation function of the transformed processes vec(I" o= (J)) = |/TAZ o
vec(UoGws, ) = /T4’ Vnr (UOGIVE. } where Uogm.; is the observation matrix
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of the residuals {Wogive,, }. Then let the estimator of the corresponding one-side
long-run covariance matrix be

- T -
vec(do:- ) = §W(1/K wee(To-- (7)),
j-—

where .w(:) is a kernel function as in the preceding sections. Given the strict
exogeneity of the instruments, we have

vec[A},-G.] = vecZD,I- = (l/T).Q"," vec(a{;GWE Y +op( 1/VT)
vec[doe Go] = vee dgz; 2 0.
We define

Lagive = vec(doz- Y(Z¥ 2" ) vee(dp:-) (28)
-1

= vec(dg:- ) (:2"?0}‘.‘2") vec(dg:- ). (29)
Then using {give as defined in (27), we let

{eive = Lacive + Laive- (30)

The following theorem can be established by the same lines of argument as
Theorem 6.3.

Theorem 6.3'. Under Assumptions EC?, IVZ, LR?, NF? and SE
. d
CGive = Xagmmy:

We can conduct tests of IV validity based on {gyg in the usual fashion. Note
that the degrees of freedom of {3,yg in the limit are n(g~m), of which ng = (the
number of equations) x (the total number of instruments), and nm is the total
number of unknowns. This can be interpreted as the number of overidentifying
restrictions, just as in classical test statistics for [V validity.

7. A practical guide to our formulae for empirical implementation

In the previous sections of this paper, we developed our theory by starting with
simple models and moving towards more complicated cases. This presentation
of our theory is chosen chiefly for an expository purpose. As a result of this
progressive approach, 2 wide variety of estimators and test statistics have been
included in our development. Therefore, it may be useful in this final section of
our paper to provide practitioners with recipes for empirical applications of our
FM-1V estimators and test statistics.
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We consider a multiple regression model

» = 4 x o+ uy .
nxl nxm mxl nxl

just as before. Let Z, denote a g-vector of instruments. Here we assume no
knowledge about the cointegrating relationships among the regressors and the
instruments (that is, within the regressors, within the instruments, and between
the two). Then, our FM-GMM estimation procedure can be implemented in the
following way. (The procedures inside the square brackets are optional in what
foliows.)

FM-GMM procedure
Step 1: Run the *naive’ 1V regression

A=YPX(XPX)"
and calculate the residual

uy = y, — Ax,.

Step 2: Use {iip} obtained in Step 1 to calculate ;7 using the formula (19).
Let

vecAgum = {(n ® X'Z)S; (1, ® Z'X)} Xz ! vee(Y'Z)
and calculate the GMM residual

toommr = Vi — AgMmX,.

Step 3: Use {iipgmm: } obtained in Step 2 and {uy} = {(4x],4z[)'} to estimate
the long-run covariance matrices

Qouy Qg and 4, = Ay — Q7 A,

using kernel estimators (see formula (11)) with a kernel function that satisfies
the conditions stated in Assumption LR. [Also calculate S.r again as in Step

2, but use {togmm,} in place of {uip}.] Using the estimates o0y Qg and J:,;,
obtained above, construct

ry 7 - ’ -1 '] -
vecdomm = {Un @ X'Z)S; (L, ®Z'X)} @ X'Z)S;'

x vec( 7vz - TA':nz)

Y = ¥ - 00,05 U,



110 Y. Kitamura, P.C.B. Phillips!Journal of Econometrics 80 (1997) 85-123

Calculate

UoGMM; = Vi — IGMMII-
This completes our FM-GMM estimation. [We can iterate this process by return-
ing to the beginning of Step 3 and using {#Gmm,} in place of {Hogmm:}-]

Step 4: Estimate A, [and £, again] using the GMM residual {#ogmm: }
obtained in Step 3 and call the estimate J,,nz [and 4,]. Calculate the corrected
GMM residuals

Eg(mm = UpGMMI — ﬁmﬁ;-al Uyt
and its long-run variance estimate

Bov-a = Qoo — 20a02) Do
[We could also calculate S,7 again as in Step 2, but use {Zpgmm:} in place of
{ta}.]

