Cowles Foundation Paper 917

Econometrica, Vol. 64, No. 2 (March, 1996), 381-412

AN ASYMPTOTIC THEORY OF BAYESIAN INFERENCE FOR
TIME SERIES

By PETER C. B. PHILLIPS AND WERNER PLOBERGER'

This paper develops an asymptotic theory of Bayesian inference for time series. A
limiting representation of the Bayesian data density is obtained and shown to be of the
same general exponential form for a wide class of likelihoods and prior distributions.
Continuous time and discrete time cases arc studied. In discrete time, an cmbedding
theorem is given which shows how to embed the exponential density in a continuous time
process. From the embedding we obtain a large sample approximation to the model of the
data that corresponds to the exponential density. This has the form of discrete observa-
tions drawn from a nonlinear stochastic differential equation driven by Brownian motion.
No assumptions concerning stationarity or rates of convergence arc required in the
asymptotics. Some implications for statistical testing are explored and we suggest tests
that are based on likelihood ratios (or Bayes factors) of the exponential densitics for
discriminating between models.
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1. INTRODUCTION

THE BAYESIAN APPROACH TO MODELING and inference in time series economet-
rics have become increasingly popular in recent years. Time serics applications
raise concerns that deserve special attention, like the nature of prior informa-
tion in time series models, the treatment of initial conditions, and nonstationar-
ity. Thesc concerns are the subject of two recent themed issues of the Journal of
Applied Econometrics (1991) and Econometric Theory (1994). The focus of
attention in the present paper is not the aforementioned concerns per se, but
the development of a general asymptotic theory of Bayesian inference for time
series. As a complement to the literature on formulating “uninformative priors”
for time scries, this paper is aimed at obtaining asymptotic results whereby the
prior is dominated by the data.

Our starting point is to obtain an asymptotic representation of the distribu-
tion of the data that is implied by the use of Bayesian methods, i.e. the so-called
Bayesian data density (which commonly figures as the proportionality factor in
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Bayesian posterior distribution calculations). We show that the Bayesian data
density is asymptotically of the same general exponential form for a wide class of
likelihood functions and prior densities. This includes nonstationary as well as
stationary systems, and no specific rates of convergence are required for our
asymptotic theory to hold. The exponential data density has a simple form and
depends only on the likelihood score process and its conditional variance. When
we condition on a minimal information time (which is useful when making
comparisons between models), the exponential density is also independent of
the prior and it can be treated as a proper probability density (in the sense that
its mass is unity) even when the prior is improper by making a time change in
the process. The exponential density can be used to ¢conduct Bayesian likelihood
ratio tests in much the same way as Bayes factors are presently used (e.g., see
Berger (1985, Section 4.3)). These tests are useful in evaluating competing
statistical hypotheses about the model generating the data and, more generally,
as a model selection device. The latter procedure is closely related to the BIC
order selection device of Schwarz (1978) and the posterior odds criteria dis-
cussed by Leamer (1978) and Zellner (1978). Our approach allows explicitly for
nonstationary data and for improper priors and yields convenient and robust
characterizations of Bayes factors for use in model selection. We illustrate its
use in the context of unit root tests.

Some use is made of continuous martingales and their stochastic calculus in
our development and the reader is referred to Ikeda and Watanabe (1989) and
Protter (1990) for the background theory. The following notational conventions
are employed. V, is used to represent a continuous L, (i.e. square integrable)
martingale, or local martingale, and the square bracket [V'], = [V, V], denotes its
quadratic variation process. Similar notation is employed in the case of a
discrete time martingale V/,, and in this case we use (V' }, = (V,V), to denote
the conditional quadratic variation process. A, (respectively, B,) is often a
shorthand notation for quadratic variation process (respectively, conditional
quadratic variation). W, denotes standard Brownian motion which is signified by
the symbolism “BM(1).” The symbol “= ” signifies equivalence or equivalence
in distribution, RN derivative is short for Radon-Nikodym derivative and “ <<
denotes the absolute continuity operator. We use A (A) for the smallest latent
value of the square matrix A, || Al = {tr(4A4)}}/? for Euclidean distance, and | 4|
for det(A4).

2. APPROXIMATING THE BAYESIAN DATA MEASURE BY AN
EXPONENTIAL BAYES MEASURE

Our analysis starts with continuous time processes and we later (in Section
3.1) show how the corresponding theory in discrete time can be embodied in
that of the continuous time case by suitable embedding techniques. One of our
objectives is to provide a large sample Bayesian criterion for a particular model
selection problem that will be extended in Section 4. The problem is to choose
between a scalar parameterized family of densities and a prespecified density
within this family. This stylized problem is a useful starting point in the study of
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the general problem of model selection, and posing the data evolution in
continuous time leads to a convenient and elegant solution. In particular: (i) we
can use the theory of continuous square integrable martingales and exponential
martingales to achieve some simple but general results; (ii) we do not need to
distinguish stationary, nonstationary, and explosive cases (as is usually the case
in a discrete time analysis); and (iii) determination of the model for the data
that is implied by the use of Bayes rule is quite simple for continuous processes.

Let (2,7, P) be a probability space and let (%), , , be an increasing family of
right continuous sub o-fields of #. Assume that we have given a parameterized
family of probability measures P on the sequence of filtered spaces (2,.%). In
this section we will consider the case of a scalar § € R and we will assume that
P? < v, some o-finite measure on (£2,%,). We can think of P? as the probabil-
ity measure of a continuous time random process (Y,), _, on (£2,%). If w(8)is a
prior density on 6, then the mixture

(1) 2, =fR7r(9)P,"d9

is the Bayesian data measure, i.e. the (probability) measure of the data Y* =
(Y,), . ,, with the corresponding data density d.%,/dv= [gm(OXdPF/dv)d6. We
put the word probability in parentheses in the last sentence because 2, may not
be a proper probability measure in the sense that it has unit mass. For instance,
if () is improper then &, is o-finite with mass #(2) = [ (8)P(N)do =
Jam(8) d8 ==, We accommodate this possibility in what follows. Let 6° be the
“true value” of 6 and set P? = P?". We write the likelihood function in terms of
the density L (6)=dP,?/dP? and then the density of &, with respect to P? is

2) de, /P! = [ w(0)(dPf/dPy) do= [ m(6)L,(6) 4.
R R

Our object is now to show that £, can be approximated asymptotically by a
much simpler measure, which we denote by Q,, and to find its general form.

2.1. THEOREM: Assume the following conditions hold:

(C1) 1,(8) =In(L (1)) is twice continuously differentiable with derivatives I{(8)
and 19(9).

(C2) Under P2, 199(8) is a continuous local martingale with quadratic variation
process A(9) and A(8) >« a.s. (P%) ast— . Let A,=A,8°).

(C3) UP(0)+A(6)/A6) —> 0 as. (P?) ast — .

(C4) There exist continuous functions w0, 0') such that w(0,0) =0 and such
that for all 8,9 in some neighborhood N5(6°) ={0:10— 6°| < 8} of 68° we have

{IP(0) =120} /4, <w,(6,6') a.5. (P)

for each t, and w/(8,8) > wJ(0,0) a.s. (P°) uniformly for 0,6’ € N;(8°) and
w8, 8)=0. . .

(CS) The maximum likelihood estimate 6, for 8° is consistent, i.e. 6, —> 6° a.s.
(PO).
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(C6) Forany 6 >0 and w;=1{0:160— 8°| = 8} we have
A}/?—f #(8)(dP?/dP") d6— 0 a.s. (P°).

5

(C7) The prior density w(8) is continuous at 8° with 7, = w(6") > 0.
Then

(3) 4%, [ dQ, 1 (P,
ar® [ ap? 74

where Q, is the measure defined by the following RN derivative with respect to P

do, exp{(1/2)V,24; "}

4 — =c ,
dP,O 0 A}/Z

where V,=19%(8"), and ¢, = 2m)"/*m,. The derivative (4) may also be written in
the following asymptotically equivalent forms‘

&) dQ,/dp” —coexp{(l/Z) 6, — 6°) /Al/2
and

©)  dQ,/aP’ =cyexp{l,(4)} [4}*.

2.2. REMARKS ON (C1)-(C7): (i) Condition (C1) is standard in the asymptotic
theory of regular estimators. So is the first part of (C2)—in the usual maximum
likelihood theory (e.g., Hall and Heyde (1980, p. 157)) [4%(#) is a continuous L,
martingale under P?. The conditional variance process of {1(6) (the time clock
of the martingale) is the quadratic variation or square bracket process 4 ,(6) =
[/D(8)],. The requirement that A4,(6) —> = as. (P?) ensures that there is
eventually an infinite amount of information about the process in the likelihood
function. It corresponds to the usual persistent excitation condition in regression
theory.

