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The paper develops a statistical theory for regressions with integrated regres-
sors of unknown order and unknown cointegrating dimension. In practice, we
are often unsure whether unit roots or cointegration is present in time series
data, and we are also uncertain about the order of integration in some cases.
This paper addresses issues of estimation and inference in cases of such uncer-
tainty. Phillips (1995, Econometrica 63, 1023-1078) developed a theory for time
series regressions with an unknown mixture of 1(0) and I(1) variables and estab-
lished that the method of fully modified ordinary least squares (FM-OLYS) is
applicable to models (including vector autoregressions) with some unit roots
and unknown cointegrating rank. This paper extends these results to models
that contain some 1(0), 1(1), and I(2) regressors. The theory and methods here
are applicable to cointegrating regressions that include unknown numbers of
1(0), 1(1), and I(2) variables and an unknown degree of cointegration. Such
models require a somewhat different approach than that of Phillips (1995). The
paper proposes a residual-based fully modified ordinary least-squares (RBFM-
OLS) procedure, which employs residuals from a first-order autoregression of
the first differences of the entire regressor set in the construction of the FM-
OLS estimator. The asymptotic theory for the RBFM-OLS estimator is devel-
oped and is shown to be normal for all the stationary coefficients and mixed
normal for all the nonstationary coefficients. Under Gaussian assumptions, esti-
mation of the cointegration space by RBFM-QLS is optimal even though the
dimension of the space is unknown.

1. INTRODUCTION

Many researchers have investigated time series regressions with integrated
processes, and there is now a large literature. There are fully developed sta-
tistical theories available for regressions with 1(1) and a mixture of 1(0), I(1),
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and 1(2) variables, but all the existing theories either presume knowledge of
the order of cointegration and the number of unit roots in the model or
require pretest procedures to determine these. In practice, we are often
unsure whether unit roots or cointegration is present in data, and we are also
uncertain about the order of integration in some cases. This paper addresses
issues of estimation and inference in cases of such uncertainty and develops
a statistical theory for regressions with integrated regressors of unknown
order and unknown cointegrating dimension.

Recently, Phillips (1995) developed a theory for time series regressions with
an unknown mixture of I(0) and I(1) variables and applied it to vector auto-
regressions (VAR’s) with some unit roots and cointegration. His results do
not require any prior knowledge of the number and location of unit roots
in the systems and are applicable to models with any mixture of I1(0) and I(1)
processes. For instance, he established that the method of fully modified
ordinary least squares (FM-OLS), developed in Phillips and Hansen (1990),
is applicable to models, including VAR’s, with some unit roots and unknown
cointegrating rank.

The present paper extends the results in Phillips (1995) to models that con-
tain some I(0), I(1), and I(2) regressors. Models that include I(2) variables
are important because some major macroeconomic variables such as money
stock and price levels have been characterized as 1(2) processes in some recent
empirical work (see, e.g., Johansen, 1992; King, Plosser, Stock, and Wat-
son, 1991), and many VAR macroeconomic models include at least one such
variable. The theory and methods that are developed in this paper are appli-
cable to cointegrating regressions that include unknown numbers of 1(0),
I(1), and I(2) variables and an unknown degree of cointegration.

It turns out that models with unknown mixtures of 1(0), I(1), and 1(2)
regressors require a somewhat different approach than that of Phillips (1995).
This paper explains the difficulty and proposes a residual-based fully mod-
ified ordinary least-squares (RBFM-OLS) procedure, which employs resid-
uals from a first-order autoregression of the first differences of the entire
regressor set in the construction of the FM-OLS estimator. It is shown that
the limit theory of the RBFM-OLS estimator in the stationary direction is
normal and is asymptotically equivalent to that of the unrestricted OLS esti-
mator, and that the RBFM-OLS estimator for the nonstationary coefficients
has a nuisance parameter~free mixed normal limit distribution, which is opti-
mal under Gaussian assumptions for cointegrated models with I(1) and I1(2)
processes (cf. Kitamura, 1995). One consequence of the normal and mixed
normal limit theory for the RBFM-OLS estimators is that we can conduct
hypothesis testing using Wald statistics, which have limit distributions that
are linear combinations of independent chi-squared variates, along lines that
are similar to those of Phillips (1995, pp. 19-20) in the I(0) and I(1) case.

The framework of this paper enables us to study the asymptotic behavior
of the RBFM-OLS estimator in a general class of time series models that have
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various types of cointegration, covering CI(2,2) and CI(2,1) systems, in
Granger’s notation, as well as the usual CI(1,1) systems. The additional gen-
erality comes from introducing I(2) regressors into the model. The procedure
proposed in the paper provides an approach to unrestricted regressions for
fairly general time series that allows for integrated processes of orders up to
2 and the possibility of cointegration among the regressors.

The paper proceeds as follows. Section 2 gives the regression model and
outlines the assumptions that we need for the theoretical development. Sec-
tion 3 gives the limit theory for the OLS estimates in models with some 1(0),
I(1), and I(2) regressors. Section 4 considers models with cointegrated regres-
sors when there is no prior knowledge about the degree of integration of the
regressors and the directions of cointegration and develops the limit theory
of the new RBFM-OLS estimator. Section 5 concludes the paper and sum-
marizes its main results. A rather large number of useful subsidiary limit
theories is needed for our development, and these are collected in Appen-
dix A, with all proofs and technical details following in Appendix B.

The following terminology and notations are used in the paper. Follow-
ing earlier work, we call @ = 272 E(u,u;) the long-run variance matrix
of the stationary time series u, and write lrvar(y,) = 1. Similarly, we denote
long-run covariance matrices by Ircov(-) and call matrices of one-sided sums
of covariances, like A = 272, E(u,up), one-sided long-run covariance
matrices. We use BM (Q) to denote a vector Brownian motion with covari-
ance matrix £ and write integrals with respect to the Lebesque measure, such
as [y B(s) ds, simply as [, B. The notation y, = 1(d) signifies that the time
series y, is integrated of order d, so that A%y, = I(0), and this requires that
Irvar(A%y,) > 0. The inequality >0 denotes positive definite when applied to
matrices. We use the symbols 2, 9,’ =, and := to signify convergence in dis-
tribution, convergence in probability, equality in distribution, and nota-
tional definition, respectively. We also use [ 4| to signify the matrix norm
(tr(A’A4))Y2, | 4] to denote the determinant of A4, vec(A4) to stack the rows of
a matrix A4 into a column vector, and [x] to denote the large integer < x.
All the limits given in the paper are taken as the sample size 7 — co.

2. THE MODEL AND ASSUMPTIONS
We consider the model given by
v, = Ax, + ug,, 1)

where A4 is an (n x m) coefficient matrix and x, is an m = (m| + my + my)-
dimensional vector of cointegrated or possibly stationary regressors. We
use an (m X m) orthogonal matrix / = (H,, H,, H;), which rotates the re-
gressor space to separate out the I(0), I(1), and I(2) components of the
regressors in model (1), We then specify the regressors according to the fol-
lowing equations:
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Hix, =x;, ~ (m x 1) —1(0) process
Hix, = x;, ~ (my X 1) — I(1) process
Hix, = x5, ~ (my X 1) — I(2) process

with the data generating processes defined as

X1y = Uyys
Ale = Uy,
2 _—

Axy, = Uy,

where A is the usual difference operator. We now rewrite model (1) using the
preceding specification of x, as

ye=Aix + Ay + Asxy + uy,, (2)

where A, = AH,, A, = AH,, and A, = AH,. It is clear from (2) that the
nonstationary regressors are cointegrated with the dependent variable y, and
that the I(1) and I(2) components that constitute the nonstationary part are
possibly cointegrated themselves. Hence, model (2) covers cointegrations of
the forms CI(2,1) and CI(2,2) as well as the most widely studied CI(1,1) in
Granger’s notation. The model of course also allows for full rank I(1) and/or
full rank I(2) regressors, which are not associated with any form of cointe-
gration. We construct data matrices from the variables in (2) and convention-
ally denote them by uppercase letters. Then, (2) is written as

Y = A, X+ A X5+ A X} + U,

with X, = U}, AX, = U,, A’X,; = U; and where Y' = (y,,...,y7).

There is literature available on procedures to estimate and pretest for the
direction of cointegration and the rank of the cointegrating space of the re-
gressors, along with numerous tests for nonstationary characteristics of the
data. However, it is well-known that there are cases where different proce-
dures do not concur and lead to different inferences, even when they are
based on the same data set. Thus, our goal is to develop a methodology that
is not dependent on any prior specification of the data so that we can pro-
ceed without any information about the nonstationary characteristics of the
data and the cointegration space itself, that is, with A unknown. With the
approach developed in this paper, one can simply treat the model given in
(1) as a time series regression without pretesting the regressors for unit roots,
double unit roots, and cointegration, that is, without being specific about the
1(2), I(1), and 1(0) components of the data.

We let the error process u, = (ug,, uy,, us,;, 43,)’ be an (n + m)-vector sta-
tionary process and define ¢, = uy, ® u;,. We make the following assumption.
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Assumption 1. u, is a linear process that satisfies

(@) u, = C(LYe, = 2720 Cje,—j, with 2372,/ C;| < o for some « > 1 and

[CD)] #0;
(b) ¢ is i.i.d. with zero mean, variance Z,, > 0, and finite fourth-order cumu-
lants; and

©) E(e,;) = Etor; ® uy;) = 0 for all j = 0.

Assumption 1 ensures the validity of the functional central limit theory for
both u, and u,u; (cf. Phillips and Solo, 1992). In particular, we have

| LN
— = 0,Q. 3
\/—7: I:ZI [ CJ\(( Pg") ( )
with
Qo = Z E(ugugy; & Uy Uie))- “)
Jj=—00

We also have
J AR,
— 3 B()=BM(Q),
Neal tzZ} u, = B() (2) 5

where B = (B, B{, B;, B;)' 15 an (n + m)~vector Brownian motion with co-
variance matrix

Q= C()E, . C(l)y

2 Etujug)

J=—c0
=L+ A+ A,
where
L = E(ugus),

i=1
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We also define the one-sided long-run covariance matrix as

A=T+ A= E(wuy) = 3 T()),
Jj=0 Jj=0

where I'(f)’s are autocovariances. We partition the variance matrix, I, and
the one-sided long-run covariance, A, of u, into cell submatrices L;and &
(for i,/ = 0,1,2,3) conformably with the partition of u,. When u,, and u;
are independent for all 7 and s, Q,,, in (4) reduces to 272, E(ugttg4)) &
E(uyui,y;). And when, in addition, ug, is i.i.d. (0,Z), £, becomes sim-
ply Loo ® Iy

In later analysis, we use spectral estimates of { and A that are based on
kernel smoothing of the component sample autocovariances. The general
form of the kernel estimate can be found in Priestley (1981) or Hannan
(1970). We use the following general form for kernel estimates of € and A,
that is,

Q=TI2' wU/K)T (), (6)
A =TI wi/KT (), (7)

where w(-) is a kernel function, K is a lag truncation or bandwidth param-
eter, and I'(-) is a sample autocovariance. Truncation in the sums given in
(6) and (7) occurs when w(,j/K) = 0 for |j| = K.

As in the analysis for the I(1) cointegrated model studied in Phillips (1995),
kernel estimation of both @ and A plays an important role in developing the
limit theory for our I(2) cointegrated system. The conditions employed in the
aforementioned paper are generally sufficient for our analysis, as we will dis-
cuss later, and we will use the same class of admissible kernels as in that
paper, namely, the following assumption.

Assumption 2. The kernel function w(-):® — [—1,1] is a twice continu-
ously differentiable even function with

(a) w(0) =1, w'(0) =0, w”(0) # 0; and
(b) w(x) =0, | x| =1, with

w(x)

lim ———— = constant.
Ixi=1 (1 = |x])

Assumption 2 allows for the commonly used Parzen and Tukey-Hanning
kernels.

Assumption 2(b’).
w(x) =O0(x7?), as|x|— 1.

If, instead of part (b) of Assumption 2, Assumption 2(b’) is assumed, then
the Bartlett-Priestley or quadratic spectral kernel becomes admissible (see,
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e.g., Priestley, 1981, p. 463). We mention that Assumption 2 gives sufficient
but not necessary conditions on the kernels for our later analyses.

We also have to be explicit about the bandwidth expansion rate of K as
T— oo. We use the expansion rate order symbol O, defined in Phillips (1995)
to conveniently characterize rates of expansion of K = K(T) as T — <o, that
is, the following definition.

DEFINITION 1. The expansion rate order symbol O, is defined as
K = 0,(T*%)
if
K~c;TY as T— oo,
where cr Is slowly varying at infinity, rhat is, limy, cp./cr — 1 for any
constant x > Q.

Using the definition K = O,(T*), we now impose the following condition
on how the bandwidth parameter K grows as 7— oo in the next assumption.

Assumption 3. The bandwidth parameter K in the kernel estimates in (6)
and (7) has an expansion rate of the form K = O,(T*) for some k € (0,1).
We specify the following explicit rates:

BW (a): K = O,(T*) for some k € (1,1);

BW(b): K = O,(T*) for some k € (3,1);

BW (c): K = O,(T*) for some & € (0,3);

BW(d): K = O.(T*) for some k € (0,1).

Under Assumption 3, K ~ ¢7T* for some slowly varying function cy.
Thus, for any & € (0,1), we have
K ¢ T*

T T =c; T 10 as T— o,

and for any k > 3, say k = § + & with § > 0, we have

K4 (C»I-Tl/4+é)4
TS T

=c}T* 5 .

Similarly, for k = § — &, we have

K2 (e
T T ’

Hence, BW(a) implies that, as T~ oo, VT/K? + K2/T — 0 holds for k €
1, 5). We note that conditions BW(a) and BW(b) do not include the opti-
mal growth rate X ~ ¢T° (cf. Andrews, 1991), with c a constant, that ap-
plies when minimizing the asymptotic mean squared error of kernel estimates
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such as Q with kernels that satisfy the conditions in Assumption 2. But con-
dition BW(c) does include the optimal growth rate. We mention here that we
do not attempt to achieve an optimal expansion rate for K in the cases that
require BW(a) or BW(b), because our goal is to achieve efficient estimation
of model (1), not optimal kernel estimation of Q.

