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Abstract

This paper provides an empirical Bayesian approach to the problem of
jointly estimating the lag order and the cointegrating rank of a partially non-
stationary reduced rank regression. The method employed is a variant of the
Posterior Information Criterion (PIC) of Phillips and Ploberger {1994, 1995)
and is similar to the asymptotic predictive odds version of the PIC criterion
given in Phillips (1994). Here, we use a proper (Gaussian) prior whose hyper-
parameters are estimated from an initial subsample of the data. The form of the
prior is suggested by the asymptotic posterior distribution of the parameters
of the model, and, hence, the criterion can be interpreted as an approximate
predictive odds ratio in the case where the sample size is large. Applying this
procedure to the extended Campbell-Shiller data set for stock prices and divi-
dends, we find the present value model for stock prices to be inconsistent with
the data.

1 Introduction

Order estimation of the lag dimension of a model is an unavoidable task in applied
econometric work involving vector autoregressions (VAR’s). In VAR models that are
partially nonstationary in the sense of Ahn and Reinsel (1990), it is often desirable
to estimate not only the lag order of the model but also the number of linearly inde-
pendent cointegrating vectors, or the cointegrating rank. In conventional econometric
practice, however, the estimation of the lag length of a VAR model is often done with
statistical methodologies that are very different from those employed for the determi-
nation of the cointegrating rank. While information criteria, such as AIC and BIC,
are often favored by researchers for lag estimation (but see Potscher, 1983, for an al-
ternative method based on LM tests), cointegrating rank determination is most often
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performed using a sequence of classical tests that come within the Neyman-Pearson
tradition (see Johansen, 1992).

Recently, Phillips (1992), Chao and Phillips (1994), and Phillips (1994) have ar-
gued that cointegrating rank determination is most naturally a problem of order se-
lection. Applying the Posterior Information Criterion (PIC) of Phillips and Ploberger
(1994, 1995), they developed statistical procedures which allow for the joint estima-
tion of the lag order and the cointegration rank in a VAR system. Such procedures
are particularly appealing in the light of simulation evidence, presented in Toda and
Phillips (1994) and Chao (1995), that shows the performance of classical tests of
cointegration, such as those put forth by Johansen (1988, 1992), to be sensitive to
autoregressive lag specification. In the present paper, we develop a variant of PIC,
which is similar in spirit to the predictive odds ratios of Atkinson (1978), O'Hagan
(1991), and Geweke (1994) and to the predictive form of PIC given in Phillips (1994).
We derive our criterion using a proper Gaussian prior whose hyperparameters are esti-
mated using an initial subsample of the data. As the form of the prior is suggested by
the asymptotic posterior distribution of the parameters of the model, the criterion can
be interpreted as an approximate predictive odds ratio in the case where the sample
size is large.

The second objective of this paper is to illustrate the use of this model selection
criterion through an empirical application that tests the rational expectations present
value model for stock prices. An important recent application of the technology of
nonstationary time series analysis to empirical economic research has been the work of
Campbell and Shiller (1987). In their paper, Campbell and Shiller used classical tests
of unit roots and cointegration {o address issues, raised by Kleidon (1986) and Marsh
and Merton (1986), pertaining to possible nonstationarity in the price and dividend
processes. They showed that if both stock prices and dividends are I(1) processes (i.e.,
stationary in first-order differences), then one implication of the present value model is
that these variables are cointegrated. Following the suggestion of Engle and Granger
(1987), they use a preliminary estimate of the cointegrating vector to transform their
bivariate VAR into a stationary system, where conventional statistical procedures can
be applied to test the restrictions implied by the present value model.

An important statistical issue which arises in testing the present value model
within the VAR framework of Campbell and Shiller (1987) is the specification of the
lag order of the system. Since economic theory offers little guidance in this regard,
Campbell and Shiller (1987) used the Akaike Information Criterion (AIC) to pre-select
the lag length. However, it is well-known from the results of Shibata (1976) and Sawa
(1978) that AIC has a tendency to overestimate the lag order. Moreover, Toda (1991)
found classical tests of the present value models to be sensitive to variations in lag
selection.