(ii) Condition (C3) says that [(8) + 4,(6) must be small relative to 4,(6) as
t — oo, This is a version of the usual requirement that J,/I, » —1 as n —> = in
the theory of maximum likelihood where I, is the conditional variance of the
score and J_ is the Hessian of the likelihood (sce, for instance, Hall-Heyde
(1980, p. 160)). In the present case, note that [(8)+ ([{(8))* is a local
martingale (as in the standard ML theory) and, moreover, since /{(#) is a local
P9 martingale, so also is (/{"(6))* — 4,(6). Hence, we would expect the sum of
these local martingales,

1200) + A,(8) = {12(8) + (10"} + {4,(9) = 1(6))')

to be small relative to the quadratic variation process A4,(9), thereby giving
intuitive support to (C3).
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(iii) Condition (C4) is a smoothness condition. It requires, in effect, that
relative differences in /?(¢) and /{2(8’) be bounded above by an equicontinu-
ous family of functions w,(#, 8’) in some neighborhood of 6° with the property
that when 6= ¢’ the limit function w,(8,6)=0.

{(iv) Condition (CS) is standard. It could be replaced by an explicit condition
on the behavior of the likelihood ratio dP?/dP! as t — = in closed sets like
ws=1{6:16— 0° = &} that do not contain ¢°. For instance, one commonly
occurring condition (e.g. Walker (1969, p. 83) and Hall-Heyde (1980, p. 158))
would, in the present case, take the form that for every 8 > 0 there is a k(8) >0
such that

ap? .
Pl sup ~po <exp{—A,(9 )k(&)} — 1.
€ wy t
A somewhat stronger version of this condition is that for 8 > 0 there exists a
k(&) such that

4]
1

0

(C5)  exp{A,(6Dk(8)} sup

0E wy !

<las. (P")

as t — o, Then, if the prior density 7(0) were proper, we would have

€6)  A,69" [ w(0)(ap!/dr) ds

ws

<A,(69" sup (apP/dP") [ w(6)do

0€E w;
SA,(HO)I/Zexp{—Al(eo)k(ﬁ)} —>0as. (P, ast >

in view of (C5'). Result (C6') is the natural alternative to condition (C6) when
the prior density 7(8) is proper. As it stands, (C6) simply requires that the
average density dP?/dP. over a closed set like w; that does not contain 6° be
small relative to A2 as ¢t — . When «(8) is proper, (C6') shows that the
average density, which in this case is [, m(8)(dP’/dP])d#, is exponentially
small in A4,(6°) as t — . The explicit condition (C6) docs not therefore seem to
be overly strong and allows us the extra convenience of working with improper
as well as proper prior densities.

() If the prior 7(6) is uniform at the constant level m, = (27)~'/%, then
¢y = 1 and we have the simpler forms

(4,5,6)
dQ, exp{(1/21;24;7 ")
ary A
exp{(l/Z)(éI - 90)2AI> exp{l,(é[)}
= A}/z = A:/Z

in place of (4), (5), and (6).
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(vi) If the almost sure convergence conditions in (C2), (C3), (C5), and (C6) are
replaced by convergence in probability, and if the inequality in (C4) holds with
probability tending to one as ¢ — «, then the main result, (3), of the theorem
holds in probability rather than almost surely. This weakening of the conditions
may make them easier to verify in specific cases. A similar remark applies to
Theorems 3.1 and 4.1 below.

2.3. REMARKS ON THEOREM 2.1: (i) We can write result (3) in the form
d#,/dQ, — 1 as. (P°), which tells us that the measure Q, is identical to the
Bayes data measure &, as t— . The advantage of Q, is that it is a data
measure of the same simple form for a broad range of likelihoods and prior
densities. It depends only on the score process V,, the quadratic variation
process A,, and the value m, of the prior at 8°. The density ratio (4) that
defines Q, can be written as

Z(t) =dQ,/dP" = coexp{K ()}, with

K(t) = V() /240 — (1 /DIn( A1),

Using a stopping time sequence (7,),. ,, such as that given in (9) below, we
construct the time changed density process

@) R, =9(1,) /R (1)) = exp{K(7,) — K(7y)} = exp{G, — (1/2)[G]a},

where G, = G(1,) = [[«(V(1) /A(1)) dV(t)—cf. equations (A19)-(A21) in the Ap-
pendix. The process %, given in the final equality of (14) is called a Doléans
exponential (cf. Meyer (1989, p. 148 in the appendix to Emery (1989))) and is an
exponential martingale when the sequence 7, is chosen as in (9). This exponen-
tial is especially interesting in the statistical theory of stochastic processes
because it is known to represent the limit of the likelihood function for
stochastic processes in very gencral situations (see Strasser (1986, Theorem
1.15)). Moreover, as shown in the proof of Theorem 2.4 below, we here have
that E(#,)=1 and %, therefore represents a proper probability density. For
these reasons we refer to %, as an exponential density and the underlying
measure Q, from which it is derived as an exponential measure.
(i) Using (4) we have

21n(dQ,/dP?) = V;2A; ' = In(A4,) + 2In(c,),

the first term of which is a quadratic form in the score V,=1/"(8°) that
corresponds to the classical score statistic. The statistic dQ,/dP?, can therefore
be interpreted as a form of penalized score test in which the size of the penalty
(for estimating ¢) is determined by the quadratic variation 4,. Note that (4)
can, in fact, be computed under the null hypothesis 8= 8°, just as the classical
score or LM test, simply by using the value of ¢ under the null.

(iii) Formulae (5) and (6) give alternative (asymptotically equivalent) expres-
sions for dQ,/dP]. Of particular interest is (6) because we can rewrite this in
the following form (up to a constant):

(8) In(dQ,/dP?) =1,(6,) - (1/2n A,,
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which is related to the BIC criterion of Schwarz (1978). Here [,(6,) is the
maximized value of the log-likelihood (ratio) function (compare the log(&?)
expression, where &2 is the residual variance, that appears in the common
regression form of the BIC criterion) and In(A4,) is the penalty term for
including 6 as a free parameter (i.e. free rather than set equal to the fixed value
6= 6", as in the competing model for which P? is the probability measure).

Formula (8) can be used explicitly as a model selection criterion to choose
between a model based on the scalar ¢ parameterized family of distributions
(for which Q, is an asymptotic characterization of the data measure) and the
prespecified measure P” within this family.

As an illustration of the use of (8) as a model selection device, consider the
simple case of a Wiener process with drift, i.e. X(¢) = 07+ W(¢) where W(t) is a
standard Wiener process. We will choose the model without drift if dQ,/dP° < 1,
i.e. if P? has the greater likelihood. The log likelihood is

1,(6) =In(dP?/dP’) = 6 dx — (1/2)6% [ 'ds = 6X(1) = (1/2)6%1.
0 0

The MLE is 6,=X(t)/t, or W(t)/t when P° holds. Thus, under P° the
criterion (8) is simply (1/20)W(#)* + (1/2)In(¢). By the law of the iterated
logarithm for Brownian motion we have W(¢)?/t = O(InIn(t)) a.s., and thus (8)
diverges to — with probability one. Hence, under P, dQ,/dP — 0 a.s. when
t — . So we will choose the model without drift correctly with probability one
as t— ». Conversely, when 6=0, (8) is (1/26)X(¢)* —(1/2)in(r) and this
diverges to + a.s. when ¢ — «. Thus, under P? for 60, dQ,/dP’ — = as.
when ¢ — o and the model with drift is correctly chosen with probability one.

Section 4.4 below studies the case of vector 6 from this point of view,
considers the use of our formula as a mode! selection criterion in the general
case, and explores its connection to BIC.

(iv) Theorem 2.1 remains true under random time changes. It is helpful to
allow for such time changes because it is often convenient to measure time in
terms of the amount of information that has accumulated about the process (i.e.
A,) rather than simply chronological time. Time changes are also useful in
resolving integrability difficulties that sometimes arise in the formation of
o-finite measures like Q,. For instance, the density process &%, given by the
exponential in (7) above is not necessarily a proper probability density. This is
because while %, is a supermartingale it is not in general a martingale and it is
not necessarily the case that E(7,) = 1. In fact, &, is a martingale iff E(Z ) =
1—see Karatzas and Shreve (1991, p. 198). The integrability problems arise
when the quadratic variation [G], that appears in the exponent of (7) becomes
too large. This variation can be controlled by a suitable choice of stopping time
sequence. In fact, it is known by Novikov's theorem (e.g. Karatzas and Shreve
(1991, pp. 198-199)) that a sufficient condition for E(%,) =1 is
E(exp{(1/2)[G],}) < e and stopping times can be chosen to assure this. We now
illustrate how to implement these ideas in our framework.