3. OLS ESTIMATION

We first study the limit theory of the OLS estimator for the coefficient matrix
A in model (1) to help motivate our new estimator. Define a subscript cou-
pling notation b by

b —_ “2’3’”
and use this to rewrite model (2) as
o= A+ ApXs + o (2')

where Xy = Uyy, Ab = (Az,Ag) = AH[,, and Xpr = H;,X, = (letaxér)l» With
model (2'), we consider jointly the I(1) and I(2) regressors, the nonstationary
part of x,, separately from the stationary component. It is convenient to for-
mulate the asymptotic theory in terms of the component submatrices 4, =
AH, and A, = AH, in model (2') that correspond to the stationary and
nonstationary elements of the regressors. Before we proceed, we introduce
an additional notational device to simplify some expressions in our later
development. We use X, to denote the H-transformed X, namely,

X, = XH = (XH,, XH,) = (X,,X,)

and XP to mean that the I(1) and I(2) regressors in X, are normalized by
Dy defined here as

Tl 0
XP = X,Di' = (T7' Xy, T72X5) withDT=( 2 )

0 T%1,,

The OLS estimator of A4 in (1) is defined as 4 = Y’ X(X'X)™!, and the
limit theory for OLS follows directly from Lemma 2.1 of Park and Phillips
(1989). We state it here for convenience.

PROPOSITION 1. Under Assumption 1, we have

(@) VT(A — A)H, 2 N(0,(I ® 270, (I ® 1)),
(b) (A — AYH, D5 (f} dBy B, + Aoy) (fd By By,

where Bj, = (B}, B}) with By(r) = [, B3(s) ds, and Ay, = (Ap,0).

Remark. We decompose the Brownian motion B, (r), using Lemma 3.1
of Phillips (1991b), as

Bo(r) = By.p(r) + Qo Qi By (1),
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where BO~b = BM(QOO-b) and QOO-b = QOO - QObe_bl QbO' Then, the limit dis-
tribution of the OLS estimator given in Proposition 1(b) can be alternatively
written as

1 1 -1
(f d(Bo.p + QosQps By) By, + Aoz:) (f BbBé>
0 Q
1 | -1 1 | —1
- dBO_,,E;,( f Ebé;,> + 00,05 [ dB,,B',;( [ EbE;,>
0 0 0 0
1 o —1
+ Aoz:(f BbBé> . (8)
0

We note that the first term in the preceding expression is mixed normal with
the conditional covariance matrix

1 -1
Q0.6 & (f BbBlln> ,
0

which is the variance matrix of the optimal estimator under Gaussian assump-
tions for cointegrated models with I(1) and I(2) processes (see Kitamura,
1995; Phillips, 1991a). The second term involves the long-run covariance ,
between the equation error u,, and u,, that drives the nonstationary regres-
sors x,, and a mixture of unit root and double unit root limit processes.
Finally, the third term involves serial correlation between the equation error
and the I(1) regressors x,,. As shown in Park and Phillips (1989, Lemma 2.1),
there is no serial correlation effect in the limit distribution between the equa-
tion error and x;, because the signal from the [(2) regressor is so strong rel-
ative to the effects of serial correlation between the equation error and the
past history of the shocks {us3;s < ] that generate the I(2) regressor. The
second and third terms together measure the extent of the second-order
simultaneous equation bias that results from the endogeneity in x,, associ-
ated with the cointegration linkage between y, and x,,, which is apparent
from (2’). The second order simultaneous equation bias then brings a mis-
centering, an asymmetry, and nonscale nuisance parameter dependency to
the limit distribution of A,.

With Assumption 1, we allow the errors to be correlated both contempo-
raneously and over time. These correlations produce the endogeneity and
serial correlation effects that are manifested in the limit theory given in Prop-
osition 1. The fully modified estimator in the next section is a regression esti-
mator that is designed to remove these effects of endogeneity and serial
correlation in the limit theory.

If we had prior knowledge about the nonstationary characteristics of the
data (i.e., if H were known a priori), we would be able to remove the endo-
geneity and serial correlation problems in the limit distribution of the OLS
estimator by using endogeneity-corrected dependent variables and by mod-
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ifying the estimator to eliminate any serial correlation effects in the limit.
This idea underlies the construction of the original fully modified estimator
in Phillips and Hansen (1990). Of course, there is no need for such cor-
rections as far as the stationary components of the system are concerned,
because the OLS estimator of these components already has good asymptotic
properties under our error conditions, as shown in Proposition 1. For the
nonstationary component submatrices, however, we do need to undertake
such adjustments to the data and the estimator if we are to obtain a limit
theory with a mixed normal distribution and if we are to have any hope of
attaining a regression equivalent of an optimal estimator under Gaussian
assumptions. The FM correction terms are designed to remove the endo-
geneity in the nonstationary regressors x;,, which results from the cointegra-
tion linkages with the dependent variable y,, and the serial correlation effects
between the error u,, and the innovations that drive the I(1) regressors x,,.

When H is known, we have model (2'), where the regressors are explicitly
specified as 1(0), I(1), and I(2). We can then apply the necessary adjustments
only where they are needed to obtain a new estimator with improved asymp-
totic properties. The necessary correction terms here can easily be constructed
by using the estimated sample autocovariance I'(+) in (6) and (7) defined as

FHYy=T"2 a8/,

where Y}’ signifies summation over 1 < ¢, t —j < 7, and &, = (dg,,u5,,
uy, us,) with &y, =y, — Ax,, the first-stage OLS residuals, u,, = H{x,, the
regressors in the stationary direction, u,, = H3Ax,, the first difference of
the regressors in I1(1) direction, and u5, = H;A%x,, the second difference of
the regressors in I1(2) direction. More precisely, an efficient asymptotically
mixed normal estimator of 4, in (2’) can be defined as

At = (ATH, AT = (V'X,, YT X, — TO*) (X' X)™

where
++s r_ O Ay —1 .
Y =Y Ql/()uhﬂuhuhub
A+ — (AT
A - (Aﬁouzso)
with
~ o . Ao
Al?ollz - Al‘louz - Ql}gzthuhuhAubug'

It can be shown straightforwardly that the limiting distribution of Aftis
identical to that of the first term in (8). The use of g, in the place of u,, will
not affect our results as A > A under Assumption 1.

In general, however, we do not have precise information about the con-
figuration of the regressors; that is, the components xy,, x,, and x3, are not
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known a priori, thereby eliminating the possibility of constructing the nec-
essary correction terms. The next section develops a procedure that makes
all the adjustments that are necessary to obtain an asymptotically optimal
estimator under Gaussian assumptions without any prior knowledge about
the nonstationary characteristics of the data.

4. FM-OLS AND RBFM-OLS ESTIMATION

We develop a version of the FM procedure that is robust to the precise spec-
ification of the “integratedness” of the regressors x,; in model (1). Phillips
(1995) provided an extensive account of this problem for models with cointe-
grated I(1) variables. That reference shows how the usual FM procedure
works with cointegrated regressors. The limit theory of the FM-OLS estima-
tor for the stationary component remains the same as the OLS estimator,
that is, it is still Gaussian, but the FM-OLS estimator of the coefficients of
the I(1) regressors is asymptotically mixed normal. To achieve the asymptotic
equivalence of FM-OLS and OLS for the stationary component, the band-
width parameter expansion rate k, which is used for the construction of ker-
nel estimates of long-run covariance matrices, is required to be in the interval
(#,1). The limit theory for the nonstationary compenent holds when the
expansion rate & € (0,%). Hence, the FM-OLS estimator as a whole achieves
the optimal (conditional) Gaussian limit distribution for & € (§,%) in Phil-
lips’ mixed 1(0) and I(1) model.

In this section, we extend the analysis of Phillips’s paper by adding 1(2)
processes to the model, as specified in (2) earlier. Our procedure follows the
basic idea of the FM methodology in the sense that we transform the data
to correct for potential endogeneities in the regressors and modify the esti-
mator to correct further for any remaining serial correlation effects. How-
ever, the usual correction terms employed in Phillips (1995) and Phillips and
Hansen (1990) that are based on the first difference of the regressors do not
work completely in 1(2) regressions, as the first differences of the I(2) regres-
sors are still (1), and the FM-OLS estimator based on such correction terms
has a nonstandard limit theory (for an illustration and discussion of this
result, see Phillips and Chang, 1994). It is also not sufficient to base correc-
tion terms on a vector of first and second differences of the data. Thus, the
problem of assigning corrections is substantially more complex in models
with 1(0), I(1), and I(2) components.

We show that the new FM correction terms defined later lead to optimal
estimators under Gaussian assumptions. In particular, we show that the re-
sults in Phillips (1995) continue to apply in models with an unknown mix-
ture of 1(0), I(1), and I(2) regressors under exactly the same conditions except
for the ranges of allowable bandwidth parameter expansion rates. We show
that the limit theory for our FM-OLS estimator, given in (18) later, in the
stationary direction is still normal, but it requires a bandwidth parameter ex-
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pansion rate K = O,(T*) for k € (§,3) for the limit theory to hold. We also
show that the joint FM-OLS estimator for the I(1) and 1(2) coefficients at-
tains the optimal mixed normal distribution under a bandwidth parameter
expansion rate k € (0,3).

We proceed by considering the following first-order vector autoregression
of the first differences of the entire regressor set on their first lags, namely,

Ax, = JAX,_, + D,, 9
which can be respecified as

H'Ax, = H'JHH Ax,_, + H'D,,

that is,

Axy = JnAx g+ JpAxyy + J3Axy + Oy, (10)
Axy, = Sy AXy g + JnAXy_ ) + JyAxyy + D, (11
Axy, = g Axy oy + JuAXy g + J3Axs,, + Day. (12)

We note that plim J;; and plim /3, the probability limits of the coefficient
matrices on the I(1) regressor Ax;,_, in regressions (10) and (11), are 0 (oth-
erwise, the regression would be spurious, which it is not). Also, note that
regression (12) is a full rank (1) regression and, hence, plim J3; is the iden-
tity matrix. Then, equations (10)-(12) can be reformulated as regression
equations for the model

Axy, Jin Jiz Uiy
Axy,-

Axy | = | Jn JIn < 1 l> + vy,

5 AXxy

AXy, Sy I U3,

where (vy,,03,,03,) =: v, is a stationary process. The residuals in the pre-
ceding equation are defined as

Ut = u;z + Gh Upi—1, (13)
where
-
Auy,
. Auy,
U = | ty |, u,,,:( 1) a4
Uy,
Lu.%/
and
-
- =Ji2 Ly L,
Gy=| -y —Jnl| =M M. (15)
L—J31 _J32 Nl N2
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Note that the residuals v, contain the linear combination of u,, that is nec-
essary for correcting the endogeneity in I(1) and I(2) components jointly.

Because vy, is not observed, we use the residuals from regression (9) al-
ready given, that is,

0, = Ax, — JAx, |,

which can be similarly respecified as &y, := H'0, = H'Ax, — H'JHH' Ax,_;,
namely,

Axy, Jn Jn Js| | ax
O = | Axy | — | Jn Jo2 oy | | Axa
Axy, j31 jsz j33 Axzy

Now, plim J;; = plim J,; = 0, plim J;; = 7, and we may conveniently write
Jis=Jas = O,(T"") and Jy; = I + O,(T"), because these OLS estimators
of the coefficients of the 1(1) variables are T-consistent. Then, the right-hand
side of the preceding equation becomes

Axyy Ju I, AXxy,y

A B 2 2 AXxy —1
Xa; S I + O, (T™") | Ax3y |,
, R . AXxyg

AXxy, Jy Iy Axsz

giving the following expression for 9y,

O = gy + Guidp_y + 0,(T™'7?), (16)

where G, is defined as

. VY N

Gyi=1{ ot ) an
Ly, w5, N

Next, we define our FM-OLS of the coefficient matrix 4 in the [(2) cointe-
grated system given in (1) as

At = (YVX — TAY (X' X)™, (18)
where

v =y = Qe 05 00, (19)
and

AT = Agyae = Qugs Qi Agar. (20)

Because the correction terms provided in (19) and (20) are constructed using
the residual &,, we call the estimator defined in (18) a residual-based fully
modified ordinary least-squares (RBFM-OLS) estimator. Notice that we do
not need any information on H for the construction of the estimator At
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We denote the long-run and one-sided long-run covariance matrices be-
tween the errors uy, and vy, the H-transformed v,, as @y, and A,,, and define
their kernel estimates as in (6) and (7) in terms of the sample autocovariances.
We similarly denote the long-run variance and one-sided long-run variance
matrices of v, as Q,,,, and A,,,, and define their kernel estimates in the
same way as (6) and (7). We use the following notation to represent kernel
estimates of these long-run covariances that are defined by the sample auto-

covariances associated with the lagged variable u,,_, = (Auj,_;,u%_,):
A T_l A
=D, w(/K)T(G+ 1), 21)
J=—T+1
A T_l -~
= >, w(/K)I'(j—1), (22)
j=—T+1
and
-~ T_l A
TA= D w(i/KT(j - 1), (23)
J=0

where the sample autocovariances are constructed from the first-stage OLS
residuals 7, and the residuals §;, from (16). Define {, = (ii,, 5},)" Then, the
sample autocovariances in the preceding equations are given by

PG+ D =T 68 e
rj-n=1" 2/5:;5:;—(1'—1),

where >’ signifies summation over 1 < ¢, f —j ¥ 1 < 7. As can be seen from
the definition of vy, given in (13), these estimates involve components such
as Qi Quounr Quguzs Ly and *Q,, 5, as well as the components @,
and Quhuh that appear in the analysis of cointegrated 1(1) systems in Phillips
(1995). The asymptotics for these kernel estimates can be constructed as in
Lemma 8.1 of Phillips (1995) with some modifications regarding +§, ~,
and ~A, and it turns out that Assumption KL in the aforementioned paper
is sufficient to deal with the degeneracies in the submatrices of the compo-
nent long-run covariances constituting ,, ,, corresponding to the I(—1) dif-
ference Au,,. As already outlined in Assumptions 1 and 2, the error
conditions and the kernel conditions that we need for the asymptotics here
are exactly the same as those given in Phillips (1995). All the asymptotic
results regarding the estimation of these long-run covariance matrices that
we need for our subsequent theory are collected together in Appendices A
and B. They provide a set of important subsidiary results for out main devel-
opment here.

We now present the limit theory for the RBFM-OLS estimator A+ de-
fined in (18) when H = (H,, H,,H,), that is, when our model allows for
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integrated processes of orders up to 2 and the possibility of cointegration
among the regressors.

R THEOREM 2. When H = (H,,H,,H,), the following limit theory for
A holds under Assumptions 1 and 2:

(a) NT(A* = AVH, SN0, (I ® 210, (T ® B ), L
(b) (A* — AYH,Dr= [3dBo., By ([ ByBi) ™' = MN(0, Q0.5 ® (g B, Bi) ™).

Part (a) holds for the bandwidth parameter expansion rate BW(a); that is,
K = O,(T*%) for k € (%,%). Part (b) holds under BW(c); that is, for
k € (0,3). Thus, parts (a) and (b) both hold under BW(a).

