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UNCERTAINTY IN ECONOMICS

See ESSU vol. 2

UNIT-ROOT TESTS

Many observed time series* display nonstation-
ary characteristics. Some grow in a secular way
over long periods of time; others appear to wan-
der around in a random way as if they have no
fixed population mean. These characteristics are
especially evident in time series that represent
aggregate economic behavior (such as gross do-
mestic product), financial time series (such as
indexes of stock prices), and political opinion
poll series (such as presidential popularity data).
Any attempt to explain or forecast series of this
type requires that a mechanism be introduced to
capture the nonstationary elements in the series,
or that the series be transformed in some way to
achieve stationarity. The problem is particularly
delicate in the multivariate case, where several
time series may have nonstationary characteris-
tics and the interrelationships of these variables
are the main object of study. Figure | graphs
the monthly leading economic indicators time
series for the U.S. economy over the period
1948:1-1994:1. Also shown in the figure is
the regression line of a linear trend. The time
series shows evidence of growth over time as
well as a tendency to wander randomly away

from the linear trend line. A successful statisti-
cal mode! of the time series needs to deal with
both these features of the data. See TIME SE-
RIES, NONSTATIONARY.

One way of modeling nonstationarity is to
use deterministic trending functions such as
time polynomials to represent secular charac-
teristics such as growth over time. In this ap-
proach, a time series y, is broken down into
two components, one to capture trend* and an-
other to capture stationary fluctuations. A gen-
eral model of this form is

hrzylxt
(t=1,...,n), (1)

where y] is a stationary time series*, x, is an m-
vector of deterministic trends, and ¥ is a vector
of m parameters. In this case, y, is known
as a frend-stationary time series. The simplest
example is a linear trend. Then y'x, = yp +
y1¢, and the time series y, is stationary about
this deterministic linear trend. A more general
example where the trends are piecewise higher-
order polynomials is given in (10) below.

An unsatisfactory feature of trend-stationary
models (like the linear trend line in Fig. 1) is
that no random elements appear in the trending
mechanism and only the stationary component
is subject to stochastic shocks. Models with
autoregressive unit roots are a simple attempt
to deal with this shortcoming. In such models

yr=h + i,
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Figure 1 Monthly U.S. economic time series, 1948:1-1994:1.

the trend is permitted to have both deterministic
and stochastic elements. For example, in (1) the
deterministic trend h, can be retained, and the
process y; can be modeled as the nonstationary
autoregression

gyt (= 1.n)

(2)

In this model there is an autoregressive root of
unity (corresponding to the solution of the char-
acteristic equation | — «L = 0), and the shock
u, is stationary. Unit-root tests usually seek to
determine whether data support this model or
a trend-stationary alternative, In a unit-root test
the null hypothesis is that the autoregressive*
parameter @ = 1 in (2). The process y; is then
difference-stationary in the sense that the first
differences Ay; = u, are stationary. Unit-root
tests are typically one-sided tests against the
alternative hypothesis that [a| < 1. Under the
alternative hypothesis, the process y; is station-
ary, and then, y, in (1) is trend-stationary. Unit-
root tests can therefore be interpreted as tests of
difference stationarity versus trend stationarity.

If the initial condition in (2) is set at ¢+ = 0,
the output of the model can be written in terms
of accumulated shocks as y; = 3_j u; + .

with o =1.

In view of this representation, y; is often called
an integrated process of order one [written as
I(1)]. The term stochastic trend is also in com-
mon use, and is explained by the fact that y; is
of stochastic order O,(¢'?) under very general
conditions, i.e., the variance of y; is of order
O(z) and the standardized quantity 1~ "2y sat-
isfies a central limit theorem* as r — %, The
simplest example of a stochastic trend is a ran-
dom walk*. In this case, the shocks u, are in-
dependently and identically distributed (i.i.d.)
with zero mean and constant variance o2. A
more general case occurs when the stationary
shocks u, in (2) are generated by the linear
process u, = C(L)e,, whose innovations ¢, are
i1d(0, o2), and where C(L) is a polynomial in
the lag operator L for which Ly, = y,—,. More
specifically, if