388 P. C. B. PHILLIPS AND W. PLOBERGER

Suppose (1,),, , is a family of monotone increasing and continuous stopping
times for which 7, — o as a — o; then, in place of (3), we have for the time
changed measures %, and Q. a similar convergence as ¢ — «, i.e.

dﬂTﬂ dtga'ra / dQ‘—ﬂ 1 ( P 0 )
= —1as as a — w,
ag, ~art [ap AP

A convenient way of constructing stopping times that achieve the objective of
making %, a proper density is as follows. Set

) 7, =inf{s: A, = ce’}, a=0

for some constant ¢ > (0. The new initial time 7, can be interpreted as a
minimum information time wherein we prescribe a level of minimum informa-
tion, viz. ¢, that is needed for inference from the data to be useful. Note that at
t=10, A, = 0and (4) is undefined—we need some data (or 1 > 0 and A4, > 0) for
the measure @, to be defined.

The sequence (7,),., is a family of monotone increasing and continuous (in
a) stopping times such that A4, is as. (P°) bounded. The process is, in effect,
stopped before the quadratic variation gets too large. We can go further and
replace the time index ¢ (chronological time) by a and let @ — o, This effects a
time change in the process whereby the “new time” is mcasured by the
information content of the original process. Correspondingly, we may replace
the measure Q, by the “time changed” exponential measure Q, defined by

dQ, dQ. /dp;
dP ~ dQ, /dP’

To

(10)

= exp(G, + (1/2)[G1},

as in (7) above. In this new time frame and with the new initialization (at a = ®)
Q, as determined by (10) is a proper probability measure and it is independent
of the prior distribution (or the level 7, = 7(#°) that appears in (4)). We
formalize this result as follows.

2.4. THEOREM: The measure Q, that is defined by the RN derivative in (10) is a
probability measure on the filtered space (2,7, ) for a = 0. This measure does not
depend on the prior distribution w(0), and

Q, '.'7,” =0, forall 7, > 1, > 7y,

i.e. the restriction of Q) to F, is given by Q,,.

Thus, in the new time frame and with the new initialization the exponential
Bayes measure (, is a proper probability measure and it is independent of the
prior. In large samples we can therefore replace the Bayesian data measure by a
probability measurc of the general exponential form given in (10). In effect, for
large samples we have left the prior density behind and have shown that only the
score process V, and its quadratic variation A, are important in determining the
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Bayesian data density. Our theorem shows that this holds under conditions
which include nonstationary as well as stationary systems, and no rates of
convergence conditions are required. Moreover, since Q, is a proper probability
measurc it may be used to compute posterior odds and predictive odds and to
compare models on the basis of these odds. We illustrate some of these uses in
Section 4.

2.5. THE MODEL FOR Q,: As shown in Remark 2.3(i) the measure Q, gives
risc to a proper probability density process 2, that can be represented in the
exponential martingale form (7). This characterization of the density is useful in
explaining how the Bayes factor dQ,/dP (or, more specifically, the conditional
time changed Bayes factor %,) evolves as new data arrives.

Let A1) = V() /At), which is, in effect, the linearized MLE (i.e., §, — 6° =
Vi/A, + o(6, — 6°) as t — o—see equation (A17) in the Appendix). Then G,=
e «h(¢) dV(1). As in the proof of Theorem 2.4 in the Appendix, we find that %’
satisfies the equation

(1) d®, =#(1,) dG(1,) =% () h(z,) dV(z,).

This is a nonlinear stochastic differential equation for %, =%(r,), showing how
the density process () is updated using the latest available (m &, ) value of
the linearized MLE h(x, ) and the increment in the score process dV(’T ) at time
7,. The model to which the exponential Bayes measurc Q, relates is therefore
determined by the nonlinear stochastic differential equation (11), which pre-
scribes the evolution of the path dependent density %, =%#(r,) from a given
initialization at @ =0 (i.c. 7,) in terms of the lmearlzed MLE A(r,) and the
increment in the score dV(r,), both of which are continuously updated as a
increases. Since @, is a large sample approximation to the Bayesian data
measure %, we can interpret (11) as a large sample approximation to the model
for the data in a Bayesian framework. Note that (11) holds irrespective of the
prior in large samples and so does this large sample approximating Bayes model.
With a further time change in the process it is possible to construct a more
explicit model for the data that corresponds to the path dependent Bayes
measure Q, in the general case. To do this we use the following result:

2.6. LEMMA A: Suppose V, is a continuous local martingale with V=0 and
quadratic variation process A, for which A, — = a.s. (P). Then there exists a
Brownian motion X, and a family of stopping times (o,),, o with o,—> % as t -

such that V, is indistinguishable from [ XdX.

The time change o, in the theorem is constructed using the rule

(12) or,=inf{p:pr_fds _>_A[}.
0
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and
(15)  [Gla=["h? a4, = [“h2X? di.
[lizan = [izx:

The time changed density process %, now has the form of the exponential
martingale

(16) &, =explG, — (1/D[Gl} = exp{fT"/%,Xm X, — (1/2)]7“1%3)(3, dt}.

In fact, (16) is the likelihood ratio density process for the model (e.g., see
Ibragimov and Has’minski (1981, p. 16)):

a7 dX, =hX, d+dW, t>7,

where W, is a Brownian motion and h, is given in (13). The nonlinear stochastic
differential equation (17) is the model for the data that corresponds to the path
dependent exponential Bayes measure Q,. We can think of (17) as being the
model for the score process V, under the Bayes measure Q,.

2.7. THE CaSE OF QUADRATIC LOG LIKELIHOOD AND LINEAR DIFFUSION: Let
us now consider the special case of a quadratic log likelihood process. If also the
prior density 7(6) is uniform, then the large sample approximations that appear
in Theorem 2.1 are not needed and the analysis we have performed in the
general case goes through exactly.

Suppose the log likelihood process is

(18) 1() =In(dP’/dP?) =V,0 - (1/2) 470,
corresponding to the linear diffusion model for the Ornstein-Uhlenbeck process
19) dX,= 60X, dr +dw,.

Then V, = [{ X, dX, is a martingale under P" (i.e. when ¢ = 0) and has quadratic
variation A, = [{ X2 ds. The MLE of 6 is given by 6, = V,/A4, = [; X, dX,/ [¢ X}
exactly and 6, = &, in the notation of Section 2.5.

The exponential Bayes measurc Q, now satisfies d.%,/dP = dQ,/dF, exactly,
and its conditional density process (17) is given by

(16)  q,=dQ, /dP’ls = explG, — (1/DIG1a),
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where

@) G,=["bav,- "Gy, a,
To 0

T

and

@) [(Gla= [0y ar.

To
As in the case of (16) and (17), we deduce from the form of (16’) that the model
corresponding to (, is

(19)  dY,=6,Y,dt+dW,, t=1,,

conditional on Y, and where W, = BM(1). The model (19') is the model for the
data under the Bayes data measure (, and, like (17), this is a path dependent
nonlinear stochastic differential equation. However, in the case of (19) we do
not need further time changes in the process (like those in Lemma A) to obtain
this explicit representation, and the model holds exactly rather than as an
asymptotic approximation.

3. THE DISCRETE TIME CASE AND AN EMBEDDING TIEOREM

Let YY" ={Y,}! be a discrete time series defined on the filtered sequence of
measurable spaces {£2,7,}. Let P be a parameterized probability measure of
Y* with §€R. Suppose 6" is the true value of # and that P’ < y,, some

o-finite measure on ({2,.7.). We write the RN derivative of P? with respect to
P} =P/ as

(22)  L,(8)=dP!/dP’ = (dP’/dv,)/(dP’/dv,).

If 7(8)is a prior density on 6, then the Bayesian data measure is given by the
mixture &, = [ m(#)P?d8, as in the continuous time case.

Let 7,(68)=1In(L,(8)), /() be the score and B,(8)=<I{(8)) be the
conditional quadratic variation. Set L, =1, and write the log likelihood as the
telescoping sum /,(#) =In(L, (6) =X} _{In(L,(8)) ~In(L,_(8))}. Then the
score function has the form:

I

18)y=Y (8/0)In(L,(8)) —In(L,_,(8N]= Y &,(8), say,
k=1 k=1
and

n

B,(8) = ¥ E(e,(0)1%,_,) = (1M(6))

k=1

is the conditional variance of the martingale /() under P? (cf. Hall-Heyde
(1980, p. 157)).
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Under conditions (D1)-(D7) that are the mirror image in discrete time of
(C1)—(C7) in continuous time (see the Appendix for an explicit statement of
them), &, can be asymptotically approximated as follows:

dQlI
(23) dP;, a0 —~1as. (P°).