Step 5: Construct the fully modified score matrix

=t

—F -
- = UOGMMZ - TA"QZ’
and the test statistics

{=vee(E*" Y (Qoo.a ® Z'Z) 'vec(ZH*),
La =T vec(du: ) S vec(dy,:),
F=lL+l
We can conduct instrument validity tests using {* as an asymptotic y* criterion

with n{g—m) degrees of freedom. We call this the FM-GMM instrument validity
test.

We may also want to use FM-GIVE when certain additioral conditions hold.
For instance, it is assumed here that Z, is strictly exogenous in what follows
{but again as discussed in Section 5.2 this can be relaxed). We also work under
errors of the form prescribed in Assumption VR. Then the following procedure
is suggested.

FM-GIVE Procedure
Step I'; = Step 1.

Step 2': Use {uo} to estimate the VAR mode! in Assumption VR by the use
of OLS. Using the estimates C and I, obtain the transformation matrix Wr
given in the formulae of Section 5.3. Let

I =W (l®Z), L =W(RZ), ve(Y') = Wrvee(¥').
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Step 3': Construct the estimator
vec Aaive = (T¥P. ) Y2 (2 2°) ' 2 vec(Y')'}
and associated residual

UoGIVEr = Vi — AGIVEX:.

Step 4': Estimate 0,0, and 4., using {uo} [or {#ogive}] and call these
estimates Qp,, 2. and 4,.. Construct the final FM-GIVE estimator

vec dgive = (TP 2y ' T (V)" T vee(Y')*
~vee(fu B3 (UZ - T2 X227}
and calculate the residual
woaIver = Y1 — Aqvex:.
{Once again we can iterate this process by returning to the beginning of Step 2’

or Step 4 and using {uogive,} in place of {up} [{Hogive:}1)

Step 5': Use {'Eogwa} to calculate vec(dy,- ) following the formulae in Section
6. [Also calculate 2, again.] Calculate the corrected GIVE residual

N _ PO
“EGIVEJ = upgiver — 0825 Uy,
and its long-run variance estimate

am.,, = ?200 - ﬁmﬁ;lﬁ,ﬂ.

Step 6': Construct the fully modified GIVE score matrix

—_

“GIVE = UCH;'EZ — T o,
and the test statistics
Lacive = T vee(du- V(22" vee( de-),
Lave = vee(Sgnve Y (Boox ® Z'Z)™ ' vee(Egive ),
{ive = Lactve + Laive.
FM-GIVE instrument validity tests can now be conducted using (&g as an

asymptotic x%,_,, criterion.

As shown in the above procedures, the calculation of FM-1V estimators in-
volves the computation of correction terms at the first stage, and an IV regression



112 Y. Kitamura, P.C.B. Phillips! Journal of Ecornometrics 80 (1997) 85-123

at the second stage. As a result of this two-stage structure, which is common to
all FM estimators, it is easy to check the impact of the estimator modifications
in the course of analysis. In particular, the values of the FM ‘correction terms can
be used to assess the degree of endogeneity and the extent of serial correlation
in the model. Thus, these corrections provide useful information which suggest
features of the model that are empiricatly relevant and important. In sum, while
the FM(-IV) methods have many convenient theoretical properties, they also have
advantages that seem to be important and useful in empirical implementation.

Finally, when we apply FM-IV methods in practice, the choice of instrumen-
tal variables is important. As far as the stationary components of instruments
are concerned, the usual IV validity conditions need to be satisfied, as those
discussed in Section 3. Also, the number of non-stationary components in the
instruments must be at least equal to the number of the non-stationary com-
ponents in the regressors. As in usual applications of IV procedures, to ensure
that these conditions are met we may explore a range of possible candidates for
instruments. Then we seek to employ a ‘large enough’ number of (stationary
and non-stationary) instruments so that the aforementioned ‘order’ conditions are
satisfied. The validity of these instruments can subsequently be tested using our
FM-GMM validity test.