Given the need for pre-selection of the lag order and given the sensitivity of
conventional testing procedures to lag specification, the use of our model selection
criterion has certain advantages. First, it allows us to jointly select the lag and
cointegrating rank order of a VAR and to test the implications of the present value
model simultaneously in one colierent framework. Such a joint selection procedure
is preferred over a sequential procedure which estimates cointegrating rank condi-
tional on some preliminary lag selection because with sequential procedures, there is
always some pre-test bias and associated implications for inference. Moreover, the
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joint-selection procedure makes comparison across the full array of models and gives
consistent order estimates of cointegrating rank and lag order, as shown in Chao and
Phillips (1994). A further advantage of our approach is that bar charts and histograms
of posterior probabilities for models of different dimensions can be readily constructed
so that one may assess the robustness of the inferences with respect to lag length and
cointegrating rank.

The paper proceeds as follows. In Section 2, we introduce the time series model
to be studied and describe our model selection procedure PIC. Section 3 gives a dis-
cussion of the rational expectations present value model for the stock market and the
restrictions that it imposes on a VAR in error-correction form. Section 4 presents our
empirical results. Finally, we offer some concluding thoughts in the fifth and final
section.

2 Order Selection and Hypothesis Testing in VAR Models
via Posterior Odds

2.1 The Partially Nonstationary VAR Model

The model framework we consider in this paper is similar to that of Chao and
Phillips (1994). The setup is the m-dimensional vector autoregressive model of
{p+1)-order:

p+1
yt=I‘+ZA.‘yt-x+€:~ (1
i=1
It is well-known that equation (1) can be rewritten as an error-correction model

(ECM):
r
Ay=p+ Y AjAyi+ A + e, (2)

=1
where A7 = —Zf;_":“ Aj and A, = f:ll A; — I,. We further assume that the
following conditions are applicable to our model:
(i) det [Im — 3277} A;L'] = 0 implies that either L = 1 or |L| > 1.

i=]

(ii) A, = af', where « and f are m x r matrices of full column rank r, 0 <r < m.
(If r=0, wetake a = =0, and if r = m, we take « = A, and f = [,,,.)

(i) o, (3.7, A7 — I,) BL is nonsingular for 0 < r < m, where a, and 8 are
m % (m—r) matrices of full column rank m—r such that o/ a = 0 = g, 8. (If
r=0, we take oy = 8 = 1)

(iv) € = iid. N(0,0).

Under these assumptions, {y.} is I(1), but By, 1s 1(0) with r linearly independent
cointegrating vectors. Thus, in the nomenclature of the literature on cointegration,
we say that the multivariate system defined by (2) has a cointegrating rank of . Note
that without further restrictions, & and § are unidentified. To achieve identification,
we follow Ahn and Reinsel (1990) in selecting a normalized parameterization in which
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B' = [I., B]. We shall refer to equation (2) as a reduced rank regression of order
{p,7), or RRR(p, 7} for short.

2.2 The Posterior Information Criterion in Asymptotic Predictive Form

Our objective in this paper is to jointly estimate the cointegrating rank r and the
lag order p of the model (2). As in Chao and Phillips (1994), the criterion which we use
for model selection is a posterior odds ratio. However, unlike the earlier paper where
a uniform prior was employed, we use here a Gaussian prior whose hyperparameters
are estimated from an initial subsample of the data. To be explicit, let us begin
by defining a class of competing models M,.(p =0, 1,....5;, r =0, 1, ..., 7}, given
in terms of the parameterized measure IP,?’" with 0,, belonging to some parameter
space ©,,. Here, M,, denotes the model with cointegrating rank r and order of
lagged differences p. Given the data y = {y:}7, we let Lr(6,,) = dIP2" /dv denote
the likelihood function of the model M,, with respect to the Lebesgue measure v.
Suppose we take the prior model probability of M, . and the prior density of 8,, to be
7pr and g(8, .| M) respectively; then, the posterior odds for the competing models
My, o and My, . is defined as

HT(Mvo.ra |y) — "Po-"u—L_T(MPo.To)
HT(MPXJ‘! }y) 7rm.1'1‘2’.7'(1‘/[}’1."1 ) '

(3)

where

Lr(Mp) = [ L2(0,0)0(60r 1M, )0, @
Pr

is the Bayesian data density or the marginalized likelihood. Under the additional

assumption of a symmetric loss function, which penalizes Type I and Type II errors

equally, we obtain the decision rule:

My (M ly) |
HT(”’P].TI ly)