Here Q, is the measure defined by the following RN derivative with respect to
P

(24)  dQ,/dP! =cyexp{(1/2V,2B, ") /B)/?,

where V, =19(8°), B, = B,(8°), and ¢, = (27)'/ ;. The derivative (24) has the
followmg dsymptotlcally equlvalent forms:

(25) dQ,l/dPO—cOexp{(l/2) 6, — 6°) /31/2
and
(26) dQ, /dpP? —coexp /Bl/2

3.1. EMBEDDING THE DISCRETE TIME DENSITY IN A CONTINUOUS PROCESS: It
is rather more difficult than in the continuous time case to determine the form
of the implied Bayes model from the form of the discrete time process (24). We
can however use the theory for the continuous time case to analyze the discrete
time case by an embedding technique. We will show that we can embed the
process (24) into a corresponding continuous time process whose Bayes model
we have already studied in Sections 2.5-2.7. The discrete time Bayes model can
then be regarded as simply the model of the discrete observations from the
continuous process. An advantage of this embedding is that we can analyze the
model without making a special cut in the asymptotic theory for nonstationary
time series (i.e. in the case of a unit root). This is because in the continuous time
case there is no difference in treatment between the stationary and nonstation-
ary cases.

To begin, we continue to assume conditions (D1)—(D7) hold and then the
asymptotic approximation (23) applies. Our objective is to find an alternative
representation of (24) in terms of a continuous process. It will be convenient for
us to write the increments in the score process /{(8) at 8= 0" as g, = £,(6°).
Then we have V, =/V' =7 _ &, which is P“-martmgdle with conditional vari-
ance process B,. ‘Let F, be the o-field generated by (&)

3.2. THEOREM: Assume (D1), (D2), and the following conditions hold:

(D8) supy . E(gf) <=

(DY) sup, ., E(etlF_ D AE(eHF, W <C, as. (P°) for some constant
c,>0.
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(D10) There exists some y with 0 <y <1 such that

E(el\7,_ )

57 -0 as. (P").

Then there exists a probability space (2,&, P) supporting (V,,
Brownian motion W, and stopping times (7,), . | such that

expl(1/2)V?B; '} / exp{(1/2W(z,)"/7,)

B:/z 1_"1/2

B,), 1, a standard

(27 —1a.s. (PY.

3.3 REMARKS ON (D8)-(D10): (i) Condition (D8) requires that fourth mo-
ments of the martingale differences g, exist and are uniformly (in k) bounded
above. It could be relaxed to a weaker (2 + r)-moment requirement on g, for
some r with 0 <r <2, at the expense of making the proof (and some of the
other conditions) of Theorem 3.2 more complicated.

(i) Condition (D9) imposes a bound on the relative conditional fourth
moments of g,. (D9) requires that the ratio of the conditional fourth moment to
the square of the conditional second moment of &, be uniformly bounded
above. This means that the kurtosis of the conditional distribution of &, cannot
be too large relative to the square of the varjance. For a stochastic linear
regression model y, = 6'x, +u, with u,=iid N(0,1) and & _ -measurable re-
gressors, the score process increments are g, =x,u, and then

E(e/lF ) 20 %%}

sup = sup =2
k=1 {E(a,%l%_l)}2 k=1 0

In this case the condition (D9) is fulfilled regardiess of the structure of the
regressor x,.

(iii) The conditional variance process B, is often interpreted as the time clock
of the martingale I/, in the sense that it records the information content of the
process up to time period n. The increment in the information content from
period n — 1 to period n is

dn =Bn _Bn—l =E(‘9rzzl'-7n])

Condition (D10) requircs that the incremental information ¢, be small (by an
order of magnitude or power of B, ) relative to the total information content B,.
We can explore the implications of this requirement in the linear AR(1) model
y.=ay,_, +u, with u,=iid N, o?). In this case we have & =y, _u, and
E(e29,_ ) =y}_ 02 (D10) requires that

2 2

O
Yoo 5 > 0as. (P),

(28) T e——
( ?)’1?»1‘72)
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for some y in the interval 0 < y < 1. Take the stationary case first. Here |a| <1
and we have n~!'T7y2_ =0, (1) and (28) holds if

y2_/nY—>0as. (P),

which holds by the Borel Cantelli Lemma if sup, £(y#) < e and y> 1/2. In the
unit root case where o = 1 we rescale the numerator and denominator of (28) as
follows:

nIn(n(m){y?_ e ?/nIn(In(n))}
%" /(n(log(m)) {Tivi_ o2 /[n* /la(in(n )]}

By the law of the iterated logarithm we have

(29)

2 2
Yna O

lim sup =207 as. (P),

wox  nin(in(n))
and by a result of Donsker-Varadhan (1977, p. 751) that is used in Lai-Wei
(1983, p. 364) we have

Ziyi ot

liminf ———— =o*/4as.(P),

i n?/In(In(n)) o'/4as. (P)
so that (29) is of order O(n 2*"!(In(In(n)))’*?) and — 0 as. (P) provided
y¥>1/2. Hence, (28) and thus (D10) hold in the stationary and nonstationary
AR(1) model for y>1/2.

3.4. REMARKS ON THEOREM 3.2: In the proof of Theorem 3.2 we use the fact
that the discrete time martingale 1/, can be embedded in a Brownian motion so
that, by changing the probability space if necessary, we can write ¥, = W(7,) a.s.
(P) for some stopping time 7, and a Brownian motion W(¢). This is simply an
application of the conventional Skorokhod embedding of a martingale, as
discussed in detail by Hall-Heyde (1980, Appendix 1). What Theorem 3.2 shows
in addition is that it is possible at the same time to approximate the conditional
variance process B, by 7, asymptotically. This means that the discrete data
density

(30) M, =B, ?exp{(1/2V,?/B,}

can be embedded asymptotically in the continuous process

B R() =1 V2exp{(1/20W(t)’ /1)

using the stopping times 7,. Following the analysis in Section 2, we now
reinitialize the process R(¢) at some #, >0 to avoid the discontinuity in the
density at ¢ = 0. The new initialization at ¢, also overcomes the more impor-
tant problem of nonintegrability, discussed earlier in Remark 2.3(iv). For, the
conditional distribution of W(s) given & is N(W(t,,t—1,)) and therefore
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W(t)? /(t —t,), given &, , is noncentral chi-squared with one degree of freedom
and noncentrality parameter W(t,)? /(t — t,). A simple calculation then reveals
that

E(exp{(1/20W ()}, | = exp{(1/21)W (1)}t /)" < o2

It follows that the reinitialized process r(#)=R(¢)/R(t,) is integrable and,
moreover, E(r(1)|%, ) = 1, so that r(t) is a proper probability density.

Proceeding as in Section 2 we can now write r(¢) in the exponential density
form (cf. equation (7) above)

(32) r(t) = exp{G(¢) — (1/2)[G]},

where G(1) = [/(W(s)/s) dW and [G], = [(W(s)? /s?) ds. As in the derivation of
(17), the model corresponding to r(z) is then seen to be the nonlinear diffusion
equation

(33)  dX(0)=h,di+dW(r), t>1,

where s, =W(t)/t is the maximum likelihood estimator of the drift in the
Wiener process W(¢), i.e. the parameter ¢ in the simple linear model

(34) X@)=06+W(sr)

when the true 6=0.

Our embedding theory tells us that the Bayesian data density for the discrete
time scalar parameter likelihood is (after reinitialization) asymptotically equiva-
lent to appropriate discrete draws from the continuous process r(¢). But, as we
have seen, the model for the data corresponding to r(¢) is the path dependent
diffusion equation (33). In consequence, the model for the discrete data corre-
sponding to the Bayesian measure Q, defined by (24) is just appropriate discrete
draws from the output of (33).

4. THE MULTIVARIATE CASE

In this section we consider the discrete time case as in Section 3 but allow for
a vector of parameters 6 € R*. In other respects the framework of Section 3 will
stay the same. We will show that the Bayesian data measure %, = [puem(8)Pd6
can be approximated by an exponential measure, just as in the scalar parameter
case. However, we want to proceed without having to be explicit about rates of
convergence of individual components or linear combinations of the maximum
likelihood estimator 9 This generality is helpful in models such as vector
autoregressions with some cointegration and some unit roots because we do not
then have to be specific about the directions in which cointegration occurs or
the dimension of the cointegration space.

Our extension to the vector case involves some modifications to conditions
(D2), (D3), (D4), and (D6) in the Appendix to accommodate the multivariate
case. Our modified conditions are as follows:
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(D2) Under P?, I{(8) is a zero mean L, martingale with conditional quadratic
variation (matrix) process B,(0) and A, [B,(6)] > a.s. (P?) as n—> . Let
B,=B,6").

(D3) Uniformly for h€ S, = {h € R*: 'h = 1)

{RI®(0)h + W B,(8)h} /WB,(8)h — 0 a.s. (P?) asn — .