Remark. Note that, by construction, the RBFM correction terms have
no effect on the limit distribution of the stationary component coefficient
submatrix for bandwidth expansion rates & € (4,3). Consequently, the limit
theory of the RBFM-OLS A* in the stationary direction is normal and
asymptotically equivalent to that of the OLS estimator for k € (,3). The
limit distribution of the RBFM-OLS estimator for the nonstationary regres-
sors is mixed normal for & € (0,1) and, thus, is free from the endogeneity
and serial correlation problems, appearing in the limit distribution of the
OLS estimator given in Propositions 1(b) and (8). One important conse-
guence of this property is that we can conduct hypothesis testing based on
asymptotic chi-squared and mixed chi-squared tests using classical procedures
such as the Wald test, as shown in Remark 4.4(f)-(i) and Theorem 4.5 in
Phillips (1995). Hence, Theorem 2 shows that the limit theory of an I(1)
cointegrated system given in Phillips (1995) continues to hold for our 1(2)
cointegrated system, but now a much wider range of cointegration type is
permitted.

The following corollaries give results for some specific versions of model
(1). The model configurations can conveniently be specified in terms of the
rotation matrix A, which prescribes the stationary/nonstationary character-
istics of the regressors and the type of cointegration involved. For example,
when H = (H,,H,), the model is a cointegrated 1(1) system covering co-
integration of the form CI(1,1). The limit theory for this case is given in the
next corollary.

COROLLARY 3. When H = (H,,H.), the following limit theory for A+
holds under Assumptions | and 2:

@ VT(A* — A)H, BNO,U® £, (I ® i),
(b) T(A* — AV H, 3 [1dBy.2 B (J1 By By) ™' = MN(0, 002 ® (JLB2B3)™Y),

where 30.2 = B() - 90292_2132 = BM(QOQ.z) and 900.2 = QOO - 90292_21920.
Part (a) holds with the bandwidth parameter expansion rate K = O,(T*) for
k € (3,3). Part (b) holds for k € (0,%). Both parts (a) and (b) hold when
k€ (3,3).
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Remark. Corollary 3 covers the case that is considered in Theorem 4.1 of
Phillips (1995). Our theory gives exactly the same results except that the range
of the allowable bandwidth expansion rate for part (a) is a little narrower.
In Phillips (1995), the Gaussian limit theory for the stationary coefficient is
valid for k € (4,1), and the required bandwidth rate for the [(1) coefficient
to be mixed normal is k € (0,3). Hence, roughly speaking, we may say that
we are giving up the range of rates k € (3,%) by introducing the additional
generality of 1(2) regressors into the model.

COROLLARY 4. When H = (H,, H,), the following limit theory for A*
holds under Assumptions 1 and 2:

@ VT(A* — AVH, B N0, ® £7)0,, (I ® 1),
(b) T2(A* ~ AYHy 3 [} dBy 3B ([ By By) ™" = MN(0, 0005 ® (J) B3B5)™1),

where By.3 = By — Q03 Q33' By = BM(Qyg.3) and Qog.3 = Qoo — Q3033 Q3.
Part (a) holds with the bandwidth parameter expansion rate K = O,(T*) for
k € (§,1). Part (b) holds for k € (0,3). Both parts (a) and (b) hold for
ke (3,3).

Remark. Corollary 4 covers cases where all of the nonstationary variables
are I(2) and some linear combinations of the I(2) variables are cointegrated
and become stationary, that is, a CI(2,2) case. There may well be I(1) vari-
ables, but they are all cointegrated and absorbed into the stationary compo-
nent. Chang and Phillips (1994) showed that the FM correction terms that
are based on the second difference of the regressor set A%x, do work com-
pletely for models with an unknown mixture of I(0) and 1(2) regressors. The
limit theories developed in the aforementioned paper are equivalent to those
given earlier except for the allowable bandwidth expansion rates— the re-
quired ranges of £ for parts (a) and (b) to hold are k£ € (3,1) and £ € (0,1),
respectively.

COROLLARY 5 (Stationary Case). When H = H,, under Assumptions 1
and 2, we have

VT(A* — 4) 3 N0, ® £7NQ,, (I ® T},
with the bandwidth expansion rate K = O.(T*) for k € (1,1).

The following corollaries cover cases where the possibility of cointegration
among regressors is excluded. The regressor x, may be full rank I(1) or full

rank I(2) processes. Of course, it may well be a mixture of full rank I(1) and
I(2) processes.

COROLLARY 6 (Full Rank 1(1) Case). When H = H,, and under
Assumptions | and 2 and BW(), that is, K = O,(T*) for k € (0,1), the foi-
lowing holds:
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1
T(A* — A) Ef dBo.zB§<f
4] 0

1 -1
= eN\eN(OaQoo-z &® <f BzBé> >
0

Remark. The same result was given in Phillips and Hansen (1990), where
the fully modified regression method originated. Many other researchers have
investigated this case, and several methods are now available in the literature,
such as the spectral cointegrating regression method of Phillips (1991b),
the canonical cointegrating regression by Park (1992), the modified regres-
sion method by Saikkonen (1992), the dynamic OLS and GLS by Stock and
Watson (1993), the full system maximum likelihood estimation by Phillips
(1991a), and the nonlinear least-squares method of Phillips and Loretan
(1991). These estimators are asymptotically equivalent to the full-system max-
imum likelihood estimators and optimal in the sense that they are median
unbiased in the limit and that their variance matrices are equivalent to that
of the optimal estimator under Gaussian assumptions (for further discussion
on this point, see Phillips, 1991a).

1 -1
B, B§>

COROLLARY 7 (Full Rank I(2) Case). When H = H;, and under
Assumptions 1 and 2 and BW(c), that is, K = O,(T*) for k € (0,3), the fol-
lowing holds:

i 1 —1
TZ(A+—A)3f dBO.3B3’<f E3E5>
0 0

i -1
= eN\eN<0,Qoo-3 & <f 53§§> )
0

Remark. Chang (1993) considered the FM estimation in full rank I1(2)
regressions and provided the same limit theory as given earlier. That paper
also addresses the issue of possible misspecification in using the original
FM-OLS regressors when, in fact, the regressors are 1(2) and shows that the
limit theory for such a misspecified FM-OLS estimator is nonstandard and
depends on nonscale nuisance parameters. The simulation study in that paper
compares the finite sample properties of the OLS, misspecified FM-OLS, and
the correctly specified FM-I(2) estimators and shows that, overall, the esti-
mated distribution of the correctly specified FM-I(2) is better centered and
suffers much less from asymmetry than those of the OLS and misspecified
FM-OLS. This simulation confirms the asymptotic theory in Chang (1993)
that the FM estimation procedure is beneficial only when it is conducted with
a correctly specified model; otherwise, it just adds more bias, dispersion, and
asymmetry to the distribution.
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COROLLARY 8 (Full Rank I(1)/1(2) Case). When H = (H,,H;) =
H,, and under Assumptions 1 and 2 and BW(c), that is, K = O,(T*) for
k € (0,3), the following holds:

1

1
(A++A)Drgf dBo_bE;,<f
4] 0

1 —1
= dV\J\!(O,Qoo-b ® (f EbEl;) )
0

Remark. With prior information about the configuration of the cointe-
gration space and the order of integration of the regressors, Chang (1993)
derived the limit theory for the FM-OLS estimator for this case. Kitamura
(1995) obtained the same limit theory by employing the full-system maximum
likelihood estimator procedure suggested in Phillips (1991a), but that pro-
cedure also presumes knowledge of the order of cointegration and the num-
ber of unit roots and double unit roots in the model.

—1
EbB,;>

5. CONCLUSION

Motivated by earlier work in Phillips (1995) that applies the FM-OLS princi-
ple to possibly cointegrated I(1) models, this paper proposes an RBFM-OLS
procedure. The framework of the paper enables us to study the asymptotic
behavior of the RBFM-OLS estimator in a general class of time series mod-
els, which allows a wider than usual range of cointegration and covers the
CI(1,1), C1(2,2), and CI(2,1) systems in Granger’s notation, thereby includ-
ing 1(2) regressors in the model. The theory shows that the RBFM-OLS esti-
mator is consistent and optimal for the nonstationary coefficients under
Gaussian assumptions and is robust to the specification of the nonstation-
ary characteristics of the regressors and the precise configurations of co-
integration space. In particular, it is shown that the limit theory of the
RBFM-OLS estimator in the stationary direction is normal and is asymptot-
ically equivalent to that of the unrestricted OLS estimator and that the
RBFM-OLS estimator for the nonstationary coefficients has a nuisance
parameter-free mixed normal limit distribution. Moreover, optimal estima-
tion of the cointegration space is attained under Gaussian assumptions with-
out prior information about the presence or number of unit roots and/or
double unit roots and cointegrating relations. As discussed in Phillips (1995,
pp. 19-20), this property in turn simplifies inference for the RBFM regres-
sion estimates. In particular, we can conduct hypothesis testing using Wald
statistics that have limit distributions that are linear combinations of inde-
pendent chi-squared variates.

The next step in this approach is to apply the RBFM-OLS regression in the
context of VAR’s that include unknown numbers of 1(0), I(1), and 1(2) vari-
ables and an unknown degree of cointegration. As in Phillips’s analysis of 1(1)
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VAR's, this extension should lead to an RBFM-VAR procedure that will offer
many of the advantages of unrestricted levels VAR while allowing for vary-
ing degrees of nonstationarity and cointegration. These extensions are pres-
ently under investigation and will be reported in later work.
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APPENDIX A:
USEFUL LEMMAS AND PROOFS

For convenience, we assume that the kernel functions w(-), used in forming long-
run covariance matrix estimates, satisfy the explicit kernel conditions given in Assump-
tions 2(a) and 2(b). Note that the kernel function w(x) is truncated for |x| > 1 in
Assumption 2(b), and this leads to the truncation of the sums in the kernel estimates
given in (6) and (7), namely,
) K=1 A K-l .
0= 2 wU/KTG), A= wi/KTIQ).

J==K+1 j=0
The same truncation is applied to *@, ~€, and ~A defined in (21) and (22). Therefore,
the proofs given in this section hold for the Parzen and Tukey~Hanning kernels, as these
kernels satisfy the truncation conditions. Phillips (1995) showed that his limit theory
holds for untruncated kernels that satisfy Assumptions 2(a) and 2(b’) and illustrated
the modifications to the proofs that are needed to deal with the untruncated sums in
kernel estimates (6) and (7). The same modifications apply here to achieve extension
of our results to untruncated kernels and, to save space, will not be detailed.

LEMMA 1. Under Assumptions 1 and 2 and BW(Q) of Assumption 3, the follow-
ing hold:
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KU oo
@ 2 Aw(()/K)TG)=K2wn0) 25 (1(J) = /2T (j) + 0,(1/JTK),
J=Kp, Jj=—oo
KU
(b) D5 A2w(()/K)T () = K 2w (0)Q + 0,(1/TK?)
-=KLn
JKU o0
© 2 awlGY/K)T () =K2w/(0) 2 (I(J) = 1/2)T(j) +
J=Kp, =K,

0,(1/VTK),

kY =
@ 2 &Awl()/KTG) =K 2w 0) 2 T+ 0,(1/VTK?),
J=Kp, J=Ky,
where KY€ (K~ 1, K -2, K -3), K, € {-K+ 1, -K+2,-K+3},K, €
(=1,0,1}, and {(j) = j, j = 1 or j = 2. The error terms of O,(1/TK) that appear
in parts (a) and (c) are sharp. The same applies to the terms of O,(1/JTK %) that
appear in parts (b) and (d).

LEMMA 2. Under Assumptions 1 and 2 and BW(d) of Assumption 3, the fol-
lowing hold:

@ Quuan, = —K~ w”(omn + O,(1/NTK?) + 0,(K2);
(0) *Qayy a0y = —K 2w ()R + O,(I/NTK?) + 0,(K72);
© “Cauan, = —K2W(0)Qy + O, 1/W)+o (K%);
(d) QHOAH. = K2w"(0)®o + O, (l/x/"T?) + 0,(K7%),
+QHOM = K72w"(0)®, + 0 ,(1/NTK) +o,,(1( 2)
() Qum = K72w"(0)®, + O, (1/\/77) + 0, (K2
QM.H,, —K 2w (0)®,, + O, (1/NTK) + 0,(K 2),
() QMW =K~ 2w”(0)<1> + 0, (1/\/"T?) + 0,(K7%);
(g) _QAu]uh = —K2w"(0)®1, + O,(1/NTK) + 0,(K%);
(h) QAW,Z = —K72w(0)®h + O,(1/VTK) + 0,(K7?);
(i) -Quzm,1 = —K2w"(0) <1>21 + O,(1/NTK) + op(K“z),
‘Qusz —K2w"(0) 83, + O,(1/VTK) + 0,(K %);

) *Qugu = Qg = Qg = g K‘Zw”(O)cboz + 0,(1/NTK);
(k) +9uhu2 o= S}ubuz Qub_\uz = Q ih -K- W”(O)‘bbz + Op(l/V TK);
(]) —Quzub = Quzub - Quz_\uh Quzu[, + K—zwﬂ(o)q>2_b + Op(l/V TK);

where &, =52 _(j— 2)11,,",(]) =2 (= (V) R1s =272 W+
D00, () 85 = BZ_wl + Dl ()), & = T2 o = 3T,,00), &5 =
Zine+ D), and &5 = 372 (j + 3)T,,,(J) for i = 0, b. The error
terms of O,(1/ W) that appear in parts (a)-(c) are sharp. The same applies to the
terms of O,(1/NTK) that appear in parts (d)-(l).

LEMMA 3. Under Assumptions | and 2 and BW(d) of Assumption 3, the fol-
lowing hold:

@) Qo = Qugu, G+ O, (K %) + 0,(1/VTK),
() Q. = GQW,)G' + O,(K™2) + 0,(1/NTK),

{O)

© Lo, b = () (G'GY™2 + 0,(1), O,(1) + O,(K>2T~12)C,
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@ Qs = (?UW’ + O, (K72) + O,(TK™"?),
(e) Qu()i‘h = Quovh + OP(K_Z) + OP(TK—VZ)’
where
L, (I+M,) N;
G'= ( 02 ( 0 ! 12), =(G,G)EO(m) withG=G(G'G)™'"2

The error terms of O,(1/NTK) in parts (a) and (b) and of O,(K**T7V2) in part (c)
are sharp. The same applies to the terms of O,(KT %) that appear in paris (d)
and (e).