To implement this posterior odds test for the model in Section 2.1, we must first
specify the prior density ¢(6,.|M,,). Following an approach used in earlier work
(e.g., Atkinson (1978), O'Hagan (1991), Geweke (1994}, and Phillips (1994)), we
divide the sample into two sample periods (1, To) and [To + 1, T}, where Ty = [pT]
(the integer part of pT) for some constant p € (0,1), and use data from the initial
sample period [1, Tp] to assist in the construction of our prior. Let 8,, = (¢, ')’
= (vec(BY, vec(a)', vec(A™), w')’, where w is the vector of nonredundant elements
of 0 and A* = (i, A7, A3, ..., 4;), and let the prior densities of the model M, be

1, then decide in favor of M, - (5)

g(QUM,,) = |03+ (6)

9($IM,,) = (2m)Hemr=rmme Dy (3 exp {~ L~ BYV(6~B)} . (7)

The hyperparameters ¢ and V can be estimated using data from the period
[1, To]. More specifically, we estimate ¢ by its maximum likelihood estimate ¢z,
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= (vec([}r‘,)', vec(ar, ), vec(;?ru)')' and V by the asymptotic formula:

(azroﬁ;;aTaep'yil.Tn Y"vTDF) 0 o
VTa = 0 (n_laﬁ-ro Vi 1g¥-1.70 ﬁ‘l‘a) (n-ra 951‘0 2176 W1o) (8)
(= T ‘ewWy, To Y-:,Toﬁ'ra) (n;olﬁ » W)

where ET,, = (I, ETD]’ and ﬁ'ru = (1/(To+m+1) )E (Dye - Z}Dwg - anﬁ'ny,_,)'
(Ay — Z’TOW, - &Toﬁr’ruy,_,). Here, we have let Y—I.Ta = (g0, «» Y1y—1) and Wr,
= (W, .., W), with W, = (1, Ay_;, -.., &y;,), while F' = [0, I.—] is an
{m—r) x m matrix. Note that Vi, is an estimator of the precision matrix of the
asymptotic posterior distribution of ¢, and, hence, for large To, our prior density,

9(¢5|My.r,$'rm‘77‘a) - (2“.)—'5(2!1"-—72+m(mp+1))|‘77.aI% (9)
exp {— 40— 0n) P (8-r)}

can be interpreted as the approximate (large sample} posterior distribution for the
initial sample period [1, Ty under a uniform prior.

Given our assumption (iv), the likelihood function for the sample period [To+1, T
can be written as

LTl(gr ") (10)
-7, T ,
= (27)73 |Q]—:‘exp{—;— ; (Dy— AW —afi'y,) Q“(Ay,—A'Wt—aﬁ'y‘_;)},

where T) = T — Ty = T — [pT] and @ and § are, as before, m x r matrices. Combining
the likelihood function (10) with the prior densities (6) and (9) and integrating over
the parameters 8,, = (¢,w) using the Laplace approximation method as in Phillips
and Ploberger (1994) and Chao and Phillips (1994), we obtain, up to a multiplica-
tive constant (not involving p and r), the (approximate) Bayesian data density or
marginalized likelihood:!

1

Ta, (Mye) ~ 105,151V, + P2,/ 1P5,]) " exp{~ 4(8r,— ) Vi (B, = B} (11)
= ZTI(MP-") (say),

and
R (@, 071 an @F' YL, o Youn F) 0 0
le = 0 (n'leﬁﬂ YL T Yo Tl ﬁTl) (ﬂ.rl Qﬁ'r, -1,Ty WTl] . (13)
0 O7 0wy Younbr) (85 ew), wn)

ISee the cited references for details of the Laplace derivation.
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Here, Yo7, = (v7y, o y7—1), Wa, = [Wrypt, -, Wrl', and the matrices Ay, an,
and E’n are the posterior modes of A*, @, and f, where the posterior distribution has
been updated by the likelihood function (10). A further approximation is possible by
taking the transformation

2 = ~ 1 ~ ~ ~
70 (La(My,)) ~ ol |+ =t (10 + Tnl/1Pal) . ()

where the term (1/T)(ér, — ¢5,) Ve, (8, — é1,) = O,(T) is neglected. If, in
addition, we set the prior model probabilities equal across all models so that =,
= 1/{(F+1)(F+1)], then we can define our information criterion either in terms of
expression (11) or in terms of expression (14) as follows:

(p,7) = argmax PIC(p,r) , (15)

where

PIC(p, ) = Lry(My.)/ Tz, (M) (16)

with L7, (M,.,) as defined in expression (11). Alternatively, we can write this criterion
in terms of (14) as