In many cases, in fact, economic theory suggests sets of IV candidate vartables.
For example, in many RE models, as we mentioned earlier, lagged regressors are
assumed to be contained in economic agents’ information sets and are therefore
orthogonal to subsequent innovations that affect the outcome of agents’ decision
making. Such variables can then be used as instruments and Assumption NF
(NF?) is satisfied. The advantage of the use of lagged regressors as instruments
is the apparent fact that the integratedness properties of the regressors and the
instruments coincide if such instruments are employed. Thus, if we use a vector
of lagged regressors as instruments, such a choice of 1V has certain advantages.
But of course we need to be careful to ensure that the instrument set is not ‘too
large,' so that it does not distort finite sample performance.

As for the choice of non-stationary instruments, antificially generated non-
stationary processes could also be used as valid instruments, at least theoretically.
This method exploits the spurious correlation between independent non-stationary
processes (see Phillips, 1986; Phillips and Hansen, 1990). If we are short of non-
stationary IV candidate variables, this method might be used. However, attention
should be paid to the finite sample properties of the FM estimators if such in-
struments were to be used (see Hansen and Phillips {1990) for some discussion
of this point). In any case, whenever we employ the FM-1V procedure, we need
to investigate candidates for instruments carefully, just as we do in usual IV re-
gressions with stationary time series. However, our theory allows us to choose
instruments from a very large set of potential candidates, especially in the case
of FM-GMM. In fact, this is a great advantage of 1V and GMM methods in
general.
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Appendix

Proof of Lemma 3.1. Rotating coordinates in the regressor space BR™ by the
orthogonal matrix H, we have

CrH = (UgP; ~ Pr)Xu(XyPoXy) ™.

By straightforward calculation parts (a) and (b) can be established; see proof
of Theorem 4.1 in Phillips (1995). Then for part (a), Assumption TV(a)-1V(c)
ensures the validity of the stationary instruments and the required CLT is given
by (8). The usual weak convergence arguments for cointegrating regressions (see
Phillips (1991b), for example) deliver part (b) of the lemma. O

Proof of Lemma 4.1. In the following, we need to calculate stochastic orders of
quantities such as

—~ K—1 - K=1 -~ ~
Qllodm = E w(j/K)rllndln(j) = 2 w(j/K)(rllolﬂ(j) - rmm|(j+ 1 ))

Jj==K+1 J=—K+1

= —wW((K = 1K) s, (K ) + WK + 1)K s (K +1)

K~1 -
+ X 2(w(j/K)—w((f—1)/!{))!‘,..,..,00

="K+
=Fir 4+ Far + Fir, say. (A1)

Note that the summation will be taken from —~7+1 to T—1 in the case of the
quadratic spectral kernel but the argument in the rest of the proof is otherwise
unaltered by the change.

We first focus on the component Fir in (A.1), which is a sum of the auto-
covariances weighted by the first difference of the lag window w(//K). In what
follows, we assume twice differentiability of w(-) as in Phillips (1995). By the
mean value theorem

w(j/K) = w((j—1)/K) = K~'W(j*[K),

where j* € [j—1, j] and is defined for each j. Then

K=1
Fr= Ex 2(w(j/K)-w(u'—l)/!«r))r,.‘.,..u) (A2)
j=—K+
1 K~1
=E E w’(jt/K)runut(j)
j=—K+2

P W’(j-/K) ok payr—| g onp—1} :
=— —_— L igu, (J)-
K’;=§‘r+z( Ry~ Y =) )]
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The condition (13) implies that w'(j*/K)/(j*/KY ™! converges boundedly to w,
for each fixed j. Thus F?T is of order O(K™"). Also, following Hannan (1970,
p- 280, Theorem 9), we have

1 K=1 _
lim KT Var{vecF3r]= lim KT —Var|vecs 3. w'(j*/K) uu (/)
T—o0 T—oo K? J==K42

K= -
= lim z\-r'ar veed > WKW () 2t
T—oo K je—K+2
= constant.

