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SUMMARY

This paper provides a robust statistical approach to testing the unbiasedness hypothesis in forward
exchange market efficiency studies. The methods we use allow us to work explicitly with levels rather than
differenced data. They are statistically robust to data distributions with heavy tails, and they can be applied
to data sets where the frequency of observation and the futures maturity do not coincide. In addition, our
methods allow for stochastic trend non-stationarity and general forms of serial dependence. The methods
are applied to daily data of spot exchange rates and forward exchange rates during the 1920s, which
marked the first episode of a broadly general floating exchange rate system. The tail behaviour of the data
is analysed using an adaptive data-based method for estimating the tail slope of the density. The results
confirm the need for the use of robust regression methods. We find cointegration between the forward rate
and spot rate for the four currencies we consider (the Belgian and French francs, the Italian lira and the
US dollar, all measured against the British pound), we find support for a stationary risk premium in the
case of the Belgian franc, the Italian lira and the US dollar, and we find support for the simple market
efficiency hypothesis (where the forward rate is an unbiased predictor of the future spot rate and there is a
zero mean risk premium) in the case of the US dollar.

1. INTRODUCTION

The relationship between forward exchange rates and future spot rates has been the focus of
many studies of market efficiency in the foreign exchange market. Recent work on this topic
has used levels (or, more precisely, log-levels) data to test whether forward exchange rates
are unbiased forecasts of future spot rates and has relied on the modern theory of regression
for nonstationary time series to justify the statistical methods employed. In particular,
Hakkio and Rush (1989) and Baillie and Bollerslev (1989a) used residual-based
cointegration tests (see Engle and Granger, 1987; Phillips and Ouliaris, 1990) to test the
joint hypothesis of market efficiency and risk neutrality, and to assess the evideace in
support of the existence of a stationary risk premium. In other work Baillie (1989)
discussed and implemented tests of forward market efficiency based on vector
autoregressions. More recently, several studies (Corbae et al., 1993; McFarland et al., 1992)
have employed direct non-stationary regression procedures that are due to Phillips and
Hansen (1990) and Park (1992) to estimate the relationship between forward exchange rates
and future spot rates.
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Direct regression procedures have some natural advantages in this context, especially in the
presence of overlapping observations, where the duration of the futures maturity contract
exceeds the time interval between observations. Overlapping observations induce moving-
average effects, as shown by Hansen and Hodrick (1980), and these are conveniently handled by
the fully modified least squares (FM-OLS) regression method of Phillips and Hansen (1990),
which treats equation errors in a general semi-parametric way. Also, FM-regression allows us to
test the forward efficiency hypothesis directly in the usual formulation of the model, i.e.

sl+k=a+bfl.k+ur+k (])

where f,, is the (log) forward exchange rate for a given currency contracted at time ¢ for
delivery at time ¢+ %, 5,,, 1s the (log) spot exchange rate for the currency at r+4, and u,,, is a
stationary error.

Market rationality and a zero mean risk premium lead to the ‘simple efficiency hypothesis’

Hya=0,b=1

in equation (1). H, can be tested using a straightforward Wald statistic based on the FM-OLS
regression coefficients of (a, b) in model (1) and their estimated variance covariance matrix
(using formulae from Phillips and Hansen, 1990). The method allows for stochastic non-
stationarity in the data {s,,,, f, .} and serial dependence in the error {u,,,} of model (1). Corbae
et al. (1993) use the canonical cointegrating regression (CCR) procedure of Park (1992), which
is very closely related to FM-OLS, and they fit models like equation (1) that allow for a linear
time trend in the regressors, i.e.

S,+,‘=(1+C[+bf,$+u”‘ (1’)

and multi-currency effects, i.e.

St =, ‘*‘C,"*‘Z bijf‘{.k+ul':-k (1)
j=1
where the additional affixes i and j signify (the currencies of ) country i and j, respectively. For
model (1) the simple efficiency hypothesis has the form

Hya=0,¢c=0,b=1
and for model (1") the multi-market efficiency hypothesis takes the form
Hy:a;=0,¢,=0,b0,=1,b;=0 fori+j

One aim of the present paper is to test the unbiasedness hypothesis using a methodology that
is more robust than the FM-OLS and CCR regression procedures. The use of robust statistical
methods seems important in this context because it is well known that the densities of financial
asset returns typically exhibit heavy tails. This is especially true of frequently sampled data like
daily exchange rate returns and is a theme in recent studies that use ARCH approaches to model
conditional return data (e.g. Baillie and Bollerslev, 1989b; Hsieh, 1989), as well as in empirical
work on the unconditional distributions of returns. In four recent studies of exchange rate
returns, Koedijk er al. (1990) (with weekly data on European currencies—US dollar exchange
rates), Hols and DeVries (1991) (with weekly data on the Canadian—US dollar exchange rate),
Koedijk and Kool (1992) (with monthly exchange rate returns for seven East European
currencies) and Loretan and Phillips (1993) (with daily exchange rate returns for several OECD
countries) all found strong evidence that the maximal moment exponent of the densities of
these series was less than four, i.e. fourth moments of the distribution appear to be not finite
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and in some cases variances appear to be not finite also. Each of these studies uses procedures
that are based on order statistics to estimate the tail slope of the density and are therefore not
reliant on specific distributional forms for exchange rate returns for their validity. Our own
empirical analysis of the tail behaviour of exchange rate returns uses similar order statistic
methods but employs an adaptive data-based procedure to determine the number of order
statistics to be used in estimating the tail slope. Our results on tail shape, like those of the
studies cited above, call into question the appropriateness of regression procedures like least
squares, which gives prominence to outlier observations, in the context of models such as
(1)=(1") for heavy tailed exchange rate data. It therefore seems desirable to fit these models and
test the unbiasedness hypothesis using methods which work well with such data, while at the
same time maintaining the desirable features of the FM-OLS procedure, especially its capacity
to accommodate non-stationary log-levels data and serial dependence in the equation errors.