(,7) = argmin PIC'(p, 7} , (17
where
/ O 1 7 7 iz
PIC'(p,7) = In{Qr| + 7 (Ve + Vi l/IVza|) « (18)
1

Note that for large values of T and Ti, expression (18) and, especially, expression
{16) can be interpreted as criteria that are based on the predictive odds ratio. Note
also that expression (18) is in a form analogous to other information criteria (for ex-
ample — AIC, BIC, and the Fisher information criterion (FIC) of Wei (1992)) in that
the right-hand side of expression (18) is comprised of two terms, with the first term
being a measure of the goodness of fit and the second term being a penalty function
reflecting the complexity of the model. This formulation corresponds closely to the
asymptotic predictive odds criterion used in Phillips (1994).

2.3 Hypothesis Testing of Linear Restrictions

The procedure we outline in the last subsection can be readily extended to test
linear restrictions of the form:

H(M®) : vec(A") = Sd+s and vecla)=Gc+g, (19)

where S, G, s, g, d, and ¢ are respectively an (m + m?p) x gq; restriction matrix of
rank ¢y, an mr x g, restriction matrix of rank ¢z, an (m + m?p) x 1 vector of known
constants, an mr x 1 vector of known constants, a g;-vector of basic parameters, and
a qp-vector of basic parameters. Under the hypothesis (19), we have the following
(restricted) ECM formulation:

Ay = (In ® W))(Sd + 5) + a(c) g1 + & (20)
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or

2= Xed + a(c)Byeos + 60 (21)
where X: = (1., @ W/)S and z1 = Ay — (In ® W/)s. Note that equations (20)
and (21) describe a cointegrated system with additional restrictions imposed on the
coefficients of its stationary components. Analogous to (9), we take the prior density of
7 = (vec{B), d’, ¢’} to be

o(ME,, T,y Pry) = 2wy Hoose) P fhexp {~ 3 = 30 Pr(r = 3n) )+ (22)

where 7, = (vec(Br, ), ~l,-u, €%, ) is the posterior mode (or the maximum likelihood
estimate) of ¥ over the sample period [1, Tp] and

{a(er, )87 a(ery) 0 )
137 _ | eFYiLgYanP) (23)
A | ~ =y~
a G’(nT,,l_aﬁ'lroyil.Tu y"'-l'aﬂ"'o)c Glm'rlaﬁlTa YmWn)S
0 S'(Q5 @Wy, Yo 5, A1, )G s'(Qzlew), wr,)s

whete Bz, = [I,, By’ and 8z, = (1/(To + m + 1)) D&, (2 — Xud: — a(&5,)Bg, ve1)
(2t~ X1d1, — a(C1, )BT, y1-1). As before, we take our prior density for 2 to be (6), but
our likelthood function under the restricted model Mf, now becomes

LB(B,d,c,w) (24)
—mT] ~T T
= (27r)_'2_L|Q|'7Lexp{—15 ; Sz,-ng—a(c)ﬁ'yg_,)'Q"(zt-de—a(c)ﬁ’yt_.,)} .
t=To+

Combining the likelihood function (24) with the prior densities (6) and (22) and
integrating over the parameters (B, d, ¢,w) using Laplace’s method, we obtain, corre-
sponding to (11), the (approximate) Bayesian data density or marginalized likelihood
for the restricted model M

— ~ =T~ =~ - 3 ~ T -
Lo, (M7 ~ I8, 15" (P, + Pr|/1Pr )% exp {~ 35— ) Pr, (i 7} (25)

= ZT: (M;fr) (sa'Y)a

where
T
-~ 1 ~ -~ % [ ~ —
i, = Tomtl Z (Zt—erTl—a(CT.)ﬁT.yt-l) (20~ Xidr, ~ a(C1, )Br,ye1)  (26)
1+m+l
t=Tp+1
and
(a(r, )87 () 0 0
~ 1 @FY! pY.nF)
Pr, = o oimied v Br)G  &'(A7) el Y1, o Wr,)S (27)
0 ( Ty ®BT|Y—I,T1 Y—-],TIBTI) ( 7 ®ﬁ7~1 -7 Tl)
0 s(9z'8Wy Yoy By )G sz ewy wry)s

E‘r., JT,, and 7, are the posterior modes of B, d, and ¢, where the posterior distribution
has been updated by the likelihood function (24).
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Expression (25) enables us to make decisions on the Jag order and the cointegrating
rank of the system simultaneously with decisions about the validity of the restrictions
represented by (19). Let H(M®) be the null hypothesis defined by (19) and let H(MY)
be the alternative of an unrestricted ECM as defined in Section 2.2, then the decision
rule for choosing MR over MY can be stated as:

Accept H(M®) in favor of H(MY) if Lr,(ME)/Ir,(M%)>1,  (28)
where

(p,7) = argmax PICU(p,7) , (29)
PICU(p,7) = L1, (M%,)/L7,(Mgs) |

and

(p,7) = argmax PICR(p, 1) , (30)
PICR(p,r) = Lr,(M;,)/Ir (M) .