(D4') There exist continuous functions w,(8, 8') such that w,(8,60) =0 and such
that for some 8> 0 and for all 8,8 € N;(8°) ={6:116 — 6°|| < 8} we have
IO — KID(8R) /KB <w,(8,0') a.s. (PY)
for each n uniformly for h€ S, and w,(8,0') > w8, 8") a.s. (P®) uniformly for
8,6’ € N,(6)".
(D6') Forany 6> 0 and w;={8:16— 8° = 8} we have

min[

(B, [ w(8)(dP?/dP?)d6— 0 a.s5. (PP).

Wy

4.1. THEOREM: Under conditions (D1), (D2), (D3"), (D4'), (D5), (D&'), and
(D7),

dQ,
dr? | ar?

(35 —1as. (P

where Q,, is the exponential Bayes measure defined by the following RN derivative
with respect to P

(36) dQ, /dP" =c,expl(1/2V!B; 1V}/|B ['72,

where V, =1(6°) and c,= Qm)*/*m,. The following forms of the exponential
density are asymptotically equivalent to (36):

B dQ,/dP? =coexp{(1/2)(6, - 0°) B,(4,~ 6°)} /1B,
and

(38)  dQ,/dP} = cyexp{L,(8,)} /1B,

4.2. REMARKS ON THE NEw CONDITIONS: (i) (D2') is just a vector version of
(D2) and A,,;,[B,(6)] = = as. (P?) corresponds to the usual excitation condi-
tion of regression theory. Similarly (D6') is just the vector analogue of (D6).

(ii) (D3') and (D4') correspond to (D3) and (D4) but are written in terms of
the quadratic forms A'I*(6)h and A B,(#)h for a vector 4 on the unit sphere S,
in R*. In effect, /?(8) + B,(6) must be uniformly small relative to B,(8) in all
directions & € §;; and differences (measured in the direction h) between 19(8)
and /{2(8") relative to B, must be bounded by the family w,(8, ') uniformly for
heSs,.
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4.3. REMARKS ON THEOREM 4.1: (i) When 7, =(27)~%/? we have ¢, =1 and
(36)  dQ,/dP’=exp{(1/2V,B 'V,}/|B,I'%.

This can be interpreted as a canonical form of the data density which depends
only on the score process V, and its conditional variance matrix B,. Twice the

n

logarithm of the likelihood ratio (36') is

2In(dQ, /dP?) = V!B, 'B, —In|B, .

{3

The first term in this expression is the score test of the hypothesis %, : 8 = 6°.
The second term is a penalty associated with the presence of the k free
parameters in the vector 6 and is discussed in the following section.

(i) As in the univariate case, the posterior density is I1,)(8) = w(8) P /d5,.
This is asymptotically Gaussian of the form N(8,, B, '), which is shown in the
same way as Corollary 2.5.

(ii) Let R, =dQ,/dP? and suppose we condition on a minimal information

~ time n,. Then the large sample conditional data density at n, given &, is
exp{(1/2)(V, BV, = Vi B Vi)
1B, I'*/IB

(39) r,=R, /R, = %
g

(we use the extra index “a” here to signify that a time change in the process may
be performed to ensure integrability—cf. Remark 2.3(iv)). Note that the condi-
tional density r, given in (39) is independent of the prior density 7(8). We will
not go into the details but it is possible to show, as we did in the continuous time
case in Theorem 2.4, that r, is a proper probability density.

(iv) Thus, the main result of Theorem 4.1 is that there is a generally
applicable asymptotic theory which prescribes the form of the Bayesian data
density as shown in (36) and this form allows for improper prior distributions.
Moreover, although we may start with an improper prior distribution, our
approximation (36) gives rise to proper probability densities as in (39) provided
we condition on a minimal information time (like n,) and stop the process (at
n,) if necessary to achieve integrability (as in the proof of Theorem 2.4 in the
continuous time case). With these densities at hand in the convenient exponen-
tial form given, they can be used to compare models or to test hypotheses in
terms of the relative impact of these hypotheses or model changes on the data
density (i.e. by means of a likelihood ratio test or Bayes factor).

4.4. MODEL SELECTION AND THE RELATIONSHIP TO SCHWARZ’s (1978) BIC
CRITERION: As indicated above, one consequence for practical work of our
asymptotic theory is to the problem of model selection. We can use the
exponential form of the data density to measure the evidence in the data in
support of one model versus another. Our approach here is entirely analogous
to that taken by Schwarz (1978) in “estimating the dimension of a model.”
Schwarz worked with iid observations from a distribution in the linear exponen-
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tial family and adopted the Bayesian solution of selecting the model that is a
posteriori the most probable in terms of its data density. In our approach we
allow for a general log likelihood (like /,(6)) and use the exponential data
density asymptotic approximation as the basis of comparison between models,
again selecting the one that is a posteriori most probable.

To fix ideas suppose we are given a general model for a time series {¥,}] in
terms of a parameterized probability measure P! with 8 € @ some convex set in
R*. A class of competing models M, (i=1,...,I) is given in terms of the
parameterized measures P2 and the distinct parameter spaces 6, 2 6, , with
0, C O and with dlm(@k) k;. Conditional on mode] i and given a prior
W(Ok) for 6% the Bayesian data measure is P = Jo,m(0; )Pl db, . Let us
now assume the existence of Ok for which Theorem 4.1 holds for each
i=1,...,]. Then the data density is approximated asymptotically by the expo-
nential data density

Gne, = A0 /dBD = cosexp{1,(B,,)} 1B,

where 6, &, is the maximum likelihood estimate of 6;,,1,(6, ) =In{L (6, )} is the
log- _likelihood ratio function, c0 =Qn)/ 277(9k) and B, = (I8 )} ‘Now

ln(an,.) = ln(énk,.) - 51H|B,,,~| +r,

where the remainder r; is bounded as n — . Model selection proceeds by
picking the model M, which is the most likely given the observed data, i.e. the

4

model that maximizes the (logarithm of the) exponential data density, eliminat-
ing the bounded remainder term r;, viz.
(40)  PIC = asgmax;[,(8,,,) — (1/2nIB,].

The criterion is denoted by “PIC” because it is a form of posterior information
criterion. It can be compared with the so-called BIC criterion derived by
Schwarz (1978, p. 461) for iid data in the linear exponential family, viz.

41 BIC=argmax.[l énk‘ —(k-/2)ln(n)].

To relate these expressions, observe that B, = {/[{(6])) = Z}_,E(¢;¢]l%_ )
where &= 3/36[ln L,(6,)/L;_( Hk )], and for strictly statlonary systems we can
expect that

n !B, =n"" Y E(&&]l|F_,) >, E(ge) =X, , say
j=1
in which case we have
In|B,,| =In{n“|n"'B,} = k;In(n) + In| 3| + 0,,(1)
=k;In(n) +0,,(1).

Thus, in large samples and for stationary systems the criterion PIC is effectively
equivalent to the criterion BIC.
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In related work we have used the criterion PIC as an order selection
procedure in autoregressive models with deterministic trends and compared its
performance with the BIC criterion in finite samples in such models—see
Phillips and Ploberger (1994) for details. The present analysis allows for more
general models. It can, for example, be used to justify the joint order selection of
lag length, trend degree, and cointegrating rank in a VAR model with determin-
istic trends and with potentially reduced rank (thereby allowing for cointegra-
tion). Some explicit results on this problem are contained in Phillips (1994) and
Chao and Phillips (1994). In the much simpler univariate context we can use the
method to assess sample evidence in support of the hypothesis of a unit root, as
we now consider.

4.5, TESTING FOR THE PRESENCE OF A UNIT RoOT: We start with the simple
model

(42) Y,=aY¥,_,+u, u,=idN(Q,a?)

with o? known, and the process in (1) initialized at =0 with Y, and
Fy-measurable variable. Since our interest is in the unit root hypothesis o =1 it
is convenient to rewrite (42) as

(42)  AY,=hY_,+u,, with h=a—1.

Let P! be the probability measure of Y" ={Y,}{ conditional on Y, and let
P, =P) be this measure when 4 = 0.

The exponential data density of Y" is given by Theorem 3.1 in any of the
equivalent forms (24)-(26). Using (24) we have

(43) dQ, /dP, = coexp{(1/2)V,}B '} /B)/?
= coexp{(l/202)fzﬁA,,}/(A,,/O'Z)

where ¢, = Q27 )/ *m7, and

1/2

n
V.=U/c) Y, 47,
1

B,=V, =0/ Y2,=(1/0%)A,, say.
1

We may treat the issue of whether or not to set 2 =0 in (42') as a model
selection problem and use the PIC criterion given in (40). When 4 =0 in (42')
the log likelihood ratio is In(dP,/dP,)=0. When Y, | is included in the
regression (42') the log likelihood ratio is

In(dQ, /dP,) = (1 /202)h2 A, — (1/2)In( A, /o?).
Thus, the criterion (40) becomes
(44)  PIC =argmax{0,(1/20)h2 A, - (1/2In(A, /o)

and this is equivalent to the decision rule:
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R1) “if

dQ, exp{(1/202)h2 4,}
—-(a?) = 172
dPn (An/U'z)

>1

then decide in favor of the model (42') over the model with a unit root (h =0).”
When o? is unknown then we use the same rule (R1) but employ

dQ, .. exp{(1/26H)h4,) Y R 2
4 5N = ey E(ay, hY ),

in place of dQ, /dP (o ?). We call this procedure the PIC test for a unit root. Its
asymptotic properties are analogous to those based on Bayes factors and are
given in the following result.