Thus, combining expressions for the variance and the bias (¢f. Hannan, 1970,
Theorem 10, p. 283) we have

E[vec(Fir)vec(Fyr)] = O (}'(lf) +0 (k%) =0 (T-"I?) +0 (_T—lﬁ)

where K = O(T*). Therefore
Fr= Op (T--({(k+l)/2)/\rﬁ)) .

By Assumption LR r = 2, and then F35r = Oy T-9), with & = ((k + 1)/2) A 2.
On the other hand, Fir and Fir are negligible since they are of order
O,((K — 1372). In sum, we deduce that oty = O,,(T"s).
Next we consider

-

~ ~ K-l P
Qogy, = 9;04"' = 8yoduy t+ EK ]W(j/K)(A—A)rxAul(f)
==K+

= Qugau, = WK = /K WA~ A)F 0, (K)
+ W((=K+1)/KY A=A g (~K +1)
K1 - -~
+ 5 WK = W= 1K) (A=A ()
J=—K+1
= B\r + Bar + Bar + Byr, say. (A.3)

We have shown that B;r = 0,,(7'"5). 837 and B;r are easily seen to be of order
0p(1/VT); see (P13) and (P14) in Phillips (1995). Note

- K1 ~
Bar =4 = 41) 2 (WU/K) — w((F— 1)K ()
jz--K'FZ

—~ K=1 - K=1 ~
A2 —A2) | X wUK) u ()~ 3 wl(j~1/KDW e (D] -

i=—Ky+2 j=—K+2
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where the first term is Op(7~'/2)O,(T—?) by the argument similar to that for Fy7.
The second term is Oy(7~') since the kernel weighted sum of f,,,,, is Oy(1)
{Phillips, 1991c). In sum, we have

Qosw, = Op(T~%)+ Oy(T™") = O(T?).
By following a similar line of argument, we find ﬁ.u an = Op(T~%).

In what follows, we also need to invert the estimator of a fong-run variance
matrix of /(~1) variables, e.g. ﬁé,,,d,,, As before, we find ﬁdu‘ 2 = O(T—7).
By consndenng the terms at lag zero, we can venfy that the rate of convergence
of Qdu, 4u, is no faster than T—° and indeed QA“I = l,(I!"z"‘) For a rigorous
treatment of this point, see Phillips (1995).

Now, usmg the pamtumcd matrix inversion formula and writing Q., Wy duy —
Qe ~ Q,,, 4,,,9 Aoy du, Q,,u, « we obtain

ﬁohﬁ,,_,,] = ﬁomu (ﬁ;ul| duy Q;u du.Q“"I "zﬁu_:rru-dm ﬁ"! 4 ﬁz"ll 4
- ﬁ;"ll . azlu. H“Q;:h Am)
+ ﬁon ( Quu!h Au.Qdm ""‘Q;m A : aﬂ—::r;-dln)
= 0y(T %) (Op(T™) — O(T* JOp(T YO (1)OR(T~*)0p(T¥)
L Op(TH*)0K(T™?))

+ (204, + 0p(1)) (op(r"‘)op(rz*) Q) +op(1))

= [o,,(T-‘m* )} 0., 025, + 0p(1 )]

Next we evaluate the matrix 7! U,;Zg—d’;,y block by block. For the (1,1) block,
we have

.~ ~ K—1
T~'U{Z) — Agu, 22 = WK = 1)K )T g0, 2,(K) = Z:I (w(i/K)
=

—w((G= VKN T a2, )
=0p(T7°).
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As for the (2,1} block we can show that T“'U{Z. - E,,z 4z, = OP(T"S) in the
same way. The (1,2) block is T~'U[Z) — Agu ., = O(T~'2) as in Lemma
8.1(g) of Phillips (1995).

The resuit for the (2,2) block is familiar from the original Phillips and Hansen
(1990) study. Combining the above results, we have

O(T~%) : Ol(T~V%)
- P P d i
T WIZo— Mg =] eeeeeineriinenaannn, , where Ny - [ dB, B,

In sum, we conclude that
anty ( FUiZe - B )
= [o,,(r—") + 0p(1/VT) © Qo @b, Ny + Op(TH2712) 0 (2 )] )
Further, if k € (1/4,2/3), then 2k — 6 — 1/2< — 1/2 and
Doy (%U,:ZG - A'},,,) = (op(l/ﬁ) | Q00 Q5 Nr + 0p(1 )) .