The present paper employs a new procedure due to Phillips (1993) that is designed to achieve
these objectives. The procedure is called fully modified least absolute deviations (FM-LAD) and
it is based on a ‘fully modified’ extension of the least absolute deviations (LAD) regression
estimator. The LAD estimator is well known to be a robust regression procedure whose
asymptotic properties in conventional regression models have been known for some time (since
Bassett and Koenker, 1978). The method is also applicable in time series regressions models
(e.g. Bloomfield and Steiger, 1983) and has very recently been shown to have good properties in
models with an autoregressive unit root (Knight, 1989, 1991;and Phillips, 1991). The FM-LAD
estimator that we use in the empirical work of this paper has all the robust features of the LAD
estimator but is also applicable in models for non-stationary time series like model (1) where
there is endageneity in the regressors and serial dependence in the errors. Moreover, the
estimator and its associated tests apply irrespective of the tail thickness of the data. In fact, the
procedures we employ here arc applicable (and valid) even when the data have no finite
variances, which seems to be the case for at least same exchange rate return series (e.g. those
studied in Koedijk et al., 1990).

Like FM-OLS, the FM-LAD estimator is a semiparametric procedure that treats nuisance
parameters (like serial dependence effects) in a non-parametric way but regression coefficients
(like those in model (1)) parametrically. In this respect the approach is quite different from the
quasi-maximum likelihood technique used recently by Baillie et a/. (1993) to cope with non-
Gaussian data in a univariate GARCH analysis of weekly foreign exchange returns.

The paper proceeds as follows. Section 2 discusses the data and seeks to characterize their tail
slope characteristics using adaptive order statistic methods. The cointegration properties of the
forward rate and spot rate series for each country are cansidered in Section 3. Recursive
residual-based cointegration tests are used in this section to highlight the relationship between
the forward and spot rates over the full sample period. Section 4 describes the FM-LAD
procedure and our empirical results and tests of the unbiasedness hypothesis are given in
Section 5. Some concluding observations are made in Section 6.

2. THE DATA AND ITS TAIL SLOPE CHARACTERISTICS

The data set employed in this study was gathered by one of the authors (PCM) from back issues
of The Manchester Guardian and consists of daily observations of spot and one-month
forward exchange rates over the period beginning ! May 1922 and ending 30 May 1925. The
currencies are the Belgian franc, the French franc, the Italian lira and the US dollar all measured
in terms of the UK pound sterling. Observations include Saturdays and therefore cover six days
a week, giving 966 observations of each series in total.
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Our data set does not provide exact matching of the (one-month) forward rate series with the
settlement date (see Levine, 1989, for a description of the mechanics of this exact matching
process). Instead, we use a fixed period of k=26 (i.e. a typical month of 31 days less 5
Sundays) for the number of days to settlement of the forward contract. Note that finite changes
in the timing of s, do not affect the cointegrating regression (1), i.e. the new error in (1) is still
stationary (but may have additional moving average effects) if s, is mistimed and the
coefficients in (1) are unchanged. In view of the nonparametric treatment by our FM-LAD
procedure of the regression errors in (1) and the shocks to the regressors themselves, the fact
that we do not employ an ‘exact’ matching of the forward rate settlement and the spot rate data
is not important, at last asymptotically, for the good properties of our procedure.

This period in the 1920s marks the first generalized episode of financial experimentation with
floating exchange rates during which many countries abandoned the gold standard in an effort to
reconcile their external balances. Financial reconstruction following World War I was a
destabilizing experience for many countries and the period was characterized by speculative
attacks against currencies and financial turbulence. For these reasons the data offer an especially
interesting opportunity to explore the empirical support for foreign exchange market efficiency
theories.

Figures 1-4 graph the levels of the series with each figure showing the spot rate (SR) at t +k
and the forward rate (FR) at ¢ for £=26. The turbulent behaviour of these series over certain
subperiods is apparent from the figures, notably the winter of 1924 for the Belgium and French
francs and the year 1922 for the Italian lira.