4.6. THEOREM: The PIC test for a unit root in the model (42') is based on the
decision rule:

(R2) “if dQ,, /AP (&) <1 then accept the hypothesis of a unit root (i.e. h = 0).”

This test is completely consistent in the sense that type I and type II errors both
tend to zero as n — .

4.7. REMARKS ON THE PIC TEST: The decision rule (R2) is based on the model
selection principle PIC. The PIC criterion (40) was obtained using the exponen-
tial data density (38). Now the precise form of dQ, /dP,(&?) that is given in (45)
and used in (R2) is thc same as the canonical form of the exponential data
density—see Remark 4.3(i). This canonical form sets the multiplicative constant
¢, that appears in the density (38) (or (24) in the univariate case here) to the
specific value ¢, =1. If «r(h) is the prior density of the parameter A in (42'),
then use of the canonical form with ¢, = 1 is equivalent to setting 7, = (27)~'/?
as the value of the prior at 4 = 0. Note that this setting of 7; does not mean
that the prior itself has to be uniform and set at this level (although this
certainly could be the case). In view of the asymptotic theory given in Theorem
4.1, the requirement behind (24) is only that the prior (%) be continuous at
h=0. For ¢, =1 in (24), we then also need 7(0)=(27) /%, as would be the
case, for example, if the prior were 7(#) = N(0, 1), which we might think of as a
canonical prior for A in (42'). Clearly, results of tests that are based on the
decision rule (R2) may be sensitive to the particular setting ¢, =1 (or 7, =
(27)7'/?) that we have used in the construction of the PIC statistic
dQ,/dP (& ?). This dependence on 7(h) is inevitable if we wish to use all of the
data in the sample. But there is an alternative if we want to be independent of
the prior and are prepared to give up some data points. We now consider this
alternative.
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For some ny=1 we may form the conditional density of the measure
0,(1Z, ) from the ratio

) ) dQ,/dP, = exp{(l/Z(;Z)[ﬁiA,l - E,Z,OA,IOD
46 rla?)=———"~(@w")= v
dQ”o/den (‘Arz/*’élno)l/2

just as in (39) above. We may interpret n,, as a minimal information time. For
instance, when n, =1 there is just enough data to estimate & in (42') by
h, =Y, AY,/Y/ = AY,/Y,. We can then use the common data set over n,+ 1
<t <n to compare two models (i.e. with and without the unit root) using the
density r,(c?), or if o* is unknown, r,(&2). Note that r,(c?) and r,(6%) do
not depend on ¢, and are, in fact, independent of the prior distribution 7 (h).
Thus, by conditioning on the initial data over 0 <r<n, we end up with a
conditional form of the exponential data density that is independent of the prior
and can be used for statistical testing. In place of (R2) we have the following
decision rule:

(R3) “if r,(6%) < | then accept the hypothesis of a unit root (i.e. h =0).”

We call the test based on r,(#2) a conditional PIC test. If we are concerned
about sensitivity of the PIC test outcome to the canonical factor ¢, = 1, then we
can use the conditional PIC test and rule (R3) instead of (R2).

4.8 A USEFUL ALGEBRAIC FORM OF r,(¢?): Using recursive least squares
algebra (see Brown, Durbin, and Evans (1975)) we obtain a useful alternative
form of r(o?).

LEMMA B:

1/2 2 2

n o (/2mf) Pexp{ = (1 /2£)(AY, k1Y) )

1=ng+1 (1 /2m)" Zexp{ - (1/2)(4Y,)"}

(47 r,(a?) =

withf, =01+ Y2, /4, )

and

n

48)  d0,/d0, = T1 (y2mf)exp{~/2£)(AY, =k, Yi_))'}.

t=ng+i

Expression (47) is useful because it shows exactly how the density r,(a?) is
constructed on a period by period basis. Using the fact that dF,/dP, =
I, \[(0/270 %) exp{ —(1 /20 X AY,)*}], expression (47) and the definition of
r,(o?) give (48), which is the conditional density of thc measure Q, given &, .
Since dQ,/dQ, =(dQ,/dv)/(dQ, /dv), we see that (48) is, in fact, the condi-
tional density with respect to Lebesgue measure (v) of Q, given &, . The form
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of (48) also reveals that it is the density of data from the model
(49)  AY,=h,_ Y, +uv, for t=n,+1

with v, = i.ni.d N(0, f,). Thus, in this simple Gaussian case, the path dependent
model that corresponds to the data measure , can be obtained in the explicit
form of (49). This result is much simpler than the general case studied in Section
3, where we need to embed the density of Q, in a continuous time process in
order to analyze the path dependent model for the data. Note that (49) is a
predictive model for the data. The conditional PIC criterion r,(o?) given in (47)
is, in fact, a predictive odds criterion for comparing the model (49) with the unit
root model that has no estimated regression coefficient. This interpretation is
explored further in Phillips and Ploberger (1994) and Phillips (1994).

5. CONCLUSION

This paper is a beginning. It provides the limiting form of the Bayesian data
density for a general case of likelihoods and prior distributions. The limit
formula is an exponential density that depends on the score process and its
conditional variance matrix. In large samples and when we condition on the
data, the prior distribution is effectively washed out, so that the score process
and its conditional variance matrix are the only factors that determine the
behavior of the data density. These factors are the common elements in a fairly
wide class of problems. To this extent, we can say that in large samples a single
theory based on the exponential data density is possible in a Bayesian analysis.
The practical applications of this theory that we have given here are to problems
of model selection and unit root testing. Some further applications of the theory
are given in Phillips and Ploberger (1994) to ARMA models with trends and unit
roots and in Phillips (1994) to reduced rank vector autoregressions and Bayesian
vector autoregressions.
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APPENDIX

ProOF OF THEOREM 2.1: The proof follows the general idea given in Walker (1969) and Hartigan
(1983, Sec. 11.2), but does not rely on a specific rate of convergence for the MLE 6,, nor on
asymptotic normality of 6,, nor on any ergodic properties for the Fisher information.

As in (C6) define wy;=1{0:10— 8% = 5> 0} and let N;=R — w;. We can choose 8> 0 such that
N; corresponds to the neighborhood of #° in (C4), i.e. N;(8"). We can also choose 6 = 8(¢), given
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some &> 0, in such a way that

(A1) 1 AL ™) s
—e< 1 < su < £
0Ny 7(05) e, 7(00)

in view of condition (C7).

We have
(A2) dga,/dp,o(f +f )w(e)(dP,“/dP,”)d9=15+1§, say

Ny ws

and by (C6)
(A3) AV > 0as. (PY).

Next write I; as
Iy= fNﬁw(G)(dP,G/dP,O) do= stﬂ'( 8)exp{l,(8)}d6,
and define for some large M > 0 the shrinking neighborhood of é,
N={0:(0-8)" 4, <M},
with N =R - N,. Then

(A4) Iy= fN

8

+f Jm(0)expll,(0)}do=1[1, +1,], say.
NN, NN NS

Consider I, first. Taking a second order Taylor expansion of /,(8) we have
- a2
(AS) L(oy=148,)+1/20%(8,)0-6,)
where 6,, lies on the line segment between é, and 6. Now
(A6) 19,0+ 6,)° = —A,(6— 6,
+{“1(2)(9m) - 11(2)(60)]//41 + [11(2)(9()) +Ar]/A1)(6" éz)zAl-
Under (C3)
(A7) [D(80) +A4,1/4, >0 as. (PY),
and under (C4)
(AB) [18908,,) — IP(8°) /A, <w,(8,,,8") = 0as. (PY),
uniformly for 8 € N;. Hence combining (A5)-(A8) we have
. .2
1(0)=1,00)—(1/2)A4,(6—-6,)11+&,(6)]

where &,,(6) = 0 a.s. (P°) uniformly for § € N;. Also w(8) = 7(8%) + 0,,(1) uniformly for 6 € N; "
N, in view of (A1) and the definition of N,. Using these expansions we have

(A9) I = exp{z,(é,))jN ot &1 (exp{ —(1/2A4,6= 811 + £,(0)]} do
sOVN,

= A7 2expll, (632w 2ol + Olexp( —M/2)) + O(n)],

where for 6 € Ny we have |s,(8)l <1, — 0 as. (P") for i = 1,2. It is in fact possible to choose M in
the definition of A, in such a way that M — % as ; — <. We may, for instance, choose M =M, =
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(1/2)6%4, and then
(A10) M, —xas (P°) as r—c,

Now consider I, in (Ad). Using (AS) again we have

L= fN

NG

N NY

(0)expll (001 d0 = expli, (B} [ w(@)exp{(1/D12(8,)(0 - 6} as.
N3N NS

Now

198,) = —A1 — [A4, + 1,60 /4, - [I2(8,) —1,(6M)]/A}
and in view of (A7) and (A8) we find that for large enough ¢

2(8.)< —(1/2) A, as. (PY)

for 8 € N;. It follows that we may bound 1, by the expression

(Al1) 125(1+s)7r0cxp{lt((§[)}fN chp{—(1/4)A,(9~§,)2}d9
NsONE

<(1+ s)m)exp{l[(é[)}fwexp{ -(1/4)A6— 5,)2} de

= (1+ &)y A7 2expll, (6)}2m) *Otexpl = (1/4) M}).
Combining (A9) and (A11) we have
(A12) 1= Qm) g A7 expll, (81 + 0, (1]
and then, using (A1), (A2), and (A12) we obtain
(A13) AP JdPd =TI, + I¢ = 2m)' P oy A7V Zexpll, (B, + 0,,(1)].