This proves part (a).
Part (b) can be proved by straightforward calculation.

Proof of Lemma 4.2. For the first equality in part (a) in the lemma it suffices
to show that

doas (= Fp) = 775420 + UV
By definition,
b, 1. = T2 ()= WK~ 1VK)T;, (K)

HoZt

Hp)

K= -

+ le' (Wl/K) = w((i~ 1K) B ()
J=

= (0) = WK = 1)/K)T e, (K ) — WK =1 )/K WA= AT ,(K)

+'5 WK = W= 1K) P )

J=1
K-—1 -~ -~

+ E: (w(U/K) = w((G=1)/K))(A~A) e, ()
j=

=Gir + Gar + Gar + Gar + Gsr, say.
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Note that Gyr = 0p(1 /VT) since w({K—1)/K) = op(1) for the truncated kerneis
we use in the paper (as in the proof of Lemma 4.1, the summation will be taken
from —T+1 to T—1 in the case of QS kernel), and T, (K+1) = O,(1/v/T) by
Assumption NF. Gir and Gsr are also of order op(1/ vT), just as in the analysis
of (A.3) in the proof of Lemma 4.1, Thus, Gsr = 0,(T~"2); see Phillips (1995,
Lemma 8.1(h)). Gsr is of order 0,(1/v/T) as Bsr in (A.3). In sum, the equality
at the beginning of the proof is now established. This result and Lemma 4.1(b)
prove the first equality in the femma.
For the second equality, we start by using the definition of Uy, ie.

Y' = AX] + A+ U
Thus,
UgPoXy = (Ay — ADXPo X0 + (42 — AXGP, X\ + UpPo Xy
= (A1 — A X[P, Xy + UgP., Xy + Oy(1)
= —UgP, Xy (X[ P, X )"\ X[ P, X) + UgPr, X) + Oy(1)
= 0y(1),

where the second equality above follows from the fact that Ay is T-consistent.
The second equality in part (a) of the lemma now follows immediately. Other
results directly follow from Lemma 4.1. O

Proof of Theorem 4.3. First, following the notation used in (3.7) we define

Wy =00, Q7' UP, + TAO,(z’Z)—‘z'
=TAae(Z'Z)'Z' + mmg-’(r vz - N VA AR A
= ¥\r + ¥;r, say.

Then ¥7X, = ﬁéPz,X ) +o,,(\/T } by Lemma 4.2(a) and 4.2(b). Thus (C1) holds.
Lemma 4.2(c) also shows that (C2) holds. Therefore we can apply Lemma 3.1,
4.1(a) and 4.1(c) and establish the required results. O

Proof of Lemma 5.1. This follows the same lines as the proof of Lemma 4.2(a)
and is therefore omitted.

Proof of Theorem 5.2. Comparing the form of (9) and the estimator (16), we
define ¥ as

vec ¥r = 255" vec (ol (UZ - Tdo) ~ Thec)

Therefore
vec(¥YrX1) =2\ ZS; ! vec (QOGQ“(U’Z TA,,,)) .%“{.fff”Sz}’vec(TJuz).
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We now vectorize the result in Lemma 4.2 and replace (272)~' by S;;'. (This
replacement does not change the stochastic orders, given (17).) Part (b) of the
lemma shows that the first term in the last expression is of order o,,(\/T ). There-
fore, by applying Lemma 5.2 to the second term, we have vec(¥1.X;) = 0,(VT),
and thus (C1) holds.