c(L) = Y ¢,
/=0

det<w, ()0, )
j=0
then the process u, is covariance-stationary
and has positive spectral density at the origin,
given by the expression (02/27)C(1)?. The lat-
ter property ensures that the unit root in y;



does not cancel (as it would if the process
u, had a moving-average unit root, in which
case the spectral density would be zero at
the origin). If the summability condition in
(3) is strengthened to 3.7 j"?lc;| < o, then
y; satisfies an invariance principle* or func-
tional central limit theorem* (see Phillips and
Solo [31] for a demonstration), and this is an
important element in the development of the
asymptotic theory of all unit-root tests. Thus,
n~V2yt 1= B(r), a Brownian motion* with
variance w? = o*C(1)?, where [nr] signifies
the integer part of nr, = signifies weak con-
vergence and r € [0, 1] is some fraction of the
sample data. The parameter w? is called the
long-run variance of u,.

The literature on unit-root tests is vast. Most
of the research has appeared since 1980, but an
important early contribution came in 1958 from
White [39], who first recognized the vital role
played by invariance principles in the asymp-
totic theory of time series with a unit root. The
first explicit research on unit-root tests dealt
with Gaussian random walks and was done by
Dickey and Fuller [4, 5]. Solo [37], Phillips
[24], and Chan and Wei [3] developed more
general limit theories using invariance prin-
ciples. Subsequently, an immense variety of
tests have been developed, inspired in large part
by the need to allow for more general processes
than random walks in empirical applications.
This entry covers the main principles of test-
ing, the commonly used tests in practical work,
and recent developments.

Under certain conditions, (1) and (2) can
be combined to give the regression model

v = B'x + ay-1 + uy, 4)

where B is an m-vector of deterministic trend
coefficients. This formulation usually involves
raising the degree of the deterministic trends to
ensure that the maximum trend degrees in (4)
and (1) are the same, which results in some in-
efficiency in the regression because there are
surplus trend variables in (4). There is an al-
ternative approach that avoids this problem of
redundant variables and it will be discussed be-
low. Asymptotic theory assumes that there ex-
ists a matrix D, and a piecewise continuous
function X(r) such that D, 'xp,,) — X(r) as
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n — o uniformly in » € [0, 1]. X(#) is then the
limiting trend function.

The stationary process u, in (4) may be
treated in a parametric or a nonparametric way,
leading to two classes of unit-root tests. One re-
lies on casting the stationary part of the process
in terms of a parametric model (commonly an
autoregression). The other is parametric only
in its treatment of the regression coefficient «,
being nonparametric with regard to the general
stationary part of the process. The approach is
therefore said to be semiparametric.

THE DICKEY-FULLER TESTS AND
SEMIPARAMETRIC EXTENSIONS

Let & be the ordinary least-squares (OLS) es-
timator of @ in (4). The Dickey—Fuller [4, 5]
unit-root tests are based on the coefficient esti-
mator & and its regression f-ratio ;. The basic
idea of the tests is to access whether the ob-
served & is close enough to unity to support the
hypothesis of the presence of a unit root in the
true data-generating mechanism. Classical test
procedures require a distribution theory to de-
liver critical values for the test statistics & and
t; under the null hypothesis that & = 1. The
finite sample distributions of these test statis-
tics are complex and depend on unknown nui-
sance parameters* associated with the station-
ary process u,. It is therefore customary to rely
on asymptotic theory, where the results are sim-
pler and the parameter dependences are clearly
understood.