The tail shapes of the data are characterized in Figures 5-8, which plot the tails of the
empirical distribution functions of the exchange rate return data in double-logarithmic
coordinates. More precisely, these figures plot log,of{ P(X < —x)} against log,, x for x>0, i.e. we
give the results here for the left tails of the distributions. (Similar graphs were obtained for the
right tails, although the tail slopes were a little different in each case.) Note that in these
coordinates the Pareto distribution, for which P(X < —x) = Cx ~° for constants C and a, appears
as a straight line with slope = —a. The case a =2 is critical since it divides off finite variance
distributions from infinite variance distribution. We therefore show a straight line of slope = -2
in each of the figures and graph it against the tail of the empirical distribution for ease of
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comparison. As is apparent from these graphs, the tail of the empirical distributions is
reasonably well described by a Pareto distribution for the Belgium, French, and Italian data, but
1s less well characterized by a straight line in these coordinates for the US data. For all
currencies the tail slope seems to be at least as steep as —2 but is very close to —2 for the
Belgian data.

Direct estimates of the tail slape can be obtained as follows. Suppose X, is an iid sequence
whose distribution has tail behaviour of the Pareto—Levy form, i.e.

PX>x)=pCx (1 + a,(x)), x>0 2)
PX<-x)=qCx *(1+ a,(x)), x>0 3)

where a;(x) >0 (i=1,2) as x > e and p=0,¢=0. The parameter C in these tail formulae is a
scale dispersion parameter and a, which determines the tail slope, is the maximal moment
exponent in the sense that @ = sup{r>0: £| X|" <oo}. The slope parameter « in models (2) and
(3) can be estimated by means of order statistics. If X,, <X,,<-<X,, are the order statistics
of {X,}]in ascending order, then Hill’s (1975) estimators of « and C are

-1

a=s" > X, —InX, ., @)
j=1

C,o=(s/m)X%, ., (5)

These were developed as conditional maximum likelihood estimators (canditional on the s
largest order statistics of the sample under precisely Pareto tails, i.e. a,(x) =0 in model (2)).
Hall (1982) derived an asymptotic theory for these estimators in the case of distributions whose
tails are of forms (2) and (3), i.e. only asymptotically Pareto, and showed that it is optimal
when a,;(x)=0(x"7"), y>0, in models (2) and (3) to choose the order statistic truncation
number s=s(n) so that it tends to infinity with n and is of order n*”®**® When
§=0(n*/?7* @)y we have the limit theory:

e, - @) - N(O, a%) ©)

(Theorem 2 of Hall, 1982), which facilitates inference about a. This methodology has been
used in some earlier work on foreign exchange rate and stock returns by Koedijk et al. (1990),
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Jansen and DeVries (1991), Hols and DeVries (1991), and Loretan and Phillips (1993). Kearns
and Pagan (1992) recently conducted a Monte Carlo study comparing this procedure with other
methods of estimating the tail slope, concluding that the Hill estimator was the preferable
procedure for practical applications but that the tail slope is imprecisely determined even in
large samples and that the standard errors grossly overstate the precision of the tail index
estimator, especially when there is dependence in the series.

None of the above-mentioned studies use data-based methods for selecting the order statistic
truncation number s=s(n). An ‘optimal’ choice of s(n) can be deduced from the asymptotic
theory in Hall (1982) in terms of the minimum asymptotic mean squared error. For distributions
in which the tail behaviour has the form given in models (2) and (3) with
a;(x)=Dx"*+o0(x~% and p=g -1, the mean squared error of the limit distribution of &, is
minimized by choosing

s=s(n)=[An*?], with 1= (2C*/ D)

and where [ ] signifies the integer part of its argument. Hall and Welsh (1985) show that the
parameter 4 may be estimated adaptively by

I=la,/2"*(n/t))@,-a)|*"

Here &, and d, are preliminary estimates of « obtained by using farmula (4) with data
truncations s(n)=[n°] and s(n)=[n"], respectively, where 0<o<2/3 and 2/3<r<1. We
employed this adaptive approach in our empirical work, setting

§=[An¥*], with 0 =060 and =090

The estimates given in Table I for § and @, are not very sensitive to aliernative choices of o and
7, especially over the intervals o € [0:5,0:65] and r € [0-8, 0-95]. In our experience, choices of
o and 7 outside these intervals do lead to a wider range of estimates of s, particularly when 1 is
clase to its lower limit of 2/3. But even in such cases the estimates of the tail slope parameter
seem fairly stable. Table II reports a sensitivity analysis of this feature of the adaptive
estimators § and &, for our data sets and the results given there support these general
abservations.

Table I presents estimates of the tail slope using formula (4) above for a range of values of
the order statistic truncation number s up to around 10% of the sample size (following the
suggestions of Dumouchel, 1983). Standard errors of the slope estimate are given in
parentheses. These are based on formula (6) and therefore (like the asymptotic theory) assume
homoscedasticity. There is some recent evidence from simulatians (Kearns and Pagan, 1992)
that this formula may poorly estimate the variation when ARCH effects are present, although
simulations that use the adaptive procedure employed here have not yet (to our knowledge at
least) been performed. The final row for each country gives the adaptive estimate of the tail
slope, using the data-determined truncation number §. Right tails, left tails, and the combined
(two) tails of the exchange return data were analysed in this way. Table [ also reports results for
the spread variable s,,, —f, ,- Asymptotic standard errors were computed using formula (6). The
results given in the table in the ‘Forward rate’ and ‘Spot rate’ panels are far the return series.
Very similar results were obtained for prefiltered data using the residuals from autoregression
of the return series with various lag lengths in the range p=1-26. The spread variables,
S, —f,. are strongly autocorrelated, as is clear from Figures 1-4. In consequence, we
prefiltered these data by taking the residuals from autoregressions whose lag orders were
selected by BIC (see Schwarz, 1978) and by PIC (see Phillips and Ploberger, 1994), the latter
allowing far possible non-stationarity in the spread series. In fact, BIC and PIC determined the
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Table II. Sensitivity of truncation estimates and tail slope to o/ T settings