LEMMA 4. Under Assumptions 1 and 2 and BW(d) of Assumption 3, the fol-
lowing hold.:

@) Agpan, = Op(1/VTK),

(b) A,,O,,z = Agy + O, (K/T)'2,

() éuom = 0,(X),

(d) Ay,ax; = Op(K),

(e) T-IAU’ U - AMIA,,, = K2w(0)¥y, + O,(1/\[TK?) + 0,(K %),

6 77U U, - Bupany = —K 72w (0)¥,, + O,(1/VTK) + 0,(K72),

(e) T~ 1AU X, — AM],,,—K w"(O)\Ifl;_+ O, (T7V?) + 0,(K7?),

(hy 77 Usz ubu'; .= Nh?T“’fo dB, Bj,

() T2AUXy = T Apyyamy = Op(T™V3),

0) T?U X3 = T Aypamy = Nm + 0,(K/T) 3 [} dB, By,
where ¥y = {Ay, - (B)En), ¥y = i - E)Fubul(j)s Vo= 2200+ 1) X
T (J), and Nysz 5 ) B, By, The error terms of 0,(1/NTK) and 0,(1/\/TK?)

that appear in parts (a), (f)-(g), and (e) are sharp. The same applies 10 the terms of
O, (K/T) that appear in parts (b) and (j).

LEMMA §. Under Assumptions 1 and 2 and BW(¢) of Assumption 3 the follow-
ing hold.:

(@) T-'aU_, U, — AA,,,A,,I = K72w(0)¥7) + O,(T') + O,(1/{TK?),

(b) T7'U;5_, Uy — Appauy = —K~ Zw(0)¥3, + O, (l/x/TK) + 0,(K7?%),
() T7'AU X, — AA,,]L(2 K~ w”(O)\I/12+O,, 1/x/TK)+op(K 2y,
@ T7'Us0 Xy = “Auuy = Nar + Op(K72) + O,(T712),

(€ T2AUI X3 = T7' Ayyany = 0,(T7?),

(f) T72U3 X5 = T7' Ayynny = Nap + O, (K/T) + O,(T'72),
Where‘pl_l = {All + (%)Fulul(_l)]s \I/.;,_] = j_/'m:l (./+ 7)1-‘1121(1(.]); ‘I’T2=Z;21 (./+ %) X
Ty uy(J), and Nosy 3 [} dB, B

LEMMA 6. Under Assumptions 1 and 2 and BW(d) of Assumption 3, the fol-
lowing hold:

(a) T~ Vh Ul _. L;,_\u] = O}J(K:z) + Op(l/V TK)s
(b) (Vi Xy = Thy,00,) D7 = GNppy + O,(K/T) + O,(K72) + O,(T~2),



REGRESSION WITH MIXTURES OF INTEGRATED PROCESSES 1055

©) T7' Q0 @0k, (ViUy = Thy, 04)) = O (TV2K™2) + O, (KT V2) +
Op(K¥l/2),

(d) QHQL’/,QI;,]U;,(V/; Xp — TAz‘v,,Ax,,)Df] = QopQpp Nppr + O (K>72T7372) +
O,(K*2/T) + 0,(1),

where Ny,r gfol dB,Bj,. The error terms of O,(TV?K %), O,(K>?T*?), and
O,(K*"?/T) that appear in parits (c) and (d) are sharp.

The proofs given here follow closely the proofs for Lemma 8.1 in Phillips (1995).
Before we proceed, we recall some of the facts used to establish the results in that
paper. Under the summability condition given in Assumption 1(a), we have

25T (D] < e, (A.1)
j=0

which implies

T(K)=E(uu_g) =0(K™), (A.2)
as K — o, As shown, for example, in Hannan (1970, p. 212), we also have
var(T'(K) = O(T™"), (A.3)

which together with the result in (A.2) gives the following order of magnitude for
the sample autocovariances:

I'(K) = O,(T™"?) + o(K ™). (A.4)

Similarly, the same result applies to I'(K — 1), I'(=X). At several points in later proofs,
we also encounter terms such as w((X — 1)/K)T(KX), which appear as remainder
terms in Taylor expansions of kernel estimates defined with sample autocovariances
involving I(—1) processes like Au,,. For these expressions, we use Assumption 2(b)
and the result in (A.4) to write

w((K - /KK = w(l — (I/KNT(K)

I

O(K™2){0,(T ) + 0(K ™))
=0,(K™?), (A.5)

because K = O,(T*) with £ € (0,1).

There are a few other related terms that appear in our Taylor expansions when we
express weighted sums of differences of sample autocovariances in terms of weighted
sums of sample autocovariances with weights that involve differences of the kernel
function w(-). As will become clear, especially in the proofs for Lemmas 2, 4, and
5, weighted sums involving the first differences of the kernel Aw(-) are used to ap-
proximate the kernel estimates that involve one I(—1) process, and weighted sums
involving the second differences A?w(-) are used to approximate kernel estimates
defined with two 1{—1) processes,

Now we proceed to prove the results in Lemma 1, where we provide approxi-
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mation statements for such kernel estimates defined with differences of the kernel
functions.

Proof of Lemma 1.

(a) We consider the case with /(j) =/ + 1 for convenience. We start by writing

kY
20 Aw((+ D/K)T(j) = {Za, + Ca-law((j + D/ZKT (),  (A6)

i=Kpg

where ®, = {j:|j| = K*} and ®* = {:|j| > K", K., <j=s KY) for
some K* = K* with A € (0,1). Under Assumption 2, we can use the fol-
lowing approximation by the Taylor expansion for Aw((j + 1)/K) when
|/| < K" and K— o as

Aw((j+ 1)/K)y = w((j+ 1)/K) — w(j/K)

w'(j/K)Y(1/K) + (5)w"(J/K)(1/K?) + 0(1/K?)
{w'(0) + w/(0)(j/K) + 0(1/K)} (1/K)

+ (5w 0) + o (1)} (1I/K2) + 0(1/K?)

= w(0)(j/K?) + (Hw(O)(1/K?) + o(1/K?)

=K2w (0)(j + 3)(1 + o(1)).

I

We then use the preceding results to rewrite the first sum in (A.6) as

‘ \ZK Aw((j+ /KT () = K2w7(0) 35 (j+ 5T+ o(1).
iJ|=K™ r=K*

\ J
Y

The mean of the underbraced term is

2 U+ DETUGY= 3 G+ N0 - I/TTU),

jl=K* li1=K
which converges, as K — o, to

2 i+ 5HTU).

j=—c

Hence, the mean of the first sum in (A.6) scaled by K2 converges to

w”(0) >, G+ PTG, (A7)

j=Aw

as K — o, Now recall that the Taylor expansion used earlier can take the
following alternate form:

Aw((/j + /K) = K‘lw’(ﬁj),
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for j/K < 6, < (j + 1)/K. Then, we can write the second sum in (A.6) as
Le«Aw((j+ D/KTGY=K"" > wi(l)T()),
|ii>K™

whose mean is given by
K=" 2 wie)a = ||/ ().

=K
Recall that w'(+) 15 uniformly bounded under Assumption 2. That is,
|wi(x)| = M, ¥vx € &, for some constant M,,. Then, the modulus of
the preceding mean is dominated by

K~n{sup;wf<aj>|} Y Ir =k M. S SIGHIC
/1<K /=K 1K™ 5=0
[y J

v

—_ O(K_l_"}\).

For the last line, we use the result that the preceding underbraced term
is O(K ~**), which is given in Phillips (1995, p. 49). The preceding re-
sult then implies that the mean of the second sum in (A.6) is 0 (K ~2)
as K — o for A € (1/a,1) because o > 1 from Assumption 1(a). Hence,
so long as we choose K* = K> with such \ € (1/a,1), the mean of (A.6)
times K2 is dominated by that of the first sum, whose limit is given in
(A.7).

Now we consider the variance matrix of (A.6). First, we expand
Aw((j+ 1)/K) as

Aw((j+ 1)/K) = K 'w(j/K)Y(1 + O(1/K))

because w”(-) is uniformly bounded under Assumption 2. Then we re-
write (A.6) as
KU
K= 3 w( /KT () (1 + O(1/K)). (A.8)
Kig
We can apply Theorem 9 of Hannan (1970, p. 280) to find the asymptotic
variance matrix of (A.8) because its leading term has the same form as a
spectral estimate at the origin and w'(-) is continuous and uniformly
bounded under Assumption 2. As in Phillips (1995, p. 50), we can analyze
the asymptotic variance of the dominant term of (A.8) in this way, as
follows:

KU
lim KTvar{vec{K ! Z ’(j/K)f‘(j)}}

T—oo

T—oo

lim KTK~ Zvar[vec{ W’(j/K)f(J')}}
J=Kpq

KU
= lim — var{vec{ Z w (j/K)F j)}}
T J=Kpg

= constant.
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This expression implies that the variancc of the dominant term in (A.8) is
O(1/(TK)). We deduce from (A.6)-(A.8) and the preceding result that

K¢ =

S aw((j+ D/ () =K2wi0) >, (j+ 5T(J)+ 0,(1/JTK).
Kig J==o

The same analysis can be carried out for /(j) =/, j— 1 and j + 2, by using
Aw(I(j)/K) =K 2w (0 ((1(j) = 1) + $)(1 + o(1))

and

Aw(l(j)/K) = K“‘w’(ﬂ,(j,_l)(l + O(1/K)),

for (1(j) — 1)/K < 8,1 < 1(j)/K. These formulae then lead to the
reduction

KU . oo
> AW /KT ) = 20 (1) — T + 0,(1/NTK),
J=Kpy, Jj=—o

as required.
Again we consider the case with /(j) =j+ 1 for convenience. We start by
doing a second-order Taylor expansion of A2w((j + 1)/K), as follows:

A2w((j+ 1)/K)=Alw((j+ 1)/K) — w(j/K))
=w((j+ 1)/K) = 2w(j/K) + w((j— 1)/K)
={w((j+ 1)/K) ~w(j/K)) = {w((j— D/K)—w(j/K))
= {w'(J/K)YN/K) + (D) w'(i/K)Y(/K)? + 0 (1/K %))
+ (WKW =1/K) + (3w (J/KY(~1/K)E — 0(1/K?))
=K 2w (j/K)+ o(K™%).

Note that w”(+) is also continuous and uniformly bounded under Assump-
tion 2. Hence, we can show just as in part (a) that the variance matrix of
K v

> A%w((j+ D/K)T() (A.9)
J=Kpy

is

O(1/TK*). (A.10)

Next, we consider the mean of (A.9). For this, we decompose the sum
in (A.9) as we did earlier in (A.6) as

KY
20 A2w((+ D/ () =1{Ca, + Za 1 ATwW({(j + D/KT (). (A1)

J=Kig

Under Assumption 2, we can use the following one-step Taylor expansion
for AZw((j + 1)/K) at 0 when |j| < K* and K -» « as

Aw((j+ 1)/K) = K2w*(0)(1 + o(1)).
We then use the preceding result to rewrite the first sum in (A.11) as

K=2w*(0y >, Tl +oQ1). (A.12)

ljl=K™



REGRESSION WITH MIXTURES OF INTEGRATED PROCESSES 1059

(c)~(d)

Now it is clear from (A.12) that the mean of the first sum in (A.11) scaled

by K% is

wi(0) 2 E(T()— w0, (A.13)
Jil=K*

as K — oo, For the mean of the second sum in (A.11), we apply the same

analysis as that following (A.7) in part (a). First, write

A2w((j+ 1)/K) = 1<—2w"(0_,.)
for j/K < 0, < (j + 1)/K. Then, the second sum in (A.11) is
Ta-A?w((j+ /KT ()= K2 > W”(ﬁj)f‘(j),
lil=K*
whose mean is given by
K™ 3 w8y — [j|/T)T ().
lil>K*

Under Assumption 2, |w"(x)| < M,,., vx € &, for some constant M,,..
Then, the modulus of the preceding mean is dominated by

K‘z[ sup | w”(@,)}l

Jil<K

2 T =KMo 35 2 1CHICoyl
[j1=K* 1j|>K* s=0
L J

-

= O(K—Z—cx}\)'

As discussed in the proof of part (a), the preceding underbraced term is of
order O(K ~**), Then, the preceding result implies that the mean of the sec-
ond sum in(A.11)is 0 (K ~2) for all A € (0, 1) because « > 1 from Assump-
tion 1{a). Finally, we deduce from (A.9)-(A.13) and the preceding result that
KY
20 Aw((j+ NWKT()=K2w"(0)Q + 0,(1/NTK?).
J=Kpq
Note that the preceding result does not depend on /( ), thereby establish-
ing the required result.
We can follow exactly the same line of proofs as in parts (a) and (b) to
establish the results in parts (¢) and (d), with the replacement of the lower
limit of summations in those analyses by K, € {-10,1}. [ |

Proof of Lemma 2.

(a)

The sample autocovariance function of Au,, used in the construction of
24, 2, Can be decomposed as

Lo n () =T71 20 Auy,Aug,
=7"! Z( {uy, = Uy 3y =y Y
=771%7 S cul =y U= Uy Uy U )
=00 (N =T G= 1) =T GH D+ Ty ()
=T U= D+ 20, () = Tu G+ 1)
=-A, , (J+1).
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Then, it follows that

K—1
Qaw == 25 wUKIT, W, G—1D =20, , () +T,., G+ 1)
J=—K+1
K-2 .
=— 2 WU+ 1/K)=2w(/K)+w((j— 1D)/KN T ) +E,
j=—K+2

(A.14)
where
E=—w((K=1)/K) =20, , (K- 1)+ T, (K)}
= w((K = 2)/K)T, 0 (K = 1) = w((—=K + 2)/K)T, 0 (=K + 1)
- w({(—=K + 1)/K) (T, (=K) = 2T, ., (=K + 1)}.

According to (A.5), each of the terms constituting ¢ is of op(K‘Z). Cor-
respondingly, we have § = op(Kfz). We also note that

w((j+ 1)/K) =2w(j/K)+ w({(j— DN/K)=Aw({(j+ 1)/K) — Aw(j/K)
=ATw((j + 1)/K),
which, together with (A.14), yields

K=2
QAI”AH] == Z AZW((.j + 1)/K)Fu|u] (J) + O/J(K_Z)' (A.lS)

j=—K+2

Now we apply the result in Lemma 1(b) to approximate the sum in
(A.15) as

—K2w"(0)Q), + O,(1/JTK?),

which establishes the stated result.

(b) We can similarly show that

Paviae G+ D =~{T0 0, () = 20,0, G+ 1) + Ty (G + 2)).
Then,

K—1
s = 2 WUKIaya G+ 1)
J=—K+1
K-—1

= 20 WU () = 20, G+ 1) + Ty G+ 2))

jE=—K+l

K~—1
- 20 wU/K) = 2w((j ~ D/K) + w((j — 2)/K))

Jj=—K+3

x Ty () + 78,

where

e = —w((K = D/K) [ =200, (K) + Ty (K + 1)
- w((K = 2)/K)T,,, (K) = w({(=K + 2)/K)D,, , (=K + 2)
— w({(=K + 1)/K){T, (=K + 1) = 2F,,, (=K + 2)}.
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©)

(d)

(e)-(®)

Again, by the result in (A.5), £ = 0,(K~?). Then we have
K1

Tpan == 25 AWK, () + 0, (K72).