The large-sample theory for & and f; is
most simply obtained using invariance prin-
ciples and involves functionals of Brown-
ian motion. In the special case where there
is no deterministic component in (4) and
the shocks u, are 1id(0,o?), the limit the-
ory for the test statistics is as follows:
n(@ = 1) = (foWdW)(foWd) ! and 14 =
(oW dW)( [y W?)~ "2, where W is standard
Brownian motion. These limit distributions are
commonly known as the Dickey—Fuller distri-
butions, although the Brownian-motion forms
were not used in refs. {4, 5] and were given
later in refs. |3, 24, 37].
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The limit distribution of & is asymmetric and
has a long left tail, as shown in Fig. 2. It was
computed directly in [9]. In the general case
where u, is stationary, the limit has an addi-
tional bias term that depends on the autoco-
variance* in u, through the nuisance parame-
ter A = 37, E(uou;). This parameter and the
related nuisance parameter @? may be consis-
tently estimated by kernel* techniques, using
residuals from an OLS regression on (4). If &2
and A are such estimates, then the following sta-
tistics provide general semiparametric tests of
the unit-root hypothesis (Phillips [24]), which
correct for possible autocorrelation in u;:

i -1
Zo = nlad - 1) — )At(nmzzy,z(',_d
=2
| ] =1
= ([ waw)([ W) . o
0 0
R n 12+~1
Z, = 6,0ty - /\[ tb(n‘zzyi.,-;) ]
=2

= (fo] dew> (folw)%)—m. (©6)

In these formulas, yy, is the residual from a
regression of y, on x,, &2 is the OLS esti-
mator of o2 = var(u,), and Wy is the L,[0, 1]

Hilbert space projection of W onto the

space orthogonal to X, viz. Wy(r) = W(r) -
(So WX (fy XXX (r).

The limit variates that appear on the right
side of (5) and (6) are free from the nuisance pa-
rameters 3, w?, and A, and are used to construct
critical values for the tests. This is typically
done by large-scale simulations, since the limit
distributions are nonstandard. Figure 2 shows
how these distributions change by stretching
out the left tail as we move from a regres-
sion with no trend to a regression with a
linear trend. Computerized tabulations of the
critical values are given in Ouliaris and Phillips
[21] for the case of polynomial trends. In the
case of the Z,-test, for instance, we reject the
null hypothesis of a unit root at the 5% level if
Zo < cv(Z,,5%), the 5% critical value of the
test. Both the Z, and Z, tests are one-sided.
They measure the support in the data for a
unit root against the alternative that the data
are stationary about the deterministic trend x,.
When no deterministic trend appears in the
model, the alternative hypothesis is just sta-
tionarity. In this case, the limit variates involve
only the standard Brownian motion W. The
Z, and Z, tests were developed in Phillips
[24] and extend the original unit-root tests
of Dickey and Fuller based on the statistics
n(@ — 1) and t,. Extensions of these semi-
parametric tests were obtained in refs. [20,
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Figure 2 Unit-root limit densities.



22, 23, 28] and are covered by the above
formulas.

To illustrate, the model (4) was estimated
with a linear deterministic trend for the data
shown in Fig. 1. The calculated values of
the coefficient-based test statistics are as fol-
lows: n(& — 1) = —7.38; Z, = —13.25. The
asymptotic 5% critical value of the limit dis-
tribution of the Z,-statistic is —21.21 (cf. the
density given by the broken line in Fig. 2).
These tests do not reject the null of a unit root
in the time series, while allowing for the pres-
ence of a linear trend. The t-ratio test statistics
are tg = —1.92, Z, = —2.56. The asymptotic
5% critical value of the Z,-statistic is —3.43.
Again, the tests do not reject the null hypothesis
of a unit root in the series., Note that the cal-
culated values of the Dickey-Fuller statistics
n(& — 1) and t4 are further from the critical
values than are the semiparametric statistics
Z,and Z,. The semiparametric corrections in
the Z-tests for autocorrelation in the residual
process u, are nonnegligible, but in this case
they do not make a difference in the outcome
of the unit-root tests.