Forward rate (two-tail) Spot rate (two tail)
Country o T § a St. error $ a St. error
Belgium 0-35 075 39 2:822 0-451 39 2-866 0-459
0-50 0-80 53 2-506 0-344 52 2:477 0-343
0-60 0-090 71 2:473 0-293 72 2-442 0-287
0-65 0-95 79 2-391 0-269 77 2:423 0276
0-65 0-99 82 2-356 0-260 81 2.457 0273
0-35 0-99 78 2-380 0-269 78 2:439 0276
France 0-35 075 34 3-109 0-533 36 3.229 0-538
0-50 0-80 50 2935 0415 50 2:948 0-417
0-60 0-90 71 2-629 0-312 72 2:493 0293
0-65 0-95 82 2:428 0-268 81 2:393 0-265
0-65 099 84 2.332 0-254 82 2-336 0-256
0-35 0-99 77 2-508 0-285 78 2-507 0-283
Ttaly 0-35 075 62 2.887 0-3667 63 2-851 0-359
0-50 0-80 58 2-838 0-3726 58 2-905 0-381
0-60 0-90 68 2-890 0:3504 66 2-836 0-349
0-65 0-95 74 2916 0-339 72 2969 0-349
0:65 0-99 80 2917 0326 81 2-879 0-319
0-35 0-99 79 2-887 0-324 80 2-856 0-319
USA 035 075 39 2:941 0470 39 2-866 0459
0-50 0-80 49 2-870 0-410 48 2-861 0-413
0-60 090 78 2:649 0-299 79 2634 0-296
0-65 0-95 79 2:673 0-300 79 2:634 0-296
0-65 0-99 82 2-580 0-284 82 2:578 0-284
0-35 0-99 78 2-649 0-299 78 2617 0-296

same lag order for each series, as shown in the final panel of Table I and the order chosen
ranged from one to four lags in these autoregressians.

The adaptive point estimates given in Table I are all less than 3-0 when the two tails are
cambined, and all the estimates but three are less than 3-0 when the tails are considered
separately. The truncation numbers § in the adaptive estimates seem quite well determined and
are in the range 40-58 for the individual tails and 66—79 for the combined tails. The Belgian
series seem to have the thickest tails and this is borne out by the graphs of the tails shown earlier
in Figures 5-8. There is some doubt in the case of the Belgian series whether a finite variance
distribution is an appropriate model for the data. In all cases the tails seem to be much heavier
than those of a Gaussian distribution. There would therefore seem to be a definite advantage to
using robust regression procedures with these data.

The tails of the spread series s,,, — f, , seem to be somewhat thinner for the Belgian franc,
French franc, and Italian lira and each have adaptively estimated tail slopes that are greater
than 3-0 but less than 4-0. For the US dollar spread, the adaptive tail slape estimate is very
close to those of the individual return series. In fact, the estimate is identical ta that of the
US dollar spot rate return series, but has a slightly different truncation statistic estimator
(§=178 for the spread, whereas §=79 for the spot rate return). Thus, the tail behaviour of
the US dollar exchange rate spread is very similar to that of the exchange rate returns
themselves.
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3. COINTEGRATION OF THE SPOT RATE AND FORWARD RATE

Cointegration tests were conducted to assess the adequacy of model (1) over the sample period.
Residual based tests of the Phillips and Quliaris (1990) type were carried out for each of the
currencies and the results are reported in Table III. The Z, and Z, tests were computed using (i)
a fixed lag (set at /= 10) long-run variance estimator and (ii) the data-based long-run variance
estimator of Lee and Phillips (1994). Similarly, the ADF tests used a fixed AR lag length
(p=10) and a data-based (BIC) AR order selector 5. All the tests confirm that relationship (1)
is cointegrating for each currency. The 5% critical values given in Table III are from the Phillips
and Quliaris (1990) tables (as updated in the GAUSS software package COINT 2.0—see
Ouliaris and Phillips, 1994) and rely on the Brownian motion limit theory derived in that paper
for these tests. As in the case of unit root tests, these residual-based cointegration tests are still
usable where the data is heavy tailed (with possibly infinite variance) much as in the analysis of
Phillips (1990), although this has not been formally demonstrated and the tests are likely to be
conservative just like the unit roots test in this case (see Chan and Tran, 1989). Table III also
includes the results of the Phillips and Ploberger (1991, 1994) posterior information criterion
(PIC) unit root test applied to the residuals from regression (1) for each currency. This test
involves a data-based model selection procedure prior to the construction of the odds ratio. The
odds in favour of cointegration range from 4-6:1 in the case of the US dollar to 309:1 in the
case of Belgian francs. These outcomes corroborate the conclusions of the residual based tests.