Note that 7 and ¥ are the estimated lag and cointegrating rank order of a (possibly)
cointegrated system having additional restrictions of the form (19) and, thus, may
be different from p and 7, which are the order estimates of a (possibly) cointegrated
system having no additional restriction.

3 The Present Value Model and its Testable Implications

In this section, we briefly describe the present value model and discuss its testable
implications. Since a detailed discussion of this model is given in Campbell and Shiller
(1987), we focus our attention here only on those features of the model which will be
relevant for our subsequent empirical analysis. Formally, the present value model can
be written as:

o0
vae = 0(1~8) Y 6 E(yaess|Le) + const, (31)
i=0
where E(-|/;) denotes the mathematical expectation conditional on the full public
information /¢ at time ¢t and where y,, and y;, are, respectively, the dividend and stock
price at time t. Here, as elsewhere in this paper, we treat conditional expectations as
being equivalent to linear projections on information. Moreover, in the context of the
stock market, § = §/(1—§) and const is restricted to be zero so that equation (31)
has the simplified form:

o0
Y = 25'“E(yu+;|[¢) . (32)

i=0
We follow Campbell and Shiller (1987) iu defining the random variable s, = ypc — 0y,
which they referred to as the “spread.” Subtracting fy) from both sides of equation
(32) and rearranging the terms, it is easy to show, as in Campbell and Shiller (1987),
that the present value model implies two alternative interpretations of the spread, viz.
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s = OZ §E(Ayygill) , and (33)

&
8 = i‘—:é‘.E(AyQH.]![g) . (34)

For our purposes, it is most convenient to work with the relationship (34). To put
equation (34) in a more useful form, we multiply both sides by —(1—6)/é to obtain

st = —E(Ayanll) (35)
where the left-hand side of equation (35) has the equivalent forms

. 1-6

¢ = Yu— —g—ym
= the— (1/9)1/21‘ (36)
= Yy + bya (say)-

If Ay, is stationary, then equation (35) implies that s} is also stationary, from which
we deduce (from equation (36)) the cointegration of y;: and ya. with cointegrating
vector (1,5).

The statistical model we use to describe the joint dynamics of y;, and yz, is a
bivariate version of the general error-correction model (2), which we will rewrite here
with the reduced rank restriction imposed:

»
Ay =p+ Z AlAyi+afly + e . (37)

This representation is in line with that of Hansen and Sargent (1981), Campbell and
Shiller (1987), Toda (1991), and DeJong and Whiteman (1994), in that it includes
the lagged values of not only y;; but also yz, in the information set that is available to
the econometrician. Imposing the relationships (35) and (36) on this error-correction
model yields the following set of restrictions:

Gl =8y =0, 1=1..,p, (38)
=0, (39)

a;:-l ) (40)

(1,6) = (1, -(1-8)/8) = (1, -1/9) , (41)

where (a],,, aly;) is the second row of the matrix A} and oy is the second element
of the vector a = (ay, as)’. The restrictions (38)~(40) are of the form (19) and can
therefore be tested using the procedure outlined in the last section. Moreover, for a
given value of the discount factor 8, equation (41) is also of the form (19). Follow-
ing Campbell and Shiller (1987), we shall, in the next section of the paper, test the
present value model both for the case where the discount factor é takes on a value
implied by the sample mean return on stocks and for the case where the cointegrating
vector (1,b) is left unrestricted.
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4 Data Description and Empirical Results

In this section, we apply the test procedures discussed in Section 2 to the Campbell-
Shiller data set for stock prices and dividends, updated to 1992. A brief discussion
of the data is in order. As explained in Campbell and Shiller (1987), the term yy is
the real stock price computed by dividing the Standard and Poor’s stock price index
for January by the January producer price index normalized so that the 1976 pro-
ducer price index equals 100. Real dividend yi; on the other hand, is constructed
by dividing the nominal dividend series by the annual average producer price index
also normalized so that the 1967 producer price index equals 100. It should be noted
that the nominal dividend series before and after 1926 were collected from different
sources. Since 1926, the noninal dividend series used in the construction is the divi-
dends per share taken from the Standard and Poor’s statistical service. Before 1926,
the nominal dividend was taken from Cowles (1939).