Jj=—K+3
As in part (a), we apply the result in part (b) of Lemma 1 to the first term
in the preceding expression. Doing this establishes the required result,
Similarly, we have

K—1

_QAulAul = E w(j/K)fAulAu](j -1

jE—K+1
K=1

- 2 w(/K)at,,, ()

j=—K+1

= — KZ_f A w((J + /KL, 0, () + T,
j=—K+1

where
TE=—w({(K - 1)/K){ =21, (K—=2)+ T, (K~ 1)

— w((K = 2)/K)T, 0 (K = 2) = w((—K + 2)/K)T, ., (—=K)

- w((=K + /KD, (=K ~ 1) = 2T, , (—=K)).
By the results in (A.5) and part (b) of Lemma 1, we have
gy ay = —K72w0)Qy, + O,(1/NTK?) + 0,(K™2),

as required.

The first part of part (d) follows directly from part (b) of Lemma 8.1 in
Phillips (1995), and, by using {A.5) and the results in part (a) of Lemma 1,
the second part is written as follows:

K—1
Qs = 23 WK Dugan, (G + 1)
J=—K+1
K—1 . .
= Z w(j/K){Fuoul(j"'1)—F110u1(j+2)}
J=—K+1
K -~
= 25 (Wi —= 1K) = w((j—2)/K)Tyu, ()
J=—K+3
—W((K = 1)/K)Dyu, (K+ 1)+ w((—=K+ 1) /KTy (=K +2)
K
= 2, Aw((j— 1K), (J) + 0K
J=—K+3

=K 2w (0)dg, + O,(1/VTK) + 0,(K™?),

where &4, = 22 (j— %)I‘uou1 (/). The result in (A.S) is used to approx-
imate the residual terms by 0,(X ~?) and that in Lemma 1(a) establishes
the last line with /(j) =/ — 1. This then proves the second part of part (d).
The proofs for parts (¢)-(i) are similar to the proof for part (d) and hence
omitted.
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)
A I“_l A
Qo = 25 WKL, G+ 1)

==K+l
K-1

= 23 w(/KYT™ 23 upus, (sany

je=—K+1

K-1
= 25 WU/KIT ™ 27 u (g — Uy + Uy ey

jE—K+1

K—1

= 2 w/K)T™' 25 (uguy,; — g, Au3,;)
Jj=—K+1

K—1

= 20 wUK){Tuun () = Tupauw ()}

Jj==K+1
= Q - QlloAllz
= Quouy + Op (K73 + O,(1/NTK) + 0,(K?).

The last line holds by the result in Lemma 8.1(b) in Phillips (1995), and this
proves part (j).

(k)-() The proofs for parts (k) and (1) are essentially identical to the proof for
part (j) and, thus, not presented here. ]

Uy

Proof of Lemma 3.

(a) Using the definition of G, given in (15), we let

L, L,
Gy, = (Gyy,Gyy), where Gy, = | M, and Gy, = | M,
N, N,
Consider
K-1
Quoon = 20 WK, ()
J=—K+1
K1
= 25 wU/KT™ 2 uo(upy; + Guth—;)'
J=—K+1
K—1
= 2 wU/KT™ 2 {ugup_; + uotthy—y_;Gi)
J=—K+1
K-1
= ZK:H w( /K Logur () + Fougu, (G + DG
-
= Quou;,' + JrQuouhc;},w

= (Quoau[quou;,) + (+Ql:0Au]7+Quou2)G},1-
Define

wr =K~ + 1I/NTK, (A.16)
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and use the results in Lemmas 2(d) and 2(j) to write
Qugon = (Op(Sx1) s Qugun) + (Op (k1) Qugu, + Op (S 7)) G
= (0, Q) + (0,0 ) Gy + (O, (Sx1), Op (Sr))
= (0, Quguy) + Quigu Gz + (O, (Sir)s Op(Sx7))
= (0, Quguy) + Qugur (L5, M3, N3) + (O, (ficr), Op (fxr))
= (Qugus L3 Qg (1 + M) { gy N3 + Qi) + (O (fir), O (7))
=0m%(% N [f)+(QAﬂ7LQA&ﬂL

this establishes the required result.
(b) First, write the sample autocovariance of Uy, @s

. —
Fu;,u;,(_/) =T Z Une U —j
_ —1 4 * *
=T7' 23 tup, + Gudp_y} Yy + Gty ;Y
- —1 4 * o ks s * s ’
=772 {Uptty .+ Guidpe_yuy_ i+ Uy ;G

+ GuipyUpyoy -, G}

= Fu,’;‘u,’,"(j) + Gy f‘uhu,’:(j -1+ fu,?u;,(j + DG+ Gy l:‘uhuh(.j)G/;'
This expression decomposes the kernel estimate Qu;,u;, as follows:

K—1

Qo = 25 WU, ()

Jj=—K+1

K=1 K—1
= Z W(J/K)Fu,’fu,’;‘(./) + Gh( Z w(.j/K)Fu;,u;:(j - 1))

J=—K+1 J==K i

K-1
+< > w(j/k)r,,;,,h(jJrl))G;,

j=—K+1

K1
+Gh< Z w(j/K)Fu;,uh(j))Gl,z

Jj=—K+1

= Qu;u; + GhiQu;7 upr + +Qu;;u;, Glll + Gh Qu;, iy Glll
The definitions for *{ and ~{ given in (21) and (22) arc used in the last line.
By the results in parts (a) and (¢) of Lemma 2, we can write the first compo-

nent in the preceding expression as follows:

Q R QAu,Aul QAu]u,,
gty Q Q
Up Ay

Upy

0 0 -0 -

_ ( ) ) +K‘2w”(0)< n m)
0 Qu;,u,, ¢’bl 0

(O,,(l/«/TK3) +0,(K™% O,(/NTK) + op(k—z)) .
+ edit.
O,(1/NTK) + 0,(K™%) 0
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Similarly, by the results in parts (b)~(d), (f), and (h)-(1) of Lemma 2, we have

thQuhul:: G/1<_QA”1A”| 79‘3”1“[7)

_QuzAul _Quzub

0 0 -0, -
= G,,( X ) + K"zw”(O)Gh< ! _”’)

0 Quzub —¢)21 ¢’2[)

N (Op(l/\/TK) +0,(K7?) O,(1/NTK) + op(K-Z))
O,(1/NTK) + 0,(K™?)  O,(1/NTK) + 0,(K~%) /)’

Q Q

& ‘Auy Au AN

+S2 C;/ — 1 1 142 GI
u;',‘u;1 h ( +A ) I

+Qubdul Qubuz
0 0 —-Q —&7

= ( . )G;,+1<-2w"(0)< ! '2)0;,
0 up g ¢)[)] _ébZ

+<Op(1/\/TK)+op(K“2) Op(l/\/TK)+op(K‘2))
O,(1/NTK) + 0,(K™?) O, (1/NTK) + 0,(K™%))’

and

_ ‘Auy Ay ‘AU W2 ’
Gh Quhu;, G/; - Gh ( & A Gll

QuzAul Quzuz
0 0 -0, @
= G,,( . )G,’, + K ~2w"(0) G,,( a ]2) Gy
0 Uz U ¢’21 0
(Op(l/\/TK)+op(K_2) O,,(l/\/TK)+op(K‘2))
O,(1/NTK) + 0,(K™?) 0 ’

Combining all these results, we now have

Q-
0 0 0 i 0 0 )
Q.U=< ) )+<< ),G;,ZQH)+< . )+G ., G
N0 Ry, 0 20) N0 2,6l e
+K 2w (0)Qh + O, (1/NTK) + 0,(K2), (A.17)

— J

Op(fl)g'r)

where we denote the leading term and the remainder term as Q* and O,(fir),
respectively. The term Q in the remainder term is more explicitly expressed as

—~Q ¢ - -7,
( 1 ]b) + G;,( 1_1 _m)
Py 0 -%n %

—Q, -& —Q, @&
+ ( M '2)0;, + G,,( ! 12)0,;. (A.18)
by Py &, 0

We now decompose the leading term Q* further as follows:
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TN
o o
0

s ©
5

~—
+
TN
o o
~—
X
o N
o

Susup
N2
L
0o 0 ar M N
+ N , s + Mz Quzuz(LZvM21N2)
Qubuz(LZxMZ:Né) N2
0 0 0 LZQuzub
“lo 4,/ "o (Mz)fz
uplep N2 Uiy
Ly
0 0
+<. .. , /)+ My | Qupzuy (L5, M5, N3)
Quhusz Qubuz (Mz 1’ Nz) NZ
s , . . A
LZQuzuzLZ LZ[Quzuz(l + Mz)y QuzuzNzl + 9113142}

, M\ &
~ Q”b”b + <N2> Q“Z“h
) Gl
Quz uz N, e : + Q”h”z(MZI’N?:)

M, ") N7
+ 'N2 uzuz(MZ;NZ)

. , . I+M, Ni
) L3800, L nguzub< . } )
I+ M, 0\, , I+ M, 0\, I+ M; N;
< ) Qubuz LZ < )Qubub< 2)
LN N N 0 7
(L, 0
. Ly (U+M) N
= || u+m o Qum( 2 2 )
0 0 !
\ Ny I

Next, define
o (Lé (I + Myy Né)
0 0 I/
Then,
Qr =G,
This together with the preceding results finally gives
=G0,,,, G + 0,(K™2) + 0,(1/NTK),

which is required.
Let fi7 be defined as in (A.16), and let

G =G(G'G)" V2 (A.19)

Q

Yatp Uplp
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We define

Quoub = Quou;,(GlG)Vzv

D, = (G'G)'?D,,,,(G'GY?,

and let C := (G, G, ) be orthogonal. Then it follows from (A.17) and (A.18)
that

Qu()v;,Qv;,lv/, = (Qu(]uhgl + Oj)(fKT))(QQMbUth + Op(f;T))ml

= (Quyu,G'C + Op(Sxr)(C'GR,,., G'C+ O (fir)) ' C

. I\ -1
= (Qu()zq,(l»o) + Op(fKT))<<0)Qu,,uh(1yO) + Op(f;T)) c’
Q

p ity 0 * - ;
(l)' O)+Op(fKT)) C

= (g 0) + Op(Sir) ((

= (Qop + Op (1) Opl Si1))
(be'*‘ (Op(fltT))ll (Op(f;T))lz)ﬁlc,
(Op([krN2 (O, (k)22

Qpp + 0,(1) (Op(f;r))xz)_lc,
(Op (SN2 (O, (SR N2
It is now convenient to denote the matrix to be inverted in the preceding equa-
tion by
o= (en 912) - (be+op(1) (Op(fl);T))lz)

0, ©Op (O, (f%r D21 (Op( SR )22

= (Qop + 0,(1),0,(Sx1)) (

and its inverse by
o1 = ((9'1)11 (671)12>.
(07" (07
From (A.17) and (A.18), we have
02 = (O,(fRr)22 = K 2w"(0)0%, + O,(1/NTK) + 0,(K?),
where 0%, = (Q0})5, is further expressed as

| (T e (U T )
Nl !V2 21 2b b1 b2 2 2 2 ’s
M, M -7 M Nj
:< : 2)( _”’) +(¢’;1’—¢’b2)< t 1)
Ny Noj\ @3, M5 Nj
M\ & M\ & .
=—< ‘) > (J+%>Fw<1>+< 2) > U+ D)
N] J=—x N2 j=—ca

oo M/ (=23 MI
+ 2 (j—%)rmm( ’)— 2 <j+%)rbz<j)( )

2
,
je—e Ny Jm—oo N;
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by using the definitions of {}; and its component submatrices given in (A.18)
and parts (g), (h), (k), and () of Lemma 2. We assume that the preceding limit
matrix ©3, is nonsingular. Then, for K = Q,(T*) with k < §, we have

K705 S (1w 0y 055

Applying the partitioned matrix inversion formulae to the submatrices of ©7!
gives

(07 =05 + 0,(1),

(0712 = =25 0,(1) + 0,(1),

(07 n = O,(K?).

Therefore,

N . Q5 +o, () O, (1) )
~-1 _ /~bb P 4 ,
Q[l()UhQL'},L‘h_ (Q0b+0p(l)»oj)(fKT))\ Op(l) O[)(Kz) c

= (Q0y Qoy’ + 0,(1) + O, (fx7), Op(1) + Op (fx7) Op(K*NC

= (Qop Qi + 0,(1),0,(1) + O, (K>2T~12)C

= (R0 (G'G)™V2 + 0,(1),0,(1) + O, (KT~ V),
because

Qos Qs = Qs (G'GY2(G'G) 20y (G'G)'2)™!
= Qo0s 23 (G'G) 2.

This establishes the required result as the restriction & < L imposed to de-

rive the explicit representation of the convergence rates is absorbed into the
0,(K*¥*T~'?) term in the preceding second block of &, ;" . Note that

uovp *vpu,”

we are not being explicit about the O, (1) térm in the same block because it
will later be scaled out by a factor of 0,(1) (see the proofs of parts (a) and (b)
of Lemma 6, later).

We rewrite the expression for 9, given in (16) as follows:

0, = upy, + Guity,y + O,(T™V?)
= {up, + Gt} + (G — Gty + O, (T71?)
= vy + (Gay — GCp)Auy,_y + (Gpp — Gaz)a,_, + 0,(T~2)
=Uy+ RiAuy,_ + Rty + O,)(T_'/l),

where

Ry =Gy — Gy = 0,(1),

Ry =Gy — Gy = O,(T7172).

Then, T, ;,(j) = T~ 0,04, can be written as
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! ZI {op + RiAuy + Rauy, + Op(T_I/Z)}
X {Vjy_; + Auj, Ry +up, Ry + O,(T7V2))
=T 2 kv + Auj, ) R + s, RS}
+ TV 20 Ry Ay, {vj_y + Auf,_ R} + s,y ;RY)
+ 77! Z,Rzuzz—l{vé,~j + Auj Ry + Uz ;R
+ (1 = |jI/TYO(T™'?)
= Ty, () + Topan, G+ DRI+ Ty, (U + DRS
+ R Loy G = D+ Ry T ay UIRT + Ry Tan iy (RS
+ RyTyy0, (7 = 1) + Rl au, (IR] + Ralyuy ()R
+ (1= |j|/THO(T™%).