THE VON NEUMANN-RATIO
LAGRANGE MULTIPLIER TEST

The von Neumann (VN) ratio is the ratio of the
sample variances of the differences and the lev-
els of a time series. For Gaussian data this ratio
leads to well-known tests of serial correlation®
that have good finite-sample properties. Sargan
and Bhargava [34] suggested the usc of this
statistic for testing the Gaussian-random-walk
hypothesis. Using nonparametric estimates of
the nuisance parameter w?, it is a simple mat-
ter to rescale the VN ratio to give a unit-root
test for the model (1) and (2). Using a dif-
ferent approach and working with polynomial
trends, Schmidt and Phillips [35] showed that
for a Gaussian likelihood the Lagrange multi-
plier (LM) principle leads to a VN test, and
can be generalized by using a nonparametric
estimate of w?.

If y; were observable, the VN ratio would
take the form VN = > (Ay;)2/ > (y$)%.
The process y; is, in fact, unobserved, but may
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be estimated from (1). Note that, under the
null hypothesis and after differences are taken,
this equation is trend-stationary, so that by the
Grenander—Rosenblatt theorem [10, Chap. 7]
the trend function can be efficiently estimated
by an OLS regression. Let ApS = Ay, — Ak,
be the residuals from this detrending regression,
and let §; = >/, A} be the associated esti-
mate of y;. Also, let 57 = 35 — B'x, be the
residuals from an OLS regression of 7 on x,.
Then, rescaling the VN ratio leads to the fol-
lowing two test statistics:

20T S (M) -

I
, =1 | .
2 nm2 0 (90)? [ﬁ) X}

by S N R

== = Vil o,
S G T L

(M

The limit process Vx(r) in (7) is a gener-
alized Brownian bridge* and Vy(r) is a de-
trended generalized Brownian bridge. For ex-
ample, in the case of a linear trend, Vx(r) =
W(r) — ¥W(1) is a standard Brownian bridge
and Vy(r) = V(r) — [{V is a demeaned ver-
sion of a standard Brownian bridge.

Critical values of the limit variate shown in
(7) are obtained by simulation. The statistics are
positive almost surely, and the tests are one-
sided. MacNeill [18] and Schmidt and Phillips
[35] provide tabulations in the case where h,
is a linear trend. The presence of a unit root is
rejected at the 5% level if Ryy > cv(Ryn, 3%),
or if RVN > CV(RVN, 5%).

15

Ryn =

3

t
1S

%

THE PARAMETRIC ADF TEST

The most common parametric unit-root test is
based on the following autoregressive approx-
imation to (4):

k
Ay, = ay,-1 + Z@jA}’t—j + lel + €.

Jj=1
(8)
As k — o we can expect the autoregressive
approximation to give an increasingly accurate
representation of the true process. The unit-root
hypothesis in (4) corresponds to the hypothesis
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a = 0in(8). The hypothesis is tested by means
of the regression ¢-ratio statistic on the coeffi-
cient a. This statistic has the same limit distri-
bution (and critical values) as the Z,-test given
in (6) above, provided k — 2 at an appropriate
rate as n — =« {32]. The test is known as the
augmented Dickey—Fuller (ADF) rest.

EFFICIENT DETRENDING BY
QUASI-DIFFERENCING

As discussed above, the VN-ratio LM test Ryyn
is constructed using an efficient detrending re-
gression under the null hypothesis, in contrast
to the regression (4), where there are redun-
dant trending regressors. One way to improve
the power of unit-root tests is to perform the
detrending regression in a way that is efficient
under the alternative hypothesis as well, an idea
that was suggested in ref, [7] in the context of
the removal of means and linear trends. Alter-
natives that are close to unity can often be well
modeled using the local alternative [25]

a = exp(n_'c) ~1+4+n'c ()]

for some fixed ¢ = ¢, say, given the sample
size n. Quasi-differencing rather than differenc-
ing can now be used in the detrending regres-
sion. Such a regression leads to estimates of the
trend coefficients that are asymptotically more
efficient than an OLS regression in levels [16],
and this result justifies the modified test proce-
dure that follows.