Note also that a difficulty arises in pairing yi, and yy since they are not measured
contemporaneously. In our data set, yz; is the beginning-of-period stock price while
the dividend y;, is paid sometime within period ¢. Since y;¢ is not observable at the
start of pertod t, West (1988) and others have argued that treating y;; and yz as
observations from the same period may lead to spurious rejection of the present value
model. To circumvent this problem, we follow Campbell and Shiller (1987) and Toda
(1991) in writing the VECM (37) in terms of y; = (y1-1, Y2.)’, where both variables
are now 1n the information set at the start of time t. Note that cointegration of y;,
and yj¢ implies that yy,—; and y;, are also cointegrated.

The remainder of this section is divided into three subsections, each discussing
the results from a different test procedure. The results of unit root tests and tests of
cointegration are given in Subsections 4.1 and 4.2, respectively, while Subsection 4.3
presents the results of testing the full set of restrictions implied by the present value
model.

4.1 Unit Root Tests

As our setup depends critically on the assumption that both gy, and yz, are I(1)
processes, we begin our empirical analysis by testing both the stock price series and the
dividend series for unit roots. In their work, Campbell and Shiller (1987) ran Dickey-
Fuller regressions on the two series and found that the unit root null hypothesis cannot
be rejected at the 10% level for either series. Here, we take a different approach to
unit root testing in an effort to bring additional statistical evidence in support of
the hypothesis that both real stock prices and real dividends are well-described by
1(1) processes. The method we use is closely related to the model selection criterion
PICF detailed in Phillips (1992, 1995) and is, in fact, the univariate version of the
multivariate test procedure we outlined in Section 2. To test unit root models against
alternatives which may be trend stationary, we compare a general autoregressive model
with trend (written in difference form), viz.,

p~1 [4

H(fw;szp) 1 Ay = agyir + Z Ay + Ebjtj + e (42)

=1 =0



with one which explicitly incorporates a unit root

p-1 ¢
HMEP) - Ay =) adyi+ I bt +e .
=]

j=0

Decisions about unit roots can then be made on the basis of the criterion:

Decide in favor of unit root if fT,( gf)/%r,(Mf,gF) >1,
where
(5, 8) = argmax PICREF(p, ¢)
PICRER(p, 0) = T, (MPFF)/ L, (MIEF) |
and

(7,8) = argmax PICY%(p, ) ,
PICUR(?’: Z) = ZTI(M:{IR)/ZTI( ;}EF )

335

(43)

(44)

(45)

(46)

The formulae for the (approximate) marginalized likelihoods, fT,(M:{f) and

L1, (MBFF), are analogous to their multivariate counterparts presented in Section

2 (see equations (11) and (25)). Hence, for brevity, we will not state them here.

Table 1: Unit Root Tests for the Sample Period 1871-1992

Initialization Lag selected®  Trend selected®  Posterior odds in

Variable To under H(MY®) under HMY®) favor of a unit root
0 1 [t 42.662
(uniform prior)
22 1 0 121.750
26 1 0 778.628
Yt 30 1 0 170.532
34 1 0 8.880
38 3 0 5.179
42 1 0 1.540
0 1 0 33.357
(uniform prior)
22 1 0 357.095
26 4 0 7691.930
Y 30 4 0 476.178
34 1 0 23.647
38 1 0 46.517
42 1 0 27.456

“The maximum lag length 7 is set equal to 9.
*The maximum trend degree £ is set equal to 1.
0 denotes the inclusion of a constant term but not a linear trend.
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Table 1 documents the results of unit root tests using the test criterion (44). As
our empirical Bayesian approach inevitably involves a subjective choice of the sample
split point Ty, the results in Table 1 and beyond will always be reported for several
different values of T so as to give an indication of the sensitivity of our results to
the choice of the split point. Note also that there is a tradeoff in the choice of Ty:
as Tp increases, the hyperparameters of the prior distribution are estimated more
precisely, but T} decreases so a smaller portion of the sample is being used for model
comparison.