We now write the kernel estimate of Q using the preceding expression, as

Ppip
follows:
- k’——l Py
Qs 0, = >, w(j/K) Ty, 5. ()
j=—K+1
= QU},U[, + +Qv;,Au| R; + +Quhu2RI(Z + RI_QAMIV;,

+ Ry Qayy 20y Ry + Ry Qg Ry + Ry, + RoQy i, RS
+ RyQuyuy Ry + vk K(1 = |j1/T)O,(T7V),
where we employ the notation »,, which is defined as
K-1 1
vei=K7' D w(j/K) - f 1 w(s)ds = », (A.20)

j=—K+1

as K — o. Note that » < o under Assumption 2. Hence, vx = O, (1) and
the last element on the right-hand side of the preceding equation is simply
0,(KT™"?), as | j|/T < K/T - 0 under Assumption 3. Next,

K—1

—QAu]uh = Z w(j/K)fAulvh(j -1
=K+
K—1 ,
= Z/\: w(j/KYT ™ 23 Auy vj_ oy
jmeK+]
K1 ,
= 2, wU/KaT™' Y §Auy up_ oy + Ay Uy 1y G
F==K+1
K1 A . _
= 25 wU/K)Tau (U= 1) + Tauu, ())GR)
=K+

_QAulu,T + QANIUI;G;'
0,(K™2) + 0,(1/NTK),
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because
“Qaiyur = O aus” Pauy) = Op(K2) + 0, (1/VTK),
Oy = Qg g Qg y) = Op(K72) + 0,(1/VTK),

by the results in parts (a), (c), (f), and (g) of Lemma 2. We also have, by the
results in parts (a), (b), (e), and (f) in Lemma 2, that

*Qy, a0, = Op(K72) + 0,(1/VTK).

Moreover,
+thu2 = +Qu,fuz + Gh Quhuz
_ <++QAA“1“2) + G,,<QA uluz)
Q“b“Z Q"’2“2
0 0 '
= < ) + G,1<. ) + 0,(K™%) + 0,(1/VTK),
Qubuz Quzuz
and
—Quzvh = _Quzul’: + Quzuh Gl/r

<_?uz'_\u|) + <Q.u2-\ul)G;1
Quzub Quzuz
0 0
= < ) + <9 )G,’, + 0,(K™%) + 0,(1/JTK).
Wy lin

Q”Z“))

We now deduce from the preceding results that

Q

Dpby T Yupug

+ O (KT™V2) + 0,(K %),

which is required for part (d).
() Recall that i, are the residuals from the regression on y, = Ax, + u,,. Then,
Lao,(J) = T71 22, 04, is expressed as

T35 tugr + (A — Ax} {0h_;+ Aui oy Ry + gy j Ry + O, (T V2]
=T 2 uo vy + Auj R+ Uz Ry + O,(T V%))
+ T2 (A= A)x v H AU R+ U, R+ O, (T2
= Loy () + Tugau, G+ DRI+ Ty (G + DRS
+ (A=A, () + (A= ATy, G+ DR+ (4 - AP, G+ DR
+ (1= I/TOTV3) + (1= 1j|/TVO,(T7",
because (4 — A)x, = O, (T"/z) We decompose 5, as
0 woua Ry + (A — Ay,
+(A-A) QxAu|R|+(A_A)+Qx“2R’+VKK(1——lj|/T)Op(T—l/2),

+ Q,,OMIR +*0

uolpy
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which, by the results in Lemmas 2(f) and 2(i), becomes
Quov/, + (A —A)quh_*_ (A _14)+Qx'_\ul R; + (A _A)+qu2R12
+ {Op(K'z) +0,(1/NTK)} + Op(l)Op(T"”z) + Op(KT‘VZ). (A.21)

Next, we consider the terms on the right-hand side of equation (A.21). First,
by Theorem 3.1 in Phillips (1991b), it follows that

K—1 1
K0, =K' 2 w(j/K)f‘qub(j)ﬂ—)»uf B, dBj + Qy,, (A.22)
J=—K+1 0
where Q,), = 2172 o, E (1) and with » as defined in (A.20), and that
K-t 1
KT ' 0, =K' 3 w/K)T 'y, () 3 vf B, dBj,. (A.23)
Jj=—K+1 0

Next we analyze Q,,4,, as follows:

K—1
Qpawy = 2 WK T au, ()
j=—K+1
K—1 . .
= D, w(/K) (T, (J) = Tau, (U + 1
J==—K+1
K—1 .
= > (WK = w((j = D/KNT,u, ()
J=—K+2

+ w((K = /KL, (K) + w((—K + 1)/K)T,,, (K + 1)

2U)
K—1
= 2 Aw(/KT,
J=—K+2

because w((K — 1)/K), w((—K + 1)/K) = O(K ~2) by Assumption 2 and
P (i) = T S'x0,u{,.; = O,(1), for i = K, —K + 1. For the sum in the
preceding expression, we can follow the analysis given in the proof of Lemma
1(a) but now with the sample autocovariances defined with 1(1) variable x,,.
We similarly write

() + O (K™%,

2i

K=1 N
2 Aw(/K) T (J) = (Zg, + Zax)Aw(j/K) 0y, (1), (A.29)

j=—K+2
as in the proof of Lemma 1(a). The first sum in (A.24) is

2 Aw(U/KLG, (D=K"'w (0 X K™= D, (1 +o(),
[jl=K* e -
upon the second-order Taylor expansion of Aw(j/K). We now use the result
established in the proof of Theorem 3.1 of Phillips (1991b, p. 431) to show that
the limit of the preceding expression is

1 1 =3
w”(O){f rdrf B, dBi+ > (j— 1/2)921(1'@,
[¢] (4]

Jj=—c
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where Oy () = L2 E (a0 ;4;) = 272 E(uouy,), and this implies that the
first sumin (A.24) is O, (1). We can similarly analyze the second sum in (A.24),
for (j— 1)/K < 8; < j/K, as

D AWK () =K 3 w9l ., ()

VIEY 1=K

SK—l{sup )X W/(ej)l_ > o ()
i/

lil<K HEYS
=0,(K™"),
using again the aforementioned result in Phillips (1991b). We deduce that
Qeyau, = O0p(1). (A.25)
It follows from Lemma 2(j), (A.22), and (A.25) that
iy = Qg = Dyau, = Op(K). (A.26)
Similarly,
~ Kﬁl P
ngAul = Z w(j/K)I‘,\@_\u‘(j)
J=—K+1
K—1 . .
= 25 w/K) Ly () = Ty G+ D)
J=—K+1
K—1 .
= 2 (w(/K) = w((j — D/KNT,,, ()
J=—K+2
+ w((K = 1)/K)Tu (K) + w((—K + D/KT, (=K + 1)

K—1
= 2 AWK, () + O, (K2,
j=—K+2
because 77Ty, (i) = T2 X'x3,uf,_; = O,(1) for i = K, =K + 1. The sum
in the preceding equation now involves sample autocovariances that are defined
with 1(2) variables. We can follow the preceding analysis for QXZ_M,]. As in
(A.24), we first decompose the sum as

K—1

2 AWK, (J) = (Eg, + Ea}AwW (/KT (). (A.27)
j=—K+2
The first sum in (A.27) times 777 is

> AWK Ty, ()
li=k" ——
=K7'wi(0) 2 K- DT ', ()L + o(1)

-

HET o

1 1
2w”(0)f rdrf B, dBj,
0 0
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where we use the analytic framework employed in the proof of Theorem 3.1
of Phillips (1991b) to find the limit behavior of the underbraced term. Next,
we consider the second sum in (A.27) by expanding Aw(j/K) around §; €
((j — 1)/K, j/K) and using the preceding asymptotic result as follows:

2 AWK, () =K™" 2 wiepTL,., ()

K" 1Y o

sTK"‘{sup > w’(ﬁj)l 2 T, ()

JJil<K [il=K*
= 0,(TK™).

Combining the preceding results leads to
Qeran, = O (T). (A.28)
By using the results in Lemma 2(j), (A.23), and (A.28), we can similarly show
that

ey = Qeyiy = Qiyan, = Op (TK) (A.29)
and
Fpan = 0p(1), Qo a, = 0,(T). (A.30)

Now we consider
(A— A, =4, — A, + (A — Ay, + (43 — A3)Q

X3Up°

where

o
— <QL:1AL{|) + <Q.“|AUI)G;,
Qulub Quluz
0
< ) + < )G,’,+ O0,(K %) + 0,(1/NTK),
Hpuy
Q.\‘;_u,, = szu* + +Qx2u,, Gll1
Qx ;\u,) <+Qx2Au|)
— I 2 N G/
< Q_\‘zllb " +QA‘3UZ g
0,(1 0,1
(g0) (e
0,(K)
Qeyur + 000, G
— <Q':\’3.\u|) + <++Q;t;Au1)G;1
Qx_; Uy QX3 753

O,(T) ) 4 < 0,(T) )G’

X3lip

he

0,(TK) 0,(TK)
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by the results in (A.21), (A.26), and (A.28)-(A.30), and this finally gives
(A=A, = 0,(T7V%) + O,(K/T). (A.31)

From the results in parts (€) and (i) of Lemma 2, (A.29), and (A.30), we also
have

(A — Ay Qs = (A = A Oy py + (A = A0
+ (As — A3 Oy,
=O0,(K2T" V3 + O (T7")

X2 Ay

and
(A - 14)+quz = (AI - /il )JrQu]uz + (A2 - A2)+Qx2u2 + (A3 _14\3)4‘Q
= 0,(T ") + 0,(K/T).

X332

We then deduce from results in (A.21) and (A.31) and those in the preceding
equations that

Q

Quoey, + Op(K™2) + O, (KT V2,

a0ty =

as required for part (e). [

Proof of Lemma 4,

(a) We start by considering

K—1

Bigru, = 20 WK a0 ()
Jj=0

K—1 R "

= 23 wl/K) (Tagu, (U) = Tau, G+ 1}

=0

,1 .
= 21 (W/K) = w((j = /KNy, ()
J=1"

o~

+ w({(K = 1)/K) Ty, (K) + w(O)Ty, ., (0).
Note that
L (O =T 0U =T 'U5 X, =0
by least-squares orthogonality. We also have w(0) =land w((K—1)/K) =
O(K %) by Assumption 2. In addition, we have
Loy (K) = O, (T7Y?) + E(Ty, (K)) = Op(T717),
by (A.2) and the preceding result. Then,

K—1
Appnu, = 20 AWK, () + O, (K 2T 712, (A.32)

=1

where

P:‘lgul (J)= f‘u(]m (J) + (4 - /i)f‘xul (/).
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The first term’in (A.32) is
K—1 N K—1 . .
3 AWKy, () + 3 AWK (A — A)HH'T,, (). (A.33)

i=1 =

We use the result in Lemma 1(c) to express the first term in (A.33) as

2w(0) 25 = DTuu, (J) + 0,(1/NTK) = 0 + O,(1/VTK),
J=1
(A.34)

where the mean in the preceding expression is 0 because T, ,, (/) = 0,
vj = 0 by Assumption 1(c). The second term in (A.33) can be decomposed as

K—1
(A, = A)) 25 Aw(i/KT,, . () + (A2 = A)) Z Aw (/K (J)
j=1 j=1

K=1
+ (A — A3y) 20 Aw (/K T, ().
J=1
(A.35)

The sum in the first term in (A.35) is {O,(K ~%) + O,(1/TK)} by
Lemma 1(c). By following exactly the same line of the analyses as in the
proof of Lemma 3(e) in deriving (A.25) and (A.28), we can establish that
the one-sided sums in the second and the third terms in (A.35) are of
0,(1) and of O,(T), respectively. Then, (A.35) reduces to

O (T7V2K "2+ O,(T'K72) + O,(T71).

We finally deduce from (A.32)~(A.35) and the preceding result that
A,}”m,] = Op(l/V TK):

as required.

(b)

w(j/K) uouz(./)

uo uy

T \-Ml

w (/K Ty (J) + Z w(j/K)(A — AYHH T, (/)
Jj=0

.
il
(=1

. K—-1

Auom + (Al - Al) Z W(j/K) “1"2(-])

+ (A, — A43) E w(J/K) T s (J)
Jj=0

K—1
+ (Ay — Ay 20w/, ()
J=0

= Auoul + (Al - AI)A + (A?_ - AZ)AJ:ZUQ + (A'% - AB)Ax;ug'

Uy
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Now,

- K—l -

Boguy = 23 WK o0, (J) = Aoy + O,(K/THV?)
j=0

because its mean is

K-1 . =)
2 wUKYL = |1/ T () = 23 Tuoun (J) = Agy
J=0 J=0

and its variance matrix is of order O(K/T). Similarly, we have

K-—-1
A= Zg w(j/K)Ty 1 (J) = A1y + O, ((K/T)V?).
=

We also have from Theorem 3.1 in Phillips (1991b)

K—1 1
Kﬁ]szuz = K_l E w(j/K)szuz(j)ﬂ_)’V*j(; BZdBé +A221

j=0
where »* = [, w(s)d(s). Similarly,

K—-1
TR A, = K™ 20 wliZK) T Ty ()

J=0
k) '
—>v*f B, dB;,
0
giving

Ayiuy = OH(TK).

XUy

The results in {A.36)-(A.39) then give

Apgus = Doz + Op(K/T)Vz,

which is required.
(e)-(D

K—1
Apoars = Zg w(j/K) Py axs (J)
~
-~ K—l - -
= Aypar, + 25 WU/KIA — AYHH Toa, ()
Jj=0
= AUUA,\‘:; + (AI - Al)Aqux; + (A?_ - AZ)szAX:;

+(A; = ADAay,.

1075

(A.30)

(A.37)

(A.38)

(A.39)

From (A.38), &,,4,, and &, 4., are O, (K) because Ax;, is also I(1). Note

that
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T'K ' Ay any = Z j/K){T“2 Z'Xz,Axéz-j]

"” v f B2B3,

T_ZK—lAngAX'; =K~ Z { -3 Z,xaleéz—jI

3, f B,B;. (A.40)
Therefore,
Aﬁodxa = OP(K)'

and this establishes the result in part (c).
The result in part (d) immediately follows from (A.38).
(e)-(h) Proofs for parts (¢)-(h) are exactly the same as those given for parts (e)-(g)
and (j) and Lemma 8.1 in Phillips (1995).
(i) We first note that

TTIAULXy = T uyrxir = UL AXs Y = T uypxdr = By s (<1).

(A.41)
Then, consider

K—1

Bayaxy = 20 WK sy a0 (F)
J=0
K-—1

Z(J)w(J/K){PuIMJm Lyaes (G — D)

i
x\

—2
Z (J7K) = wi(j + DKW, axy (J)

+ w((K=1) /K)PHIM(K — w0, 40 (=1
K-2

Z W((J + DKL, () = Tuyan (=1) + 0,(K72),

because
w((K = 1)/K)y g (K= 1) = w((K = D/K)T ™ 25 uy, A%, ko1
=0(K2)0,(1) = 0,(K™?).
Then we have
K—-2

TAU Xy = Buyyaxy = T N irxir + 25 Aw((J + D/K)Ty a0 (J)
J=0

+ 0,(K7%).
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Note that the second term in the preceding expression is O,(1) as dis-
cussed in part (a). This then leads to the required result as

T2AU X3 — T7' Agy oy = O,(T7V2).