To be specific, define the guasi-
difference Azy, = (1 — L — n~'CL)y, = Ay,
- n"'Ey,_l, and run the detrending OLS
regression  Agzy, = ¥ Azx, + AgyF.  Using
the fitted coefficients ¥, the levels data are
detrended according to ¥y, = y; — ¥'x,, and
y, can be used in the construction of all of
the above unit-root tests. For example, the
modified semiparametric Z,-test has the form
Zo =nl@ — 1) = Mn72Y)_,57-1)"}, where
A is a consistent estimator of A, and & is the
coefficient in the regression of 3 on ¥,-.
New critical values are needed for the Z,-test,
and the limit theory depends not only on the
trend functions, as it does in (5), but also
on the localizing parameter ¢ that is used in

the quasi-differencing. A good default choice
of T seems to be the value for which local
asymptotic power is 50% (7, 14].

A POINT OPTIMAL TEST

When the model for y, is a Gaussian AR(l)
with unit error variance [see AUTOREGRESSIVE
MOVING-AVERAGE (ARMA) MODELS], the Ney-
man-—Pearson lemma* can be used to construct
the most powerful test of a unit root against a
simple point alternative. This is a point optimal
test (POT [14]) for a unit root at the alternative
that is selected. Taking a specific local alterna-
tive with ¢ = € in (9), using quasi-differencing
to detrend, and using a consistent nonparametric
estimate @2 of the nuisance parameter w?, the
POT test statistic for a unit root in (1) and (2)
has the form Pr = &~ [e2n2Y ) ,(¥-)* —
tn~!'91], which was given by Elliot et al. [7] in
the case where there is a linear trend in (1). The
test is performed by comparing the observed
value of the statistic with the critical value ob-
tained by simulation. The presence of a unit
root in the data is rejected at the 5% level if
P: < cv(P:, 5%), ie., if P: is too small. Note
that in the construction of P, the estimate &2
is used and this is obtained in the same way
as in the Z,-test, i.e., using residuals from the
regression (4).

ASYMPTOTIC PROPERTIES
AND LOCAL POWER

The above test statistics are asymptotically sim-
ilar* in the sense that their limit distributions
are free of nuisance parameters. But the limit
distributions do depend on whether the data
have been prefiltered in any way by a prelim-
inary regression. The tests are also consistent
against stationary alternatives provided that any
nonparametric estimator of w? that is used in
the test converges in probability to a positive
limit as n — . The latter condition is impor-
tant, and it typically fails when estimates of w?
are constructed using first differences or quasi-
differences of the data rather than regression
residuals [27].



Rates of divergence of the statistics under
the alternative are also available. For instance,
when |a| < 1, we have Z,, Z,, Run = 0,(n)
and Z,, ADF = 0,(n'?) as n — « [27]. Thus,
coefficient-based tests that rely on the estimated
autoregressive coefficient and the VN-ratio LM
tests diverge at a faster rate than tests that are
based on the regression f-ratio. We may there-
fore expect such tests to have greater power
than ¢-ratio tests, and this is generally borne out
in simulations. Heuristically, the ¢-ratio tests
suffer because there is no need to estimate a
scale parameter when estimating the autoregres-
sive coefficient «.

Under the local alternative (9), the limit
theory can be used to analyze local asymp-
totic power. When (2) and (9) hold, y; behaves
asymptotically like a linear diffusion rather than
Brownian motion, i.e., n_“zy'f,”.] =J.(r) =
foe" "¢ dW(s). The limit distributions of the
unit-root test statistics then involve function-
als of J.(r) [25]. The local asymptotic theory
can be used to construct asymptotic power en-
velopes for unit-root tests by taking the limit
distribution of the POT statistic under the lo-
cal alternative ¢ = ¢, and then varying the
parameter c.