Since the period 1922-5 involves interesting subperiods of financial turbulence, it is
informative to plot the outcome of the cointegration tests as we move progressively through the
sample data. Figures 9-12 show such recursive calculations for the residual-based Z, test for
each of the currencies starting with the hundredth observation and running through to the final
observation (966). The recursive Z,, statistic was calculated using a data-based long-run variance
estimator so that the bandwidth parameter was automatically adjusted on a period-by-period
basis as the recursive calculations proceeded. We used a Parzen kernel and the corresponding
‘optimal’ bandwidth computed by the ‘plug-in’ method (e.g. see Andrews, 1991) preceded by
AR(1) data-prefiltering and subsequent recolouring (as suggested in Andrews and Monahan,
1992). This method is much faster than the data-based prefiltering method of Lee and Phillips
(1994) that is computationally more demanding especially in extensive recursive calculations of
this type.

Figures 9-12 give the 5% critical values of the Z, statistic for sample sizes over the relevant
range and the line shown is a step function for sample sizes over the intervals 100< n <200,
200< 1 <300, 300< 1 <400, and n=500. Within each interval these critical values are based on
simulations involving 10,000 replications and they were obtained from the COINT 2.0
cointegration regression library of Ouliaris and Phillips (1994). The results shown in Figures 9-12

Table III. Residual-based tests of cointegration

N ) Phillips—Ploberger
/=10 Data-based/ [=10 Data-based/ p=10 Data-based g FIC odds in favour

Currency  Z(a) Z(a) Z(t) Z(1) ADF ADF of cointegration
Belgium -37-236 -44.771 -4.377 -4.786 -4-213 -4.786 309-39
France 35499  -30-739  -4.233 -3-940 -4-908 -4.563 232-86
Italy -28:691  -36095 -3.767 —4-228 -4-240 -3.752 8.65
USA -30-468 -28207  -3-925 ~3.776 -4.377 -3.834 4.58

5% cv’'s: Z(a) cv = -20-4517; Z(t) cv = -3-358.
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Figure 11. Italy: recursive plot of residual-based Z, cointegration test
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Figure 12. USA: recursive plot of residual-based Z, cointegration test

are interesting and reveal some important differences between the series. In the case of the Belgian
and French francs the financial turbulence of the currencies during the winter and spring of 1924
is apparent in the volatile behaviour of the Z, test. For the French franc the cointegration test
statistic swings from acceptance to rejection and back to acceptance again, and similar swings in
the statistic are evident for the Belgian franc although the inference about cointegration is not
reversed by the swings in this case.

The volatility of the Z, statistic for the French franc during the spring of 1924 coincides with
a famous interlude known as the ‘Poincaré bear squeeze’, which amounted to a major
government intervention In the foreign exchange market. Owing to domestic economic
difficulties and growing inflation, the French franc depreciated substantially against the British
pound during the fall of 1923 and had lost nearly 50% of its value by March 1924. To
counteract this devaluation, the French Premier Poincaré raised secret loans with US and British
banks to purchase large quantities of francs and thereby arrest (and reverse) the bear market.
The move was highly successful. In the week following 11 March 1924 the franc appreciated
from 117F/£ to 90F/£ and within three weeks rose to 64-92F /£. During this period the forward
and future spot rates were severely out of alignment (as is apparent from Figure 2), and this
disparity in the rates leads directly to the huge swing in value of the Z, test during March 1924
that is evident in Figure 10. In the period following the spring of 1924 the forward and future
spot rates moved into a closer pattern of alignment and the cointegrating test statistic Z, declines
in value in a corresponding way. Indeed, after the summer of 1924 the test statistic has a
monotonically declining value (i.e. is increasingly negative) leading to increasingly strong
acceptance of cointegration in the spot and forward rates for both currencies. If equation (1)
holds for these currencies, this is exactly the behaviour in the statistic that we would expect as
the sample size grows and more information on the currencies accumulates, since Z(a) diverges
to —oo as the sample size n — o when equation (1) holds.

We also notice this behaviour as the sample size n increases in the case of the Italian lira
(Figure 11) and the US dollar (Figure 12). For the lira the evidence in favour of (1) holding
becomes very strong from 1924 onwards. For the US dollar the evidence for cointegration is
mixed during 1924 but becomes stronger (and monotonic) during 1925. Prior to 1924 there is no
evidence in support of cointegration for the US dollar exchange rates and little evidence for
cointegration in the forward and spot exchange rates of the other three countries.



14 P. C. B. PHILLIPS, J. W. McFARLAND AND P. C. McMAHON

4. THE FM-LAD ESTIMATOR AND TESTS

This section briefly describes the fully modified least absolute deviations (FM-LAD) regression
procedure developed recently in Phillips (1993). Like the fully modified least squares (FM-
OLS) method of Phillips and Hansen (1990), the FM-LAD estimator is designed for levels
regressions of non-stationary time series and makes modifications to the usual regression
procedure (here least absolute deviations or LAD) to deal with (i) the endogeneity of the
regressors and (ii) serial correlation in the errors and in the first differences of the regressors.
The LAD estimator in conventional regression models (see Bassett and Koenker, 1978) is
particularly suited to situations where the equation errors are heavy tailed and in such contexts is
consistent even when least squares regression is inconsistent. In a similar way, the FM-LAD
estimator is suited to the estimation of cointegrating regression equations when the data and the
equation errors are heavy tailed.
To fix ideas we consider the cointegrated system