To establish (C2), we use part (c) of Lemma 4.2 (modified as indicated above)
and (17). We have,

-1
T='T; vec(¥r) {.Qo-ol ® [, dB, B, ( 5 B,}B;z) } vee( g, )

+ (25 Qa2 ® 1) ( f B ® 73:) .
which establishes (C2). Then, byr Lemma 3.1(a) and (17a) we have
VT vec((Agum — A)H))
= (212,857}, 20) 7 412,57 veclUsZy) + op(1)
= VT vec(dgum — A)H, + 0y(1) =5 N (o, [ar,,.s;'ar,,]") :

proving the first part of the theorem. For the second part, we use Lemma 3.1(b),
(17b) and the limit of T='Z; vec(¥r) obtained above. We have

- -1 -1
VT vec[(Agum — A)H;] - { Q' ® [, dB, B! ( N BZB;) f 3335}

x { (o;o‘ ® f, 48: 8, (], B,B;)")
X ( Ji 4By ® B, + vec(d.) — vec(agz))

- (' @) ([ 490 958, © By) }

=1 ~
= {[ ® (fol 823’2) } (‘H dBop ® Bz) .
giving the required result. 0O

Proof of Theorem 5.3. First, note that the premultiplication by Wy does not
change the order of integration of a time series. This point can be seen as follows.
Take the matrix 2 = (/, ® X') which frequently appears after the vectorization of
the estimator. By the use of the (nm x am) rotation matrix # = [#°, : H] =
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U. ®H; : I, ® H,), we decompose the matrix 4" as 4% = [ : 4], so that
the first »m; columns are observations of stationary series, while the last nm;
columns are observations of non-stationary seties. Clearly, after premultiplication
by Wr, we have WrZ o = [47 i 5 31, which has the same property in terms of
the orders of integration in the given decomposition.

In view of the above, we can use the results in Lemmas 3.1, 4.1 and 4.2 by
vectorizing them and assigning the superscript ‘+” to each matrix and vector as
necessary to signify that the transformation by Wr has been performed. Since
the correction terts used in the definition of the FM-GIVE estimator (20) are
the same as those in the definition of the FM-IV estimator {though no serial
correlation correction term is employed since we assume Assumption SE), we
know that conditions (C1) and (C2} hold. Then, by Lemma 3.1(a) we have the
first result in the theorem.

Next, using the idea of the so-called Beveridge—Nelson (1981), or BN, decom-
position, we observe that

~~ Lt p -~ r
T3 =Wrl,®X2) = (E7? e Ir) (Z:(Cr ® L% )) (l, ® X2)

r=0

P o
=30 @K, =C(1)®X; + 2+ Ox(1),

r=0

where Ct(L) = Z7'2C(L),Cc = T, ,C5, and E = —Z7_Ct ® Us—, the last

s=r] r=0
of which represents the observation matrix of the stationary terms. Therefore, we

can think of C*(1) ® X> as the long-run ‘approximation’ of 4. Similarly, we
have 2* ~ C*(1)® Z and vec(U)* = (C(1) ® I )vec(Uy). Sample covariance
matrices of these transformed data matrices have the following asymptotics:

722323 = C(1YC (1) ® T-2XZ, + 0p(1) 5 Q5 ® f) B2B.,,(A.6a)
T2y 73 = CUYC (1)@ T-2ZZs + 0p(1) = Q' ® [, B.,B.,(A.6b)

T~ 23 vec(Ug)* = [CE(1YC(1) ® Ivec(T ™' U§Zz) + 0p(1)
2, (@5 ®1) ( gy dBoB,:). (A6c)
In these expressions we use the fact that C*(1)Y'Ce(1) = C(1YZ7'C(1) = -Qo_o‘-
Notice that the asymptotics of (A.6c) do not involve a one-sided long-run co-
variance term in view of the strict exogeneity of {z3}. By (A.6), we have

T™2%3'Ps: T3 — Q' ® [, B:B5,

T3P vee(U3) - (25 @ 1) (f; 4By ©Br),
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T vec [ﬁo,fz;,‘(u;zz + T Ay, X202, )"]
Sxten ( I 00025 dBy ® Ez) .
By Lemma 3.i(b) we have
vec (T(JI;,VE - A)Hz)
=T (X3 Pe; 23)' X325 (Py, vee(Y')*
—vec [E‘:o,f‘z;,‘(u;zz + Tdy, )(Z;Zz)—l]) + o.p(l )

and utilizing the above limit results we establish the second part of the theorem.
O