FINITE SAMPLE PROPERTIES
OF UNIT-ROOT TESTS

Extensive simulations* have been conducted to
explore the finite sample performance of unit-
root tests. One general conclusion that emerges
is that the discriminatory power in all of the
tests between models with a root at unity and
a root close to unity is low. For instance, the
power is less than 30% for @ € [0.90, 1.0) and
n = 100. The power is reduced further by de-
trending the data. Both these features mirror the
asymptotic theory. One interesting finding from
simulation studies is the extent of the finite sam-
ple size distortion of the tests in cases where the
true model is close to a trend-stationary process.
For example, if u, in (2) follows a moving-
average* process u, = €, + f¢,_| with 0 large
and negative, then the sample trajectories of
y; more closely resemble those of a stationary
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process than a random walk. In such cases there
is a tendency for all of the tests to overreject the
null of a unit root. Tests that are based directly
on autoregressive coefficient estimates, like Z,,,
tend to be more affected by size distortion than
the other tests. This is because the bias in the
first-order autoregressive estimator is large in
this case, not only in finite samples but even
in the asymptotic distribution (7), where the
miscentering is measured by the bias parameter
A = @0l Good estimates of the bias param-
eter are needed to control the size distortion.
Since A is estimated in a nonparametric way by
kernel methods, it is usually not estimated at a
J/n rate. Recent attempts to improve the esti-
mation of this parameter using data-determined
bandwidth* choices [1], prefiltering [2], and
data-based model selection and prefiltering [16]
offer some promise, the latter reference show-
ing that \/n rates of estimation are achievable
in these estimates when consistent model! se-
lection* techniques are used to determine the
prefilter.

The parametric ADF procedure is less af-
fected by size distortions when the true model
is close to stationarity, but generally has much
less power than the other tests. With this test,
the power is further reduced by the inclusion of
additional lagged dependent regressors in (4).
Again, model selection methods like BIC [36]
are useful in this respect and provide some in-
crease in the finite-sample power of the ADF
test.

Since detrending the data reduces power, sur-
plus trend variables in regressions like (4) will
do so also. Hence, efficient detrending proce-
dures can be expected to benefit all the tests.
Simulations confirm [38] that detrending by re-
gression in quasidifferences seems to be the
most successful method so far for increasing
finite-sample (and asymptotic) power.

TRENDS WITH STRUCTURAL BREAKS

Breaks in deterministic trend functions are of-
ten employed to capture changes in trend. This
possibility is already included in the specifi-
cation of A, in (1). For instance, the trend
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function
,7 I)
h, = ij’J + me,jf{m
j=0 j=0

0, te{l,....m},

r—m), t€{m+1,...,n}

(10)
has a time polynomial of degree p (the first
component) and a similar time polynomial with
different coefficients (the second component)
that initiates at the point ¢t = m + 1. This trend
function therefore allows for the presence of
a structural change in the polynomial trend
at the data point t = m + 1. Suppose u =
lim,—<(m/n) > 0 is the limit of the fraction
of the sample where this structural change oc-
curs. Then the limiting trend function X(#) cor-
responding to (10) has a similar break at the
point . The unit-root tests given above, includ-
ing those that make use of efficient detrending
procedures, continue to apply for such broken
trend functions. Indeed, (10) may be extended
further to allow for multiple break points in the
sample and in the limit process without affect-
ing the theory.

In order to construct unit-root tests that allow
for breaking trends like (10) it is necessary to
specify the break point m. (Correspondingly,
the limit theory depends on limit processes that
depend on the break point u.) In effect, the
break point is exogenously determined. Perron
{23] considered linear trends with single break
points in this way. An alternative perspective
is that any break points are endogenous to the
data and unit-root tests should take account of
this fact. Alternative unit-root tests have been
suggested [40] that endogenize the break point
by choosing the value of m that gives the least
favorable view of the unit-root hypothesis. This
has been done for the parametric ADF test
and for linear trends with breaks. If ADF(m)
denotes the ADF statistic given by the f-ratio
for @ in the ADF regression (4) with a broken
trend function like (10), then the trend-break
ADF statistic is

where 1}, = {(

ADF(#) = min_ ADF(m)
msm=i
where m = [nu], m =[ni], and

O<u<p<l. (1)