The results presented in Table 1 corroborate those obtained by Campbell and
Shiller (1987) in that both dividends and stock prices are found to have a unit root
specification, although the strength of the evidence in favor of a unit root (as mea-
sured by the posterior odds) varies with different values of Tp. Our criterion, however,
does not favor a linear trend specification for either series.

4.2 Estimation of the Lag Order and the Cointegrating Rank

Sometimes, the question of whether dividends and stock prices are cointegrated
is of independent interest. In particular, it can be quite independent of any interest
in the validity of the present value model. For instance, we may only wish to obtain
an appropriate time series representation for the variables y;, and ya for forecasting
purposes. Hence, in this section, we set out to estimate the lag order and the cointe-
grating rank of the model (37) using the test criterion (15) given in Section 2. Note
that the criterion (15) selects the mode amongst possible PIC values. Alternatively,
one could also construct point estimates of p and r by taking a weighted average using
the PIC values as weights:

-1
(p™, r™) = round (ZPIC(p,r)) > [PIC(p,r) x (p,r)] § - (47)

p.r

An advantage of using a mean criterion like (47) in addition to the modal criterion
(15) is that it is affected by and therefore alerts the investigator to cases (i.e., order
combinations) where an appreciable mass of PIC values may occur in regions away
from the mode.

Table 2 reports order estimates (p,r) from both the modal criterion (15} and the
mean cniterion (46) for different values of Ty, the last observation used to construct
the prior. From Table 2, we see that a cointegrating rank of zero was selected by both
criteria regardless of initialization. These findings are roughly in accord with pre-
vious results obtained by Campbell and Shiller (1987), Phillips and Quliaris (1988),
and Toda (1991) for the shorter version of the same data set covering the period
1871-1986. Phillips and Quliaris (1988) and Toda (1991) found no evidence of cointe-
gration. Campbell and Shiller (1987}, on the other hand, rejected the null hypothesis
of no cointegration using a Dickey—Fuller regression but failed to reject the same null
hypothesis when an Augmented Dickey-Fuller regression was used.

The sharpness of our inference on the lag order and the cointegrating rank is por-
trayed in Figures 1{a)-(g), where we depict bar charts of PIC values in (p,r) space
for different choices of T,. Note that in each of these figures, our selection of the
RRR(1,0) specification is well-determined in the sense that it has far and away the
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Table 2: Estimation of Cointegrating Rank and Order
of Lagged Differences for the Sample, Period 1871-1992

Initialization
T P

0
(uniform prior)

22

26

30

34

38

42

il
3
-

o
—
[e)

— e e g
oo B = I o B e B o B o ]
e e e DD e
COoODOC O

Notes: p, 7, p™, and r™ are as defined in expressions (15) and (47).

highest PIC value amongst competing models. That our data strongly favors the
RRR(1,0) specification is also reflected in the close agreement between the order esti-
mates from the modal criterion and those from the mean criterion in Table 2, with the
only exception being the selection of 2 lags by the mean criterion in the case T = 26.

4.3 Tests of the Present Value Model

We proceed now to test the restrictions (38)-(41) of the present value mode! us-
ing the test criterion (28). To help summarize our results, we define the following
statistics: - -

7= Lr,(MEY)/ L, (ME:)

and

T2 = ZTI(ME:’)/ZH (M;['{l) .

Here, M”Y and MY denote, respectively, the null model which satisfies the present
value restrictions and the unrestricted VECM given by equation (2). The statistic r,
compares the restricted model of the chosen lag order § with the model having the
highest density amongst those in the class of unrestricted VECM’s while 7, compares
the same null model with an unrestricted model of the same order (5,1). We test the
present value relations both for the case where (1 ~ §)/6 = R = .085 and the case
where R is left unrestricted. The number .085 is the sample mean return on stocks
for the period 1871-1992 and is used here as a possible discount rate.