(j) The result in part (j) follows directly from (A.38) and the results in
Lemma 2.1 of Park and Phillips (1989). |

Proof of Lemma 5.

(a) We do the following analysis just as in part (c) of Lemma 4 but now with
the one-sided sum as
- K‘l -~
—AAulAm = w(j/K)Fr_\ul.'\ul(j— 1)
J=0
K—-1 .
= - W(j/K)AZPu,ul(j)
j=0

K-3
=22 AW+ /KTy, (J) + 1,
J=0

where

n=—w((K = 1)/K){~2T,,,, (K~ 2) + I\, , (K - 1)}
= WK = 2)/K) L, (K = 2) = w(l/K) Ty, (=1)
= w(O) Ty, (=2) = 2L, , (=1)}.

Note that by using (A.5) we have

1= =L (=2) + Ty (1) = AW/K)T, 4 (1) + 0, (K 2)

= =Ly au (—2) = Aw (/KT (—1) + 0,(K 72).
Also note that
TTAUL Uy = T wyreyuyr — T7HU AL,
= 0,(T7") = Ty a0, (—2).
Then, {T7'AU{_ U, ~ “Ay, a,) is simply

K—3
23 2wl +2)/K) D0y (1) + AW (/KD (=1 + O, (T 1) + 0,(K72).
2
J (A.42)

Now we use the result in part (d) of Lemma 1 for the first term in (A.42)
and write it as

K72w”(0) 23T, (J) + 0,1 /A TK?).
Jj=0

For the second term in (A.42), we first do the following first-order Taylor
expansion as
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=
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Aw(17K) = w(O)(1/K) + (L)w”(0)(1/K)? + o(K ~2)
= (3)K 2w (0)(1 + o(1)),
where we use w'(0) = 0. Then, the mean of the second term is
(K 2w (0T, (1),
as K — o, and the variance matrix of the second term is O,(K"277"?) in
view of Assumption 2(b) and (A.4). From all the preceding results, (A.42)
finally reduces to
K72w"(0){A), + (%)Fu[ul(—])} + O, (1/NTK?) + O,(T7"),
which is required for part (a).
We start by considering
~ K_l Y
_Auzr_\u] = Z W(j/K)P,,Z_\u](j —1)
j=0
K—1 . .
= Z(:) w(/K) Ly (G = 1) = Ty, U}
J=
K2 .
= 25 (w((J + D)/K) = w( /KN, ()
=0
= w({(K = D/K)Ty, (K = 1) + Ty (=1
K-2
= 2 Aw((j + /K, 0, () + Tapu (=1) + 0,(K72).
j=0
We then apply the result in Lemma 1(c) with /(j) =/ + 1 to }he sum in the last
line, and doing this we get the following expression for "A,,4,,:
K72w"(0) 23 (G + 2)Tugu, () + Figuy (= 1) + O (1/NTK) + 0,(K72).
i=0 -
(A.43)
Then, it immediately follows that {77 U3, U — "A,4,,) is
K—-2 .
= 20 AW + D/K)Ly () + 0,(K2)
J=0
==K 72w(0) 25 (j+ T () + O,(1/NTK) + 0,(K™?),
J=0
as required.
) To prove part (c), we first open the difference operator in the following expres-

sion as in (A.41), that is,

T'AU L X, = T"’Wrr—lle‘r — Ui, AX)) =T "y X370 — Loy (—2);
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and note that

K~1

Aoy = 23 WU/K T au (G = 1)
Jj=0
K~—1

2 WK Ty (G = 1) = Ty (G — 2))
J=0

K-3
20 (W + D/K) = w((j + 2)/KN Ty, ()

J=-=1
+ W((K" l)/K)f‘uluz(K - 2) - fl‘l“Z(_z)'
Then, (77 AU Xy — "Ay,,.,) is

K3
Ty 5 + 20 Aw((j + 2) /KT, 0, (J) + 0,(K72).

J==1
Applying the result in Lemma 1(c) with /{j) =J + 2 to the second term, the
preceding expression becomes

Tl xr+ 20 (J+3/2)Ty 0, (J) + 0,(K72).
j==1

This, together with the fact that 77w,y x5, = O,(T~"?), establishes the
required result.
(d) We begin by considering

K—1

Ay, = 23 WKy (G = 1)
J=0
K—1 . .
= 23 W(/K) Ty (J) = Poyar, (4 — 1)
Jj=0
= ‘&uzuz + _AuzAlQ’

just as in the analysis given in the proof of Lemma 2(k). Then, by the result
in (A.43), we have

wriiy + Ligin (1) + O, (K™% + 0,(1/VTK). (A.44)
Next, we consider

T Xy =T U X, ~ TTIAUS X,

T3 Xy — T W uyrxsr — Uj_ | AXo}

i

=T7'U X, — T uyrxgr ~ Ty (1),

as Ax,, = u,,. Then it follows that

TM] UZ/—l X2 - —Auzuz = N22T - Auzuz - TA]UZTxiT + O/,7(K~2)
+ 0,(1/NTK),
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where
-~ 3) ]
Nyp 1= T U Xy — Ay, _’f dB, B;.
0

This proves the result in part (d).
(e) We note that

TN X = T Nuyr X5r — Ul pAXs) = T iy Xgr — L2 (—2)
and

K—-1

AAN|AX3 = E W(j/K)r‘Au,A,\'g,(j— 1)
J=0
K—1

2 WU/KN Ty any (G = 1) = Ty sy (U — 2))

Jj=0

Il

K-3
20 1w+ D/K) = w((J + 2)7K)}T, a0 ()

j==1

+ w((K — 1)/K), 4 (K = 2) = Ty 4 (=2).

Then we have

K-3

T X5 = Bpuyans = 20 AW + 2)/K) T, a0y (J) + O, (NT)
J=-1
- J

Y

because

T ur Xy — w((K = 1)V/K)D, 4 (K = 2)
=Tl T %%7) + w(l = VK)T™! 2 uy Axy,
= 0,(NT) + O(K7%)0,(1) = 0,(NT).

We can follow the analysis given for the derivation of (A.25) in the proof of
Lemma 3(e), with the lower limit of summation replaced with j = —1, to show
that the preceding underbraced term is O, (1); this then gives

T‘ZAU]/—IX3 - T"] _AAlllA.\'g = Op(T—l/z)s

as required.
(f) Following the analysis given in the proof for part (d), we can decompose
T7'Uj_ Xy and ~A,, 4, as follows:

TU; | Xy=T U Xy - TTIAUS X,
=T7'U; X5 — T uar xg — Ui AXG)

= T_] UéX? - T—lu2Txf/¥T + lezﬂx_g(_l)
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and
—AuzAx:; = AuzAx;; + “Auzﬂ(d,’(g) = AuzAx3 + —Au2u3-

BX the results given in Lemma 4(d) and (A.44), we have AHZAXJ = 0,(K) and
A,y = O,(1). Then it follows that

T2U5_ X = T7' " Ayyan,
= T2U Xy — T 2uyrxir + T Tipans (—1) + O, (K/T)
= Nysp+ O ,(T V%) + O,(K/T),

where we introduce the following notation:
Nyr =TT U3 X, _’f dB, Bj.
0

This establishes the result in part (f). |
Proof of Lemma 6.
(a) To prove part (a), we first write 0y, in matrix notations as
Vi=Ur + Gy Uj_,.
We recall that G,,, defined in (16), is O,(1). Then we have
TVp X1 = Agpau,
= T7HUR Xy + GpUjy X1} = [y sy + Gnbuy_, au,)
= (T7UF X, = Agpan} + Gl T Ujoy Xy = "By}

- (T_lAU{UI - AAL”AMI) + G (T—IAUI’—I Ul - 'A;mlmq)
T~ UyUy — Ay "\ TS U = "B

- (Op(K'z) +O,J(1/\/T1<3)) +o.l) (Op(K“z) + opu/wm))
~\ 0,(K"?) +0,(1/NTK) 4 0,(K %)+ 0,(1/NTK)

=0,(K™%) + 0,(1/VTK).

For the last two lines, we use the results in parts (e} and (f) of Lemma 4 and
those in parts (a) and (b) of Lemma 5. This then proves the result in part (a).

(b) We recall that G, is the OLS estimator for the coefficient on Ax,,_,, which
is stationary, in the regression given in (16). Hence, we have the following result
for the estimation error in Gjy:

\/T(Ghz = Gp) = Op(l)'

We also use the results in parts (g)-(j) of Lemma 4 and parts (c)-(f) of
Lemma $ in the following analysis. Now we consider
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(Vi Xy—TAs, 0,) D7

=(T7'WiXy— By T2V X5 = T Ay, 00y)

Dpuzs

(T_IAU{XZ—AAmuZ T_ZAUIIX3_T_1AAN|AX3)
T X, - A T2Up Xy =T Ay,

Upia

+C ( TT'AU{ Xy = "Bay, T2AU X5~ T “AM.M)
g T71 UZ/—I X2 - ;Auzuz TMZ Ué—l X3 - T~1 7Auzax3
_ (OI)(K—2)+OP(T~‘1/2) Op(T—l/Z) )
Np2r Nysr+ O, (K/T)

O0,(K™2)+0,(1/VTK) O, (T™V?) )

+ G, _
! (N227+ O (K™2)+0,(T™"?) Nysz+ O, (K/T)+0,(T™"?)

—( 0 0 )+(G G )( 0 0 )+O(K“2)+O(K/T)
Npar  Npsr ek Npr Nar i i

+Op(T—l/2)

0 T
=% F{Gn2+ Gpa—~ G2} Napr + O, (K2 + O,(K/T) + 0, (T~ ?)
bbT

= (K/ ) + G2+ O (T 72N Nypr+ Op(K2)+ Op(K/T) + O, (T™V2)
bbT
0 0 0 L,

= |1 O | Napr |+ | My [ Nayr + O (K72 + O, (K/T) + 0,(T"?)
0 1) (Nyr N,

Il

N,
I+M, 0 ( _2”) + O (K™2) + O,(K/T) + O,(T~"?)
N, 7 Nspr

GNyor + O,(K72) + O,(K/T) + 0,(T"?),

where we employ the following notation:

1 1
— dB,; B f dB2§§
(szr str) D jf; ’ 0

_ (A .45)
Nyr Nyr ! , ! =,
dB, B; dB; B
0 0

=2
o
\|
I
N
2
o
~
SN
i

This establishes the result in part (b).
(c) Using the results in Lemma 3(c) and the result just established in part (a), we
have
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Qfl

~1/2 3
T Q“0 Up " lup s

- Tlllﬂ

(Vi Uy = TAy, a0,)
Ql;:lvh(r—l V}/l Ul - Al};,Aul)

Holy

Op(K'2)+Op(1/«/TK3))
O,(K™3) + 0,(1/NTK)

=0,(T"?K )+ 0,(KT™"2)+ 0, (K~'"?),

=T"40,(1),0,(1)+ O,,(K3/2T“1/2))C’(

as required.
(d) To prove part (d), we similarly use the results in Lemma 3(c) and in part (b)
of this lemma as

wor Qpon (Vi Xoy = TAp, 0 DT
= (Qop 05y (G'G) 2 + 0,(1),0,(1) + O,(K¥2T ™2y C’
X {GNppr + O (K/T) + O,(K™2) + O,(T™?)]
= {(Q0s 2 (G'G)""2 + 0,(1),0,(1) + O,(K¥>T*))C’GNyyr}
+ 0,(T7%) + O,(K™2) + O,(K**T72) + O,(K¥*/T).

Note that

’

C'G = (Q )Q(G’G)”Z: (
Gl

=4

GG
G.¢

directly from the definitions of G given in (A.19) and C = (G, G, ). Then, the
term in braces in the last equation is

) (G/G)I/Z = (é) (G/G)Vz,

~ , _ B GIG)I/Z _
(Qobﬂbbl(G G) l/2+0p(1)10p(1)+O/)(K3/2T ]/2))(( 0 )Nl)bT
= Qs (G'G)™"H(G'G)? + 0, (1) Nppr
= Qo Nppr + o,{1),
and this proves the result in part (d). |

APPENDIX B:
PROOFS OF THE MAIN THEOREMS

Proof of Proposition 1. The estimation error in the OLS estimator AisAd—A=
UsX(X'X)™!, and its component submatrices are expressed as

(A—A)H= (A, —A,A,— Ap)
=UX(X'X)'H
= U{)XH(H’X’XH)"H’H
= U()X,,(X,’,X,,)"H’H,
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where U5 X, = (Uj X1, U X,), and

(X, X)) = (XIX‘ XiXe )_]
akn) = , p
X, X, X)X,
=( (X0 X)7! —(Xle)_leXb(Xz’;Qle)_l)
— (X5 X)X X0 (X Qp X)) (X501 Xp) ™! ’

(A.46)
by the partitioned matrix inversion formula. Note that

H'H= (H'H ,H H),)

_(1 O) m,
B 0 I (m2+m3)'

Then, from Lemma 2.1 of Park and Phillips (1989), we have

UsXP = (T U Xy, TT2UEX;)

1 1
5 (f dB, B, + Aoz,f dBOB3’)
0 o]

1
= f dBogé + A0b>
0

X XP=(T'X, X5, T2 X{ X3)

1 1
24 (f dB, B; + Alz,f dB]B§)
0 0

1
Ef dBlBl;+Alb’
0

where Ay, = (Ag.0), Ay, = (A,,,0), and B}, = (B3, B}). Also,

T7iX3X, T73X}X; )—'
T3X;X, T7X;Xs

1 1 -]
fBng fBzﬁg
0 0
i _ l_ _
fB3B§ fB3B§
0 0
l_‘ _ -1
(f BbBZ;) )
0

by the continuous mapping theorem.

(XX~ = (

ik}
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(a) We can express VT(4 — AVH, as
UL Xn( X5 X)) "H'H,
= NTULX (X[ QX)) = NTU X, (X X)X X (X0, X))

Ug X 1
- (B2 - = vixpopx) X )
X X 1 -
x (—‘T - - FX;XE(XE’XE)”XZ?'XJ
UgX, [ X1 X\
ST\ ) tet

We then derive the limit distribution of the first term in the preceding expres-
sion by considering

. Ie -1
vec(VT(A — A)H|) = vec(UoX] <)—(1—X1) )

VT T
XX, 1 Z

<10 () ) Fons

2 u®rIihz,,

where Z, = N(0,0.,) as given in (3), and this establishes the required result
in part (a). i
(b) Similarly, we write (4 — A)YH, Dy as

Ug X (X3, Xy) ™ H'H, Dr
= (UGXF = T~VA(T™V2ug X (T X[ X)) X XE)

X (XPXP-T'XPx (T'Xx X)) 'x xPy™!