The limit theory for this trend-break ADF statis-
tic is given by

] [ ~112
ADF(/) = inf (f Wy dW) (f W;) )
u€lg. g\ Jo 0

(12)
where the limit process X(r) that appears in
this functional on the right side is now depen-
dent on the trend break point o over which
the functional is minimized. Critical values of
the limiting test statistic (12) are further out in
the tail than those of the exogenous trend-break
statistic, so it is harder to reject the null hypoth-
esis of a unit root when the break point is con-
sidered to be endogenous. Simulations indicate
that the introduction of trend break functions
leads to further reductions in the power of unit-
root tests. Sample trajectories of a random walk
are often similar to those of a process that is sta-
tionary about a broken trend for some particular
break point (more so when several break points
are permitted in the trend). So reductions in the
power of unit-root tests against competing mod-
els of this type should not be unexpected.

SEASONAL UNIT-ROOT TESTS

The parametric ADF test has been extended to
the case of seasonal unit roots. In order to ac-
commodate fourth-differencing the autoregres-
sive model is written in the new form

Ay, = ayyi~) + aayy-y + a3l

p

+ agyy-; + Z(PJAO"—; +e, (13)

=

where As=1-L% y,=0+L)(1 +
LYy,  yu = - L)1 + LYy, yu =
~(1 = L?y,. The data y(;, ya,y3, retain the
unit root at the zero frequency (long run), the
semiannual frequency (two cycles per year),
and the annual frequency (one cycle per year),
respectively. When e = a2 = a3 = a4 = 0,
there are unit roots at the zero and all seasonal
frequencies. To test the hypothesis of a unit root
(L = 1), a t-ratio test of «; = 0 is used. Sim-
ilarly, the test for a semiannual root (L = —1)
is based on a -ratio test of a; = 0, and the test
for an annual root on the f-ratios for a3 = 0
or a4 = 0. Details of the implementation of
this procedure are given in Hylleberg et al.



[12]. The limit theory is developed in Chan
and Wei [3].

BAYESIAN TESTS

While most practical work on unit-root testing
has utilized classical procedures of the type dis-
cussed above, Bayesian methods offer certain
advantages that are useful in empirical research.
Fcremost among these is the potential that these
methods offer for embedding the unit-root hy-
pothesis in the wider context of model specifi-
cation. Whether or not a model such as (4) has
a unit root can be viewed as part of the bigger
issue of model determination. Model compari-
son techniques like posterior odds and predic-
tive odds make it easy to assess the evidence
in the data in support of the hypothesis a = 1
at the same time as decisions are made con-
cerning other features of the model, such as the
lag order in the autoregression (4), the degree
of the deterministic trend component, and the
presence of trend breaks. Phillips and Ploberger
[29, 30] explore this approach to unit-root test-
ing and give an extension of the Schwarz crite-
rion* [36] that can be used for this purpose in
models with nonstationary data.

A second advantage of Bayesian methods
in models with unit roots is that the asymp-
totic form of the posterior density is normal
[13, 30], a result that facilitates large-sample
Bayesian inference* and contrasts with the non-
standard asymptotic distribution theory of clas-
sical estimators and tests. Thus, a large-sample
Bayesian confidence* set for the autoregressive
parameter @ in (4) can be constructed in the
conventional way without having to appeal to
any nonstandard limit theory. In this respect,
Bayesian theory (which leads to a symmetric
confidence set for «) differs from classical sta-
tistical analysis, where the construction of valid
confidence regions is awkward because of the
discontinuity of the limit theory at @ = 1 (but
may be accomplished using local asymptotics).
This divergence can lead to quite different in-
ferences being made from the two approaches
with the same data. This is so even when the
influence of the prior is negligible, as it is in
very large samples. In small samples, the role
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of the prior is important, and time-series mod-
els raise special concerns about the construc-
tion of uninformative priors, primarily because
a great deal is known about the properties of
simple time-series models like autoregressions
and their characteristic features in advance of
data analysis. How this knowledge should be
used or whether it should be ignored is a matter
on which there is ongoing debate (see Phillips
[26] and two recent themed issues of the Jour-
nal of Applied Econometrics, 1991, and Econo-
metric Theory, 1994).