Tables 3 and 4 summarize our results which do not seem to be sensitive in any
substantive way to whether R is taken to be .085 or left unrestricted. Focusing on the
7 statistic, we see that our criterion favors a RRR(1,0) specification over the present
value model uniformly over the different choices of Ty. Rejection of the present value
model by our procedure is on the whole consistent with the results of Campbell
and Shiller (1987) and Toda (1991), who also rejected the full set of present value
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Table 3: Model Selection Test of the Present Value Restrictions

(R = .085)
Initialization p under p™ under
To H(MPV) H(MPV) T T2
0 I 1 0.198 1.194
(uniform prior)
22 1 2 0.018 0.113
26 1 1 0.017 0.115
30 1 1 0.008 4.552
34 1 1 0.035 3.131
38 1 1 0.057 1.562
42 1 1 0.030 7.066

Table 4: Model Selection Test of the Present Value Restriction
(R unrestricted)

Initialization 7 under p™ under
To H(MPV) H(MPV) ksl T2
0 1 1 0.362 1.823
(uniform prior)

22 1 1 0.307 1.942
26 1 1 0.085 0.569
30 1 1 0.090 51.434
34 1 1 0.049 4.353
38 1 I 0.055 1.511
42 1 2 0.051 12.070

restrictions using the classical Wald test. Only with the exclusion of the restriction
corresponding to our equation (39) did Campbell and Shiller (1987) find favorable
evidence for the present value model. In addition, our results are in agreement with
those of DeJong and Whiteman (1994) in the case where a relatively tight Minnesota
prior was used. We note, however, that those authors found more favorable evidence
for the present value model when they allowed their priors to be more diffuse.

Looking at the 7, statistics, we see that for a majority of the cases under consid-
eration, the present value modet of the chosen lag order ¥ compares favorably with
a reduced rank regression of the same lag order and one cointegrating vector. This
suggests that in most cases the rejection of the present value model by our criterion
is primarily a rejection of the hypothesis that dividends and stock prices are cointe-
grated, which we showed in Section 3 to be an implication of the present value model
when the data are well-described as integrated processes.

To assess the sensitivity of our results to lag specification, we turn our attention
to Figures 2(a)~(g) which, for different choices of the initialization Ty, plot PIC values
for four models (VECM with 7 = 0, VECM with r = 1, present value model with
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R = .085, and present value model with R unrestricted) against different lag specifi-
cations. Note that for the cases where Ty < 34, our results are only mildly sensitive to
variations in the lag length. In these cases, our choice of an unrestricted model with
no cointegration aver the present value model can be overturned only if one decides
to condition upon lag orders that are extremely small (p = 0) or moderately large
{(p > 5). On the other hand, in the two cases where the initial sample size is taken to
be 38 and 42, the choice between the same two models depends more critically on the
lag order selected. Interesting enougly, these cases where our results are most sensitive
to lag specification are also cases where our inference on the lag order is very sharp,
as is evident from Figures 2(f) and 2(g). Hence, even in these cases, there is a clear
choice in favor of an unrestricted model with no cointegration.

5 Conclusion

This paper argues for and illustrates a Bayesian approach to the joint estimation of
the order of lagged differences and the cointegrating rank in a vector error-correction
model (VECM). Qur method is a variant of the Posterior Information Criterion (PIC),
developed and analyzed in Phillips and Ploberger (1994, 1995), and is very similar to
the asymptotic predictive odds version of the PIC criterion given in Phillips (1994).
In the formulation of the PIC criterion here, we use 2 proper (Gaussian) prior whose
hyperparameters are estimated from an initial subsample (of length Tp) of the data.
As the form of the prior is suggested by the asymptotic posterior distribution of the
parameters of our model, our criterion can be interpreted, in large samples, as an
approximate predictive odds ratio. As in our earlier work (see Chao and Phillips,
1994), this procedure delivers consistent estimates of the lag order and cointegrating
rank of a VECM.

Qur procedure also has the advantage that it enables us to select the lag and
cointegrating rank order of a VECM at the same time as it tests restrictions implied
by economic theory, and it does so in the same coherent framework. Hence, the
difficulties of accounting for the uncertainty associated with preliminary lag selection
that arise with other methods of inference are avoided here. In addition, bar charts of
PIC values for models of different dimensions can be readily constructed so that one
may assess the sharpness of the inferences with respect to lag length and cointegrating
rank.

We applied this method in an empirical analysis of the Campbell-Shiller stock
market data, extended through to 1992. Using our procedure to compare models of
different lag lengths and cointegrating rank, we consistently select a model with no
cointegration for different choices of the initial value Ty. Further examination of the
distribution of PIC values finds the lag and rank estimates to be sharply determined
in every case.

Finally, we test the full set of present value restrictions using our criterion. We
find models which satisfy these restrictions to be less plausible than time series models
with no cointegration. These results are by and large consistent with the results of
Campbell and Shiller (1987) and Toda (1991) using classical methodologies and with
the Bayesian results of DeJong and Whiteman (1994) in the case where a relatively
tight Minnesota prior was used.
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