Proof of Lemma 6.1.
Ping G, =1 EG, - PR,
—f - -~ o~ -
=T~ (UgommZ) ~ Tdo,) = T2 Q0o [UsZ) — T 4za,]

=04(1).
The second term in the second line is of order oy(1) by Lemma 4.1. Under
Assumption NF, which implies the (one-sided) exogeneity of {z}, the first term
is also op(1). To see this, notice that T2 4y, = T~"2Uj;mZi + 0p(1), which
can be shown in the same way as Lemma 5.1. This proves part (a) of the lemma.
For part (b),
T-2vG,
= T7'U3Zy — Goali3 T-'ULZy — Ay, — (Aiomm — AT~ X2y
— T(dzamm — 42)T ' X2
= (T7'U32Zs - Aoy} ~ RoafZNT™"UL2Z) ~ Baay)
~ T(Azomm — 42)T ™' X} Z> + O, (1/VT)
d - . ! = ey Y ,
= [y 4BoB,, - Q0,2 [, aBuB,, - [ dBosBs ([, BaBy) [, o,

= ('dBoB I~ (BB B8 (['5,5) [ 88
—ﬁ] 0.5, .I;)?-zz; f(]z:zfo?z f(;Zz;'
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In the second line the stated error obtains because (Z.GMM — A1) =0p(1 /\/f ).
while Lemma 4.] and Theorem 5.2 establish the third line. Next we
define

- =12
Dar= (L ® T22;2)) " "(1-2397) {I,, ® (fy B:8) Iy B.-,Bﬁ}

=D,

o -1
Then, recalling the definition By(r) = fol BB, ( fol B,:B;:) B,.(r), we get
—~ —1/2
-2 (Qoo.,, ® T"z;zz) vee(E* Gy)

-1/2
5 (ug: = Pp.,) {rza,‘” ® (Jo 8.8, ) } S dBos @ B,

=N, [y, - Pp.)). O

Proof of Theorem 6.2. Using Lemma 6.1,

- -1
{ = vee(EtY (Qm.,. ® Z’Z) vec(ZE+*)

h

. -1
vec(5+G, ) (Qm.,, ®z;z.) vec(Z*+*G))
~ =1
+ vec(EF Gy ) (Qoo.,, ®ZZ)  ve(Z*'Gy)+op(l)

—~ -1
= V&7 G) (Ro0a ®Z1Z2)  vee(Z*Gy) +0y(1)

d
- xﬁ(q:—m)'

Proof of Theorem 6.3. We need to show that { and {, are asymptotically in-
dependent. First, Assumption IV(d) implies an IP for {¢.,} (see Eq. (7)) and
we let By denote the resulting Brownian motion. Clearly { depends on By(1)
{= N(0, §;,)) asymptotically. In view of the normality of the last expression in

the proof of Lemma 6.1, it suffices to show that

-1/2
E [(1,,4: - Pp ) {go—ouz ® ( f BZJB;:) } ( fl dBo.s ® B,J) By(l )] =0
- 0 [
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The LHS is

I 12y
E [(I .~ Pp,, ){ 12 (nfBngf.,) } (deo.;, ®le) B;,b(l)}
0

1 - |

+E ,:(l,, - PD:! ) {Q")'GIIZ ® (anBiz) } (deo..r, @ le) B;,(l )}
0 0

XQb-b] Qb'f'

where By, = By — (2, Q' By and Qpy = 3 Elupdo,i-;].
The first expectation

=172
= E[(! .- PD__I){QO—OW ® (f'B,,B;,) }
1]

1
x [ ® By, )E[dBo.,,dB;,,,w,,]]
0

| AN
=E [(1 .= Pp,) { % e ( fB,,B;z) } U, ® B,,(r))dr] Qo5
1] [

where the definition of y4.5 is self-evident. Noting that the random matrix in
the last bracket has a symmetric distribution around the matrix of zeros (due to
the symmetry of B,), we see that the first expectation is zero.

The second expectation

‘ ~1/2
= E[(I,. » — Pp,) { Qo—ouz ® ( f Bz:B;I) }
0

1
x (I, ® B:,)E[dBo.»|Bs)B}(1 )]
0
=0
The result follows. O
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