To complete the proof of the theorem we find an alternative representation of the factor
expl/,(8,)} in (A13). Noting that 1(8%) =0 we have the two Taylor expansions

(A18 1,06 =1D(8°)(E, ~ 6°) + (1,/2)1(6,, )6, - 0%
and
(A15) 0=18(6,) =1(8°) +12'(p,, )6, ~ 6°)
with 6, and 6, lying on the line segment joining 6, and 6", Combining (A14) and (A15) we have
1(6) = (17208, — 8°)° 128, ) — 21P(6,,.))
= (1/2)(6,~ 0°) AJUD(8, ) —ID(0°) + ID(8°) + 4,1 /A4,
=20I2(6,,,) = 1P(0°) +IP(6°) + 4,1 /A, + 1}

= (1/2)(8,— 89 4,11 +0,,(1)],
using (C3) and (C4). It follows that (A13) may also be written as
(A16) dp,/dP" = (277)1/27TUA,"l/zcxp{(l/Z)(é, - BO)ZA,}[I +0,,(1],

giving the staled result (5).
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Finally, we can use (A15) again, giving

(A17) 0=1M(8%) + UP(8,,,) — 1B(8°) +1P(0°) + A, — A} (§,— 09

=ID(8%) — 4,08, — 89)[1 + 0,,(1)]

in view of (C3) and (C4). Noting that /?(8") =V, is a P’ martingale, wc can combine (A17) and
(A16) to give

(A18) d,/dP? = 2a)" Py A7V 2expl(1 /20V;24; 31 + 0,,(1)]

as required by expression (4). Using all three asymptotically equivalent forms of dQ,/dP? given by
(4), (5), and (6) we have

d#, do,
dP°/ dP’

—Tas. (P")

and the theorem is proved. Q.ED.

ProOF OF THEOREM 2.4: We start by writing
(A19) &, =explK(s,) — K(g)} = exp{fT"dK(t)},
To

which we note is independent of the prior distribution 7(6). The stochastic differcntial dK(¢) that
appears in the last expression of (A19) can be evaluated by applying Tto calculus to K(1) =
V()2 /A — (1 /2In(A(2)). We obtain

(A20)  dK(t) = [V (1) JAW] dV(e) — A /DI (1) JAWT dAGe)
and using (A20) in (A19) we deduce that
(A21) R, =expl{G, — (1/2[Ga}

where G, = G(7,) = [V (1) /A(D]dV(1).

Since V(t) is a martmgale, Gty = [} [V(s)/A(s)]dV(s} is a martingale also and its quadratic
variation process is [GI(t)= [} [V(s)/A(t)]sz(s) This gives us the exponential process (the
so-called Doléans exponential—see Meyer (1989, p. 148)):

Z(1) = exp{G(1) ~ (1 /D[GUDO}.

The process %, in (A21) is obtained from .92(¢) by using the stopping times 7, i.c. %, =%(7,). In
view of the construction of the sequence 7, (see (9)) A(¢), and hence G(¢), are bounded as. (P°) in
70 <! <7, so that Elexp{(1,/20G],}] <. It follows by Novikov's Theorem (e.g., see Ikeda and
Watanabe (1989, Theorem 5.3, p. 152)) that E[#,]=1 and %, is thereforc a continuous L,
martingale.

It follows that the measure Q, that is determined by the RN derivative dQ, /dP =%, is 4 proper
probability measure, with probabilitics given by intcgrals of %, viz.

0.(B) =f3920 dP, VBeZ,,

and lef-}:n =Q, forall 7, > 7, > 7, as in Ikeda and Watanabe (1989, p. 191). QED.
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ASYMPTOTIC NORMALITY OF THE POSTERIOR: Work in the framework of Section 2 and define the
posterior density process for 8 by the ratio (using Bayes rule)

26) = 7r(6)(dP,"/dP,O)/wa(B)(dP,"/dP,O)d9

=7 (8 )(dP2/dP?) /(d P, /dP")
= (8)dP?/dP,.

Applying Theorem 2.1 we see that the Bayes data measure &, in this expression for I1,5(8) can be
replaced by the exponential Bayes measure Q, with a relative error that tends to zero as £ — o, i.e.
the asymptotic form of the posterior density process is simply

E(8) ~ w(8)(dP2/dQ), as t—,

As the following Corollary to Theorem 2.1 shows, the density IT%(6) is, in fact, asymptotically
Gaussian in form with a N(§,, A7') density. The asymptotic form of I17(8) given above shows that
the asymptotic Gaussianity of IT5(#) should be interpreted in the light of the reference measure Q,
with respect to which the likelihood (viz. dP?/dQ,) is implicitly being computed. In effect, this
change of reference measure from P to Q, alters the frame of reference (of model) with respect to
which that Gaussian posterior density for 8 should be interpreted.

CORrOLLARY TO THEOREM 2.1: Suppose the conditions of Theorem 2.1 hold. Given M >0, let
NM ={0:(6~ 6,04, < M} and define

¢(0:6,, 47 = 2m) ™24 exp( - (1/2(0 - 0" 4,).

The posterior density IIE = () dP? /d.2, is asympiotically Gaussian N(6,, A;") with density (13) in
the sense that

2(6)

_— —>0a.s.(P°)
0(8:6,,471)

sup -1

s NM

ast — o,

PROOF OF COROLLARY TO THEOREM 2.1: Using the same line, of argument as that leading up to
(A9) in the proof of Theorem 2.1 we have

F(6) = 7w (8)dP?/d,) = w(9)(dPF/dPP) /(dP, /dPD)
= a(8)dP?/dP?)/(dQ,/dPM)1 + 0,,(1)]
= Q) VM Aw(8) /) A exp{l,(8) —1,(8) = 1,(8,)}1 + 0,,(1)]
= 2m)™ 1+ £,,(0)141 2exp] — (1/2)(0— 8" A,[1 + £, ()11 + 0, (1]}

where ¢;,(8)— as. (P°) uniformly in N;ANM for i =1,2. Since 6,—,.0% and A,=A0%) > =
a.s. (P%) we have N¥ c Ny as. (P?) for large enough 7 and fixed M > 0. Then

()

—_— -1
e(6,6,A7")

sup —0as. (P,

penM

giving (14), as required.

PrROOF OF LEMMA 1: Under the state conditions it is well known that there is a stopping time
v, =inf{s: A, =1}

such that ¥, is indistinguishable from a Brownian motion W, (e.g., Protter (1990), Theorem 41, p.
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81). We can write this equivalence as ¥V, =W, as. 0 << Now let X, be another Brownian
motion on the space and construct a new family of stopping times (g,), . o as

a,=inf{p:fo”XS2dszA,}.

Then [{*XdX is a martingale with quadratic variation process X2 ds =A, as. 0 <t <o, Like
V;, the process [§*XdX is equivalent to the time changed Brownian motion W, . Hence, we have

o,
V= ["XdX=W,as. 0<i<wx,
]
and
oy
V,=j XdX=W, as. 0st<=,
0

giving the required result.

REGULARITY CONDITIONS FOR THE DISCRETE TIME CASE:

(D1) 1,(0) = In(L,(8)) is twice continuously differentiable with derivatives I{(8) and IP(8).

(D2) Under P2, I8(8) is a zero mean L, martingale with conditional quadratic variation process
B(8) and B,(8) >~ as. (P%) asn— =, Let B,=B,(8").

(D3) (IP(8))/B,(8) >0 a.s. (P?) asn — .