Third, Bayesian methods offer flexibility and
convenience in analyzing models with possible
unit roots and endogenous trend breaks. In such
cases a prior distribution of break points is pos-
tulated (such as a uniform prior across poten-
tial break points), the posterior mass function is
calculated, and the Bayes estimate of the break
point is taken as the one with highest posterior
mass [41]. This approach makes the analysis of
multiple break points straightforward, a prob-
lem where classical asymptotic theory is much
more complex.

TESTING STATIONARITY

Adding a stationary component v, to (1) and
(2) gives the model

¥, =yioy +ou,
(14)

yv=h +y +v,

which decomposes the time series y, into a de-
terministic trend, a stochastic trend, and a sta-
tionary residual. The stochastic trend in (14)
is annihilated when o2 = 0, which therefore
corresponds to a null hypothesis of trend sta-
tionarity. Under Gaussian assumptions and i.i.d.
error conditions, the hypothesis can be tested
in a simple way using the LM principle, and
the procedure is easily extended to more gen-
eral cases where there is serial dependence, by
using parametric [17] or semiparametric [15]
methods. Defining w, = y; + v, and writing
its differences as Aw, = (1 — 6L)n, where 7,
is stationary, it is clear that o2 = 0 in (14)
corresponds to the null hypothesis of a moving-
average unit root § = 1. Thus, there is a corre-
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spondence between testing for stationarity and
testing for a moving-average unit root [33].

APPLICATIONS, EMPIRICAL EVIDENCE
AND FUTURE PROSPECTS

Most empirical applications of unit-root tests
have been in the field of economics. Martin-
gales* play a key role in the mathematical the-
ory of efficient financial markets [6] and in the
macroeconomic theory of the aggregate con-
sumption behavior of rational economic agents
[11]. In consequence, economists have been in-
trigued by the prospect of testing these theories.
In the first modern attempt to do so using unit-
root tests, Nelson and Plosser [19] tested four-
teen historical macroeconomic time series for
the United States by the ADF test and found
empirical evidence to support a unit root for
thirteen of these series (the exception being
unemployment). Since then, these series have
been retested with other methods, and hundreds
of other time series have been examined in the
literature. While it is recognized that the dis-
criminatory power of unit-root tests is often
low, there is a mounting body of evidence that
many economic and financial time series are
well characterized by models with roots at or
near unity, as in the case of the leading eco-
nomic indicators data graphed in Fig. 1.

In empirical applications to multiple time se-
ries*, the ADF and semiparametric Z tests have
been extensively used to test for the presence
of cointegration® (or co-movement among vari-
ables with unit roots). The tests are used in
the same way as unit-root tests and have the
same null hypothesis, but the data are the resid-
uals from an OLS regression among the vari-
ables, and the alternative hypothesis (of cointe-
gration) is now the main hypothesis of interest
18, 27]. The model is analogous to (1), but both
variables y, and x;, have unit roots and y; is
stationary.

Unit-root models, testing procedures, and
unit-root asymptotics now occupy a central po-
sition in the econometric analysis of time series.
This is partly because of the growing empiri-
cal evidence of stochastic trends in economic
data, and partly because of the importance of

the notion of shock persistence in economic
theory. The scope for the use of these meth-
ods in empirical research in other fields like
political science and communications seems
substantial. Advances in computer technology
will continue to facilitate the use of simula-
tion methods in dealing with the nonstandard
distributions that unit-root methods entail. The
explosion of research over the last decade in the
field of nonstationary time series and unit-root
methods shows no sign of abating. The field
is full of potential for future developments in
statistical theory, in modeling, and in empirical
applications.
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