= ﬁ,xr + Uy, (7a)
Ax,=u, (7b)

where u, = (u,,, 1) is a stationary m-vector time series (mm=1+m,) with spectral density
matrix f,,(4). The long-run covariance matrix of , is

Qg Qo,,]

Q, Q 8

Q,.=2xaf,.(0)= l:

ANy

where the partition is conformable with that of the vector u, and we assume Q>0 (i.e. Q_ is
positive definite), so that x, in equation (7a) is a full rank I(1) process in the sense that the
number of unit roots in the stochastic process x, is equal to i, the dimension of x,. Cases
where Q,, 1s positive semi-definite and some of the x, regressors are cointegrated are also of
potential interest (e.g. in models like equation (1") with several currencies). It can be shown
(although we do not attempt it here) that the FM-LAD procedure is applicable in such situations
also—see Phillips (1994) for an analysis of this type of situation with regard to FM-OLS
estimation. In cases where «, does not possess finite second moments the matrix € in equation
(8) is not well defined. However, it is still possible in such cases to construct a pseudo long-run
variance of u,, as discussed in Phillips (1990, p. 51), and we will proceed as if this has been
done.

Since we work below with the transformed error v, = sign(u,,), it is also helpful to define the
long-run covariance matrix of w, = (v,, u,,) as

Q.. Q.
Q = 2 " O - vy v
W Iff“ w ( ) [Q‘ . Q'\,_‘.]

partitioned conformably with w,. Note that v, is bounded and has finite moments of all orders.
But this is not true of u, and in cases where the second moments of u«, do not exist we may
again employ a pseudo-variance interpretation of Q The LAD estimator of f in equation
(7a) is the extremum estimator

Wt

»
ap = argminyn” >y - x:ﬁ|l ©)
1

When the regressors x, are fixed this estimator has an asymptotic normal distribution and is Vn
consistent for B in equation (7a). When x, is an 1(1) process and equation (7b) holds, this



FORWARD MARKET EFFICIENCY IN THE 1920s 15

asymptotic theory no longer applies in general. Instead, the LAD estimator, just like OLS,
suffers from bias and non-scale nuisance parameter problems even in the limit as n — oo,

The FM-LAD estimator is designed to address these difficulties that are encountered by the
LAD estimator while at the same time retaining its robustness features with regard to heavy-
tailed errors. As with the FM-OLS estimator, we modify LAD to account for possible
endogeneities in the x, regressor variables and serial dependence in the errors. The FM-LAD
estimator is defined by

Biao=Brap— (1/2/(0))(X'X) " (X'AX - nA}, (10)
where X'X =37 xx/, X’AX=3"xAx; and f(0) is a consistent estimator of the probability
density of ug, at the origin.

The matrix A, in equation (10) is a consistent estimator of the one-sided long-run covariance
matrix

A= E(ov)) (1)
k=0
where
v =v,-Q, Q5 Ax, (12)
and
v, = sign(ug,). (13)

In order to estimate A}, we need first to estimate the modified error v,*, which in tumn involves
the estimation of v,. This is achieved by a first-stage LAD regression which produces the error
estimate 2y, =y, — BLapx, and ¥, = sign(i,,). We then construct

D7 =0,-Q, Q0 Ax, (14)

using conventional kernel estimates of the long-run covariance matrices Q,, and Q_,
whereupon we can estimate A}, in equation (11) directly by using a kernel estimate of the one-
sided long-run covariance of u, and 9," (see Phillips and Park, 1988; Andrews, 1991). Note
that we can write

oo

AL=8,-A,00Q,, whered,=> E(o), A=y E@ody)  (15)
k=0 k=0
so that the estimation of A}, effectively involves the estimation of the four submatrices A,,,
A, Q, and Q.. In our empirical work reported below we used the Parzen kernel and the
associated ‘optimal’ data-based bandwidth in the estimation of these long-run variances and
one-sided covariances. Once again, if variances were infinite we could employ pseudo-variance
interpretations of these quantities and the pseudo-variances could all be estimated in the same
way as we have done with finite samples of data.
An asymptotic theory for the estimator {,p given in equation (10) is developed in Phillips
(1993). It is shown there (Theorem 4.4) that when system (7) has finite variance errors, B{.p is
asymptotically mixed normal, i.e.

(Bian= B)~N(0,1/2f(0)) (@, ® (X'X)™']) (16)

where w,,,=Q,,-Q,Q:'Q,,. Moreover, because B, is conditionally asymptotically
normal, Wald statistics can be constructed in the usual way from this mixture normal
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approximation 1o test restrictions on the parameter vector £ and such statistics have limiting chi-
squared distributions with degrees of freedom equal to the number of restrictions—see Phillips
(1993, Remark 4.5 (i1)) for details). The same limit theory applies when the regressor variable x,
in equation (7a) has a constant or deterministic trend, but in this case the conditioning that
appears in the covariance matrix ,,,, applies only to the I(1) components of x,.