(D4) There exist continuous functions w,(8, 8') such that w, (8, 0) = 0 and such that for some 8> 0
and for all 8, 8" € N;(8°) ={0:16 ~ 0°| < &} we have

UP(B) ~1P(6)) /B, <w,(6,8") a5 (P°)

for each n and w,(6,0") = w0, 8') a.s. (P°) uniformly for 6, 6" € N;(6°) and w.(8,8) =0,
(D3) The maximum likelihood estimate 6, — 6° a.s. (P%).
(D6) Forany 8> 0 and ws={6:16 — 60 = 8} we have

B,g/zf 7(OWdPE/dPY) do -0 a.s. (PY).

wg

(D7) The prior density w(8) is continuous at 8° with w, = w(8°)> 0,

PROOF OF THE ASYMPTOTIC APPROXIMATION (23): The proof is virtually identical to the proof of
Theorem 2.1 but uses the conditional variance process B, = (/{*(6%)) in place of the quadratic
variation A,[/{(8,)].

Proo¥ o THEOREM 3.4: Since {V,,%#,, n = 1} is a zero mean L, martingale we can embed this
process in a standard Brownian motion. By Theorem Al, p. 269 of Hall-Heyde (1980) there exists
probability space (§2, &, P) supporting (V, = Z{e;), , ,, a standard Brownian motion W and stopping
times (1), such that V, = W(r,) and, if &, €& is the o-field generated by (V) and W(¢) for
0t =<, then:

H(i) 7, is &,-measurable:

H2G) E{(7, — 7, &, ) < CE(f1&,_ ) as. (P) where C, =16/77; and

H2Gi) Ells, ~ 7,_ DI&, -} =E(&?|&,_ ) as. (P).

To prove (27) we need to show that

(A22) w2/B, - w(z,Y /7,1 —n(B, /7,) = 0as. (P).

n
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Take some positive constant B < 1. (Later on in the proof we will require that 8 lic in the interval
(1+9y)/2<B<1)Then

oy W@ WG -B,
_B—,, 7, - 727 P B,

n n n

By the law of the iterated logarithm for Brownian motion (e.g., Shorack and Wellner (1986, p. 27))
i Wiz,)
msup ——— =
n-e {27, In(n(x, 2

bl

sO that

(A24) W(rY /27 > 0as. (P),
since 2 — B> 1. Next observe that

Tn - B, Tn(1 —_Bn/Tn)
(A25) i 7 - 0as. (P)
T, Tn

n

and B <1 imply that B, /7, - 1 a.s. (P). Hence, in view of (A23) and (A24), it is sufficient for (A22)
to prove that (A25) holds. This is easily seen to be equivalent to proving

(A26) (7, - B,)/BFf = 0as.(P)

for B <1, which we now set out to do.
Sct 7y =0 and B, =0 and define

dj=B,~B; =E(5I& )
and

d=m—7.

Then
h a
7= By= LA ) = By =By} = Y (4, -d))
1 1
and so rewriting (A26) we need to prove
(A27) B, P (4 -d)—0as. (P).
1

By Kronecker’s Lemma, (A27) holds if Z”,‘(A}-fdj)/Bﬁ<w, a.s. (P), which holds by Chow's
Theorem (Hall-Heyde (1980, p. 35, Theorem 2.17)) if

a28) Y E{(8,~d)/BPTIE ) <= a5 (P)
1
since (4; — dj)/Bjﬁ is a martingale.
Now E{(4, —d)?|&_ } <E(A}1&_ ) —d} <E(A}|&_)), so that it is sufficient for (A28) to
prove that
(A29) Y E(ANE,_))/B¥ <= as. (P).
1
Using H2(ii) we have
E(A71E_ ) < CE(18. ) as. (P)

< CZC(:{E(“"jz[gJ“ |)}2 as. (P)
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because of (D9). Therefore, (A29) holds if

(A30) Z(E(ajzlgj,]))z/B]m<00a.s.(P)
!

holds. Since d; = E(s?|&;_,) =B, — B, _,, we may write the left side of (A30) as
] R ] J j—1
B~ B;_
B#

(A31) Z( )E(a 1&;_1).
1

Now take some M > (), possibly large. Then by (D10) we have
(A32) PlE(e2|%,_,)/BY > M at most finitcly often] = 1.
The cvent

(A33) [E(2|&,_)/B} > M at most finitely often]

implics the cvent

w

B —B,
E(HEg_ )< ) (’B—M)MBV

N+1

)E(a |&;_) for some finite N}

which implies

(A34) [ ]i ( _,-

E(e}|&,_ 1)<MZ( w . )
1

E(&}1&;_ ) for some finite N

+z(

Let p=28— v and since (D10) holds for y with 0 < y<1 we may choose B in the interval
(1+vy)/2<B<1andthen p=28—y>1. We have

Z(Bj —B .))/Bf = Z d;/Bf
1 1

where B;=B;_ | +d;=L{d,. Since d, > 0 as. (P) for all k and B, » as. (P)as j— % by (D2), it
follows by Dini’s Theorem (e.g., Knopp (1956, Theorem 1, p. 125)) that

(A39) Y. d/Bf <=as. (P)
1

because p > 1.
Event (A33) implies (A34) which, because of (A35), implies

* [ B, —B,_
(A36) [Z(IT[;I)E(«SJ»2|$]_1)<®}

1
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In view of (A32) we deduce that

= (B _B_ '
P[Z(%)E(SJZ|%-I)<w
/

> P[E(&l|%,_)B] > M at most finitely often] =1
1

thereby proving (A30). This in turn establishes (A27), (A26), and thus (A22), which gives the stated
result (30).

ProOF OF THEOREM 4.1: The proof of Theorem 2.1 carries over almost verbatim. We need to
replace the quadratic variation A4, with the conditional variance matrix process B,(8) = {I{(8)),
and the univariate Taylor serics expansion (A5) is replaced by the corresponding multivariate
expansion. Writing 6 — é = Ah with h € §; we have the equality

(AG") (80— B8, 00—8,)=—(6— 8, B6—6,)+ ([P, - P(6°)h/HB,h
+H[ID(9) + B, 1/ Bk} (0~ 6,) B (8- 8,)
in place of (A6). Then, using (D3') and (D4') we obtain
(A9) I, =B, expll £ 6,021 2ar 1 +0,,(1]
in place of (A9). The rest of the proof proceeds as before and we obtain
da, /dPY = c,|B,1" P exp{l (6,01 + 0, (1)]
giving (38). The other two representations (36) and (37) follow in the same way as the univariate
case.

ProoF oF THEOREM 4.6: The PIC statistic is

dQ,/dP(67) = (TiY2, 762 Cexpl(1 /DRZLIY2  /6%)
where ¢2=n""TL0(AY, - h,Y,_,)2. When there is a unit root in (41, i.c. when 4 =0, we have

n n

RRY YEy &,,—1)]2[ -22 l/&2]=0,,(1) and ) ¥2,/6%=0,(n?)
1

1

as 1 — @, so that
dQ,/dP(5?) —-,0.

Henee, P(dQ,/dP(5%)> 1)— 0 as n — = and the type T error tends to zero as 2 — .
When the model does not have a unit root (£ # 0) and lal < 1, say, then

n

Y Y2 /6= (4, - 1)]z[rrl ZY,L/&?] =0,(n)
1

1

:u

and T{ Y, /67 = 0,(n), so that
In[dQ, /dP, (&%) = 0,(n)

as n — . It follows that dQ, /dP,(&?) diverges as n — o and P/(dQ,/dP (&) > 1)~ 1 as n — .
Thus, the power of the test tends to unity and the type II error tends to zero as n — . By a similar
argument the same behavior obtains when a > 1.

PrROOF OF LEMMA B: Note that A, =A, _, + Y, =A,_,(0+Y2 /A, _,) and thus by recur-
sion we have:

R-ng--

n
(A37) A =A n (1+ 1n+e/Ann+A =An0 n 8es with g,=1+Y,2/A,=f,/O'2.

i=0 t=ny+1
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Next
- - - 2
VnzAn T Vnz~lAn—31 =An l{(Vn—I +YI|—1AY;1) - V;tz——l(l + y;lzfl/An—I)}

=A; M2k, 1A, \Y,_ A, +(4Y,Y, ) -4, Y

~

=471 {-(ay, -k

n=1

2
Yo ) A,y + (A7, 4,)

—(A)/;l _fln—ly;r—])z(An—l/An) + (Ay;x)z
~ 2
= _(AXI _hn—ly;x—l) /gn + (Ay;l)z

and by recursion we have

n . 2 n
(A38) KA -2Ail=— ) (AY,-h,_ Y, ) /g + Y (4AY)

t=ng+1 t=ng+1
Combining (A37) and (A38) in (46) we get

@)= (A, /4, )" PexplL/20V24, 1 = (17202,

o

Az}

n Quf) e - /2f)(AY,~h, 1Y,
=mett (1200 D) Pexpl=(1/202)(AY,))

as required.
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