When system (7) has infinite variance errors it is shown in Phillips (1993) that equation (15)
still holds but with @, = ,,, and the convergence rate is faster than O(n). Thus, for the FM-
LAD estimator the asymptotic mixed normal approximation (16) applies whether or not the
error variances in system (7) are finite. The FM-LAD estimator is therefore not only a robust
estimator but it also has the attractive feature that its limit theory in the case of cointegrated
systems like (7) is robust and may be used for statistical inference irrespective of the tail
thickness of the errors. This feature makes the estimator and its associated tests very useful in
the context of foreign exchange market data as in the present case, where the empirical
distributions clearly have heavy tails.

5. ROBUST TESTS OF MARKET EFFICIENCY

Equation (1) was estimated for each of the four currencies by OLS, FM-OLS, LAD and FM-
LAD. The results are shown in Table IV. Standard errors, ¢-ratios, and Wald statistics for testing
the joint hypothesis Hy: a=0, b=1 are given in the table for the FM-OLS and FM-LAD
procedures only, since conventional inferential formulae are inappropriate in the case of the
OLS and LAD estimators in view of the nonstationarity and temporal dependence of the data.
(Note, however, that both OLS and LAD coefficient estimates are consistent, even though they
suffer from second order bias).

Table IV. Empirical estimates of equation (1)

Parameters, standard errors, and ¢-ratios

Estimation - " Joint test of
Currency method a S, t,=dfs, b Sy t,=(b-1/s, efficiency
Belgium OLS 0-745 0-835

FM-OLS 0-546 0-179 3.045¢  0-880 0-040 ~-2.957¢ 12.942¢

LAD 0-344 0-926

FM-LAD 0232 0-139 1-667 0-952 0-031 -1.526 12:601¢
France OLS 0-779 0-823

FM-OLS 0-604  0-199 3-030°  0-863 0-046 —-2-955¢ 12:066¢

LAD 0-357 0-922

FM-LAD 0-269 0-136 1.972¢  0-942 0-032 —-1.806° 18-835¢
Traly OLS 0-835 0-821

FM-OLS 0-641 0-256 2:506¢ 0-863 0-055 -2-464° 13-368°

LAD 0-468 0-901

FM-LAD 0-241 0-199 1-207 0-950 0-043 -1-144 17.742¢
USA OLS 0-061 0-960

FM-OLS 0-063 0-067 0-942 0-959 0-044 -0-917 2-131

LAD 0-091 0-940

FM-LAD 0-029 0-073 0-395 0-982 0-048 -0-375 0913

(i) One-tail significance: * 5%, * 1%, ©0-5%.
(ii) Two-tail significance: * 5%, < 1%, '0-5%.
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The main results to emerge from these regressions are as follows:

(1) There are substantial differences in the coefficient estimates (of both the slope and the
intercept parameter in equation (1)) between FM-OLS and FM-LAD. For example, in the
case of the Belgian franc we have b, = 0-952 and b = 0-880, which differ by more than
two FM-LAD asymptotic standard errors. Similarly for the French franc we have
biap= 0942 compared with b5 s=0-863, again more than two standard errors apart. A
similar comment holds for the Italian lira.

In all these cases the FM-LAD estimates are much closer to the value 5 = 1. Deviations
of b from unity have an important impact on the statistical properties of the risk premium

pl,szr.k— E/(SHA-) = (l - b)fr.k—a - El(uuk) R (17)

In particular, the risk premium p,  is non-stationary if »# 1. For the Belgian and French
francs, the hypothesis

H, b=1

is rejected at the 0-1% level using the FM-OLS estimates, and the hypothesis is rejected at
the 1% level for the Italian lira based on FM-OLS. However, H, is accepted for the Belgian
franc and the Italian lira, and only marginally rejected for the French franc when the robust
FM-LAD estimates are used. Thus, the FM-LAD estimates support the hypothesis that the
risk premium is stationary for the Belgian franc and Italian lira, and give only marginal
evidence in support of a non-stationary risk premium for the French franc.

(2) For the US dollar, both FM-OLS and FM-LAD procedures fail to reject both H,: a =0, and
H,. The FM-LAD estimates give stronger support to the ‘acceptance’ of these hypotheses
than FM-OLS. Thus, the FM-LAD empirical results for the US dollar appear to support
strongly the forward rate unbiasedness hypothesis.

(3) Tests of the joint hypothesis of market efficiency, i.e. Hy: =0, b= 1, are unambiguous.
The Wald tests constructed from both the FM-OLS and FM-LAD estimates concur for each
currency: efficiency is clearly rejected (at the 0-5% level) for the Belgian, French and
Italian currencies; and efficiency is ‘accepted’ in the case of the US dollar.

Figure 13 graphs kermel estimates of the probability densities of the equation error u,, and the
exchange rate return u,, = Ax, for the Belgian franc. In each case a normal kernel was used with
a data-based (‘plug-in’) optimal bandwidth (see Silverman, 1986). (The same method was used
to estimate the density of 1, at the origin, f(0), as required for the FM-LAD estimator and its
associated Wald statistics—see equations (10) and (15) above.) In Figure 13 we also graph a
normal density with variance s* equal to the sample variation of the data—here either the FM-
LAD residual i, or u,, = Ax,.

The leptokurtosis and heavy-tailed features of the data are evident from the estimated
densities. To save space we report the graphs only for the Belgian franc, but similar patterns
were evident for the other currencies and these were shown in the original version of the paper,
which is available upon request. The heavy tails of the exchange returns corroborate our earlier
findings for the tail slopes of the distribution of these data that were reported in Section 2. The
form of these estimated densities, especially when taken in contrast to the approximating
Gaussian N(0, s°) distributions, confirms the appropriateness of robust estimation procedures in
the present context.

To examine multi-country effects we estimated equation (1") with ¢;=0 for each of the
currencies. The results are shown in Table V, which gives both FM-OLS and FM-LAD
regression statistics. The Wald statistic for testing the null hypothesis Hy: ;= 0, b, =0 (j=1),
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Figure 13. Belgium: density of (a) uy(¢) and (b) u, (1)

bi=1 of multi-market efficiency is rejected at the 5% level for each currency. Some of the
individual currency effects are particularly interesting. For instance, looking at the US dollar we
see that the forward rates for the French and Belgian francs both have a significant predictive
effect on the dollar’s future spot rate. These effects hold for both FM-OLS and FM-LAD
regressions.

In each of these multi-country regressions the own currency forward rate is the strongest
predictor of the future spot rate, and the FM-LAD estimates are not significantly different
from unity. There are some notable differences between the FM-LAD and FM-OLS coefficient
estimates in these regressions—the Belgian franc and Italian lira, in particular. This confirms
our earlier findings in the own currency regressions. In sum, the overall evidence does not
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Table V. Empirical estimates of the multi-currency model:

21

[ § J
Sr+l;—ai+ bijfl,k+u1+k
i=1

Joint test of

Estimation Belgium France Ttaly USA multi-market
Currency method a4, b, b, b b efficiency
Belgium FM-OLS 0-293 0-919 -0-046 0-004 0-168 13.623*
(0-478)  (-0-462)  (~0226) (0-028) (0-632)
FM-LAD -0-423 1-259 -0-376 0-254 0-164 19-029*
(-0-893) (1.934)  (=2-396)°  (1-926)  (~0-796)
France FM-OLS -0-071 0:066 0761 0-138 0-124 13.781°
(-0-112) (0-365) (-1:129) (0-781) (0-449)
FM-LAD -0-172 0-185 0-725 0-152 -0-096 21.227¢
(~0-394) (1-503)  (-1-896) (1-:259)  (~0-506)
Italy FM-OLS 0-811 -0-195 0-231 0-709 0-266 28-789¢
(2:901)¢  (-2-469)" (2:496)¢  (-3-732)f (2:192)¢
FM-LAD 0:026 -0-059 0-016 0-963 231 44-107¢
(0-123) (-0-991) (0-232) (-0-625) (2:512)¢
USA FM-OLS 0-065 -0-098 0-111 0-004 0-913 17.828°
(0:637)  (-3374)° (3-263)° 0-141)  (-1916)
FM-LAD -0:023 -0-070 0-078 0-021 0-936 13-704*

(-0237)  (-2498)° (2365)° 0-747)  (-1-469)

t-ratios in parentheses (centred on unity for own currency.
(i) One-tail significance: *5%, ° 1%, € 0-1%.
(ii) Two-tail significance: 5%, © 1%, "0-1%.

support multi-currency efficiency and there is some evidence (strong in the case of the US
dollar) that other currency forward rates do influence future spot rate movements in a
currency.

6. CONCLUSION

The early 1920s was a period of financial experimentation in the foreign exchange markets
when many countries abandoned the gold standard and adopted flexible exchange rates. Our
daily data on one-month forward rates and spot rates for four currencies (the Belgian franc,
French franc, Italian lira, and the US dollar all measured against the UK pound sterling) provide
an opportunity to examine empirical support for the forward unbiasedness hypothesis and
simple market efficiency during this interesting financial period. Since the data are, like most
high-frequency exchange rate series, heavy tailed and leptokurtotic, conventional regression
methods of analysis seem inappropriate. Like other recent work in this field we also need to
address the important issues of data non-stationarity and temporal dependence so that we can
analyze the data directly in log levels form.

The regression methodology of this paper relies on a fully modified least absolute deviations
(FM-LAD) estimator developed recently in other work (see Phillips, 1993). The FM-LAD
estimator is statistically robust to data distributions with heavy tails and is designed explicitly
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for nonstationary cointegrating regressions of the form that is involved in equation (1). Our
empirical results show substantial differences between robust cointegrating regression estimates
and those of least squares based procedures like the fully modified least squares estimator of
Phillips and Hansen (1990). Our findings confirm that the forward rate and spot rate for the four
currencies are cointegrated, especially over the latter part of the sample period from mid 1924
onwards. We find support for the presence of a stationary risk premium in the case of the
Belgian franc and the US dollar. The market efficiency hypothesis (H,), which requires that the
forward rate to be unbiased predictor of the future spot rate and the risk premium have mean (or
median) zero, is empirically supported for the US dollar—UK pound sterling exchange rate but
not for the other currencies. Multi-currency regressions reveal that other currency forward rates
do influence future spot rate movements in a currency and that multi-market efficiency is not
supported for any of the currencies, including the US dollar.
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