U XP(XPXE)™ + 0,(1)

1 1 —1
( f dBoE,;+Ao,,)< f B,,'B;,) ,
()] 4]

as required. n

R

Proof of Theorem 2. Notice that
(A* - AYH = (UF'X - TATYH(H' X' XH) "H'H,

where

Ud'X — TA* = Ug X — Ty — Qugs HH Qoo ) H'(V'X — Thyy,)

g0

= U§X = Thyae = Qi 05, (Vi X — Ty, 4.,

Qo Up "0y by
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and
HH'X'XH) "H'H, = (H) — H, (X} X)X, X)) (X0, X)),
HH'X'XH)'H'H, = (~H\(X] X,) "' X{ X, + H,)(X; 0, X,)"",

from the partitioned matrix inversion given in (A.46). We can similarly transform the
serial correlation correction term A* defined in (20) as

A+H = (A;()Au] H] Az-’rouzs A;()A,\@)'

The results in parts (d) and (e) of Lemma 3 imply that Ql—m,j and Q;; are consistent esti-
mates of ,,, and Q,,,, for K = O,(T*) with k € (0,3), because O,(KT %) =
0, (1) for that range of k. Thus, we will carry out the later asymptotic analyses with

the FM correction terms defined with &, , and & that is,

Hobp Vptp?

Ud'X — TA* = Ui X — TAgyax — Qugo, 5L, (VA X = TAs, 40). (A.47)

HoUp " Uply

For k£ € (0,3), it follows from the results in (A.47), Lemma 4(a), and parts (a) and
(c) of Lemma 6 that

T-V2US X, — TAY s0)
= T72UX, + O,(T'2K %) + O,(KT™V?) + O, (K ~'2). (A.48)

By (A.47), we can similarly write

(Ug" Xy = TA}ax,) D7
= (U Xy~ Thuynn,) D7 — Qg0 QL (Vi Xy — Thy, a0, ) D7, (A.49)
N J

~

where the underbraced term is
(T U§ Xy = By, TPUGX = T A4 00) = (Noar, Nost) + O, (K/T)'?)
by the results in parts (b) and (c) of Lemma 4. Then, (A.49) becomes
Noor = Qop Qs Ny + O, (K32T 32y + O,(K**/T) + 0,(1). (A.50)
(a) Using the results in (A.47)-(A.50), we may deduce that
VTAT = AYH, =T 72U X (T X[ X)) 7+ 0,(TV2K2) 4+ O,(KT?)
+O0,(K™2)+ 0,(K°2T %)+ O,(K/T)*"?
=T 20X (T X1 X)) +0,(1)

for a bandwidth parameter K = O, (T*) with & € (,1). From this, the stated
result in part (a) follows immediately.
(b) To prove part (b), we again use the results in (A.47)-(A.50) to get

(A* = A)H, D
= (Nost — Q05 Nopr X XE) ™ + 0,(1) + O,(K>2T732)
+ 0, (K*¥/T),

in which all the error terms are 0,(1) for & € (0,%). Now recall that
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Noor® [ anoB;,
4]
NbbT;’f dBy, By,
[¢]

. 1 \-1
a3 ([ B)
0
from their definitions given in (A.45) and by the asymptotics following (A.46).

The result in part (b) now easily follows. |

Proof of Corollary 3. Note that there are now no I1(2) variables in the model since
H = (H,,H,). We define a subscript coupling notation @ as ¢ = “1,2.” Following the
analysis given in the proof of Lemma 3(c), we can show that

Qg b, = (202255 (G4G) ™' + 0,(1),0,(1) + O,(K¥*T~V2) Cy,

where

%= (143)
TN+ M)

= (Ga, GuL) € Omy + my),
and
G, = G (G,G)™"2.
It follows directly from the proofs for parts (a) and (b) of Lemma 6 that
TV, X = Ayau, = Op(K72) + O,(1/NTK),
TV, X, — Ay =GN + O,(K72) + 0,(T%).

We finally note from the proofs of parts (d) and (¢) of Lemma 3 that

,,OLGQLU'UQ = 0,0, 200 + 0,(1),
for all £ € (0,1), and, thus, using Q,((MQI’“‘L-,N in the place of Quob Q[U will not af-
fect the following asymptotic results. Combining the preceding results together gives
T-V2(U§" X, TA“OM])
=T ”20 Xy = NTAL py = VTR, QL (TTVX = Ay )
=T7V2ULX, + O,(K7V2) 4+ O,(TY2K ™) + O,(KT™'?). (A.51)
We also have
T7US X, — AL,
=T 'UsX, — AaoAuz L R (T ViX, - Luuz)
= Noar — Q0205 Nogr + 0,)<K* ) + O, (T™3) + 0,(K*/T). (A.52)

(a) We follow the analysis given in the proof of Theorem 2(a) with the results
in (A.51) and (A.52) to get

VT(A* — AYH, = TR0 X (T X X)) 7 + 0,(1),
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as T— = for k € (1,4), and this has the required normal distribution as
shown in the proof of Proposition 1(a).
(b) Again by using the results in (A.49) and (A.50), we similarly have

T(A* ~ A)Hy = (Nogr ~ 295" Nor) (T72X3 X2) ™' + 0,(1)

1 1 1 —1
(f dBOBg—QO,,Q,;b'f deB;) (f Bng)
[4] [4] 0
] 1 -1
[ dBo~zBé<f Bng) ,
0 [4]

as T— oo for all & € (0,3), as required for part (b). [ |

ik}

Proof of Corollary 4. For the given specification of H = (H,,H;), the regres-
sors are now rotated in I{0) and I(2) directions in the following proof. Define a
subscript coupling notation ¢ as ¢ = “1,3.” Now there are no I(1) variables in the
model, and thus we have the following directly from the analysis for parts (a) and
(b) of Lemma 3:

Quoe‘<- = (Op(fKT)sQu0u3)

and
~ QAu Av QAu —f -6
ch v, = ( Qu;Au]l Qusluf) + Gpe( QAu,Atq QAu1u3)
+QAU1AU1 G! Q ’
+ +Q hc‘+ th Au;Aulth
uzduy
0 0 .
— ) +K—2w” 0 Q*(
(0 Qum) 08k,
<0p(l/\/TK3) +0,(K7%) O0,(1/NTK) + op(K‘2))
O0,(1/NTK) + 0,(K™2)  O,(1/NTK) + 0,(K72)/’
where
A _Qll _q)13) <L1> — <_Q]l)
Qr. = - Q,,,%5%) + Li,N7),
Re (@3] 0 N] ( tl 13) CI);"] ( l)

from the results in parts (a)-(c), (e), and (g) of Lemma 2. To find the inverse of
..., We conveniently denote its component submatrices as

QU‘U- — (cell 4'612)
o c‘62] 6622

and those of its inverse by
g1 . ( (it () )
Ve U ( Qu(» v )z—ll ( 9)

We first note that

-1
Ue b )22

B =K 2w (0)(Dh + 0,(1)),
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for all k € (0,1), where
(Q;c)ll =—(I+ L) + (¥3, — Q)L] =: 07,

from the expression for (. already given. We assume that the limit matrix .67, is
invertible, and, consequently, we have the following explicit representation of the limit
behavior of O*:

K205 S (1/w (0D 017"

Then it can be deduced from applying the partitioned matrix inversion formula that
Q)5 = 05" + 0, (1),

(L) = 0, (K7,

Qo012 = 0,(1) + O, (K¥2T~'7%),

We now have

QMOUCQ[Z‘LC
0,(K?) 0,(1)+ O, (K¥2T~172)
=(0 .0 1 4 g g )
( P(fKT) 03+0P( ))<Op(1)+0p(K3/2T—l/2) 93—3]+0p(1)

= (0,(1) + 0, (K*2T1"2), 00,053 + 0, (fr) + O, (K/T)).

Also, if follows directly from the analyses given in the proofs for parts (a) and (b)
of Lemma 6 that

Spiy AL O,,(K“Z)+O,,(l/x/TK3))
T Vch AUcAu] - ( Op(K_.z) + Op(l/ /—TK) >

OP(T—I/Z) )

T 20X = T Ay ay, = <_
e <857 \ Nygr + O,(K/T) + 0,(T™"?)

Then, by using the results already established, we have

Qoo QL TTIVLX) = Ap ) = Op(K72) + 0,(1/NTK)
and
Qogoe ot (T 2VLX; = T Ay 0 0) = Q00353 Nz + O,(T ™) + O,(K¥*/T)

+0,(K72).

We note that the result in parts (d) and (e} of Lemma 3 holds as it is stated because
the error term of the largest order, O,(K7T ~"?), results from the presence of 1(2)
Yariables. Hence, for k € (0,1), we can use 2,4, and @, ,, in the places of & and

{15 ¢, without affecting the following asymptotic results.
From all the preceding considerations, we have, for & € (0,1),

T™V2(U" Xy — TAS a0) = TT2UGX + O,(K™2) + 0,(T'2K %), (A53)

g U

and

T2UG X, — T'AY 4,

= Noar — Qo333 Nay 7 + 0, (T712)
+ 0, (K¥¥T) + 0,(K™2). (A.54)
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(a) It follows directly from the results established in (A.51) and (A.52) that
VT(A*Y — AYH, = T"V?Us X (T X1 X)) 71 + 0,(1),

as T— oo for k € (1,1, and this, together with the earlier restriction £ € (0, 3,
establishes the result in part (a).

(b) We similarly analyze the limit distribution of the estimator in the 1(2) direc-
tion by using the results in (A.53) and (A.54) as follows:

T2AY = AVH; = (Npyr — Qo3 O3 Nas e (T4 X3.X5) 7 + 0, (1)

y 1 _ 1 _ 1 o —1
9»( [ amoBs—anas [ Bng)( [ Bs)
0 (1] 0
1 _ 1 o —1
= f dBo:;B-g <f B3Bé) N
0 Q

as T— o for k € (0,3) N (0,3) = (0,3), as required for part (b). |

Proof of Corollary 5. We start by reconsidering the error terms in parts (d) and
{e) of Lemma 3 as, with # = H,, the model includes only stationary regressors.
From (15), we have

Upe = 0y, = Aty + LiAuy,oy,
and it is easy to see from the proof of Lemma 3(d) that

Oy, = vy, + RyAuyg.

Therefore,
Qx‘;lﬂl = Qvlul + +Qu1Au,R3 + R|_QAu|u1 + RIQAL“ALI]R,l
= 0,(K™2) + 0,(INTK?), (A.55)
because
Qz'|U| = QAu]Aul + +QAu|Au,Li + LI—QAulAzq + LIQAquulL/l

0,(K2) + 0,(1/NTK?),
+Qu,Au; = +QAu|Au1 + LIQAu]Aul
0,(K%) + 0,(1/NTK?),
—QAu1A111 = —QAul.Au] + QAM.ANI L;

0,(K™%) + 0,(1/TK?),

by the results in parts (a)-(c) of Lemma 2.
We also have from the proof of Lemma 3(¢) that

Il

g, = to; + (A ~ AYH H{x, = uy, + (4, — Axy,
and that

Pags, (J) = Tuguy (1) + Dugaiy G+ DR]+ O, (T 7Ty o, (4) + Ty (G + DRI
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Then we use this result to obtain
Qios, = Qugoy + g Ry + Op (T2 Q0 + Op (T2 0y, s, R
= 0,(K™) + 0,(1/NTK), (A.56)
because
Doy = Lugaus + " Qugau, L1 = 0,(K72) + 0,(1/VTK),
Quoy = Qi + " an Li = 0p(K72) + O, (1/VTK),
from Lemma 2(d). From (A.55) and (A.56), it follows that
Qugs, iy 5, = Op(K2) + O,(1/NTK). (A.5T)

Q
Because A = H|, there is no need to rotate the regressor space to separate out the
nonstationary regressors. Hence, we can establish the required result simply by
considering

VTAY = A) =(T7?U X, — ﬁAﬁoAu, - ‘/TQaOal Qzﬁrli}l(r—] ViXi— A0|Au|))
X (T X X))
=T 20U X(X{ X))+ 0,(TV2K?) + 0,(K™1?),

g Uy

where we used the result in (A.57) and
TV X) — Ag au, = 0,(K7?) + 0, (1/TK?),

from the proof of Lemma 6(a), and this leads to the required result, as shown in
earlier proofs. |

Proof of Corollary 6. When H = H, it follows from (13)-(15) and the proof of
Lemma 3(d) that

Uy, = Vg = Uy, + Matty
O = D2, = Vs + (My = M)y,
where VT(M, — M,) = O,(1). Using this, we have

Qﬁzﬁz = Quzuz + +Qu2u20p(T—l/2) + Op(Til/z)h Quzvz + Op(T_l/z)nguzop(r—]/z)

= (I+ M) Qi (1 + M) + O, (K 7%) + 0,(1/NTK), (A.58)
where
QL‘gug = Qllzll:)_ + +Qu2u2M?i + MZ_Quzuz + MZQuzuzMé

= (I + M)Q,,,,(1+ M3y + O,(K %) + 0,(1/NTK),
" Qosiy = " Qunrey + Mo Qs
(I + M)y + O,(K72) + O,(1/NTK),
T L O

= QI+ M) + O,(K72) + 0,(1/VTK),

o

by the results in parts (j) and (k) of Lemma 2.
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It also follows immediately from the proof of Lemma 3(¢) that
fg, = Ug, + (A — A3)x,.
Then we write [y, (/) as
Fugur(J) + Fuguy (4 + DOMT ™) + Op (T 70, (1) + Op (T ) 0, (J + 1),

and this leads to

Houz

Viotr = Qugus + “ugus Op (T2 + O (TN, + O (T V)0,
= Qo (I + My) + O, (K/T) + O,(T™"?), (A.59)
where
Qugos = Qugus + *ugua M3 = Quoiy (1 + M) + O,(K %) + 0,(1/NTK),
Qurir = Qopuy + "y, M3 = O, (K),

by the results in part (i) of Lemma 2, (A.23), and (A.26). It follows from (A.58),
(A.59), and Lemma 6(b) that

Quoir 0535, (T Vo X = Agyy) = Dy, iy Noor + O, (K72) + O,(T7V?).
Finally we use the results in parts (b) and (h) of Lemma 4 and the preceding result
to establish

TA*T — A)
= TG X, — TAL (X3 X,) ™
= (Noar = Quouzf)u—zluzNZZT)(T—2X£X2)_l + 0,(K7%) + 0,(K/T)'?)

1 1 -1
2 | dBo.zBs<f Bng) ,
Q 0

for all k € (0,1), where O,(K™2), 0,(K/T)"? = 0,(1), and this establishes the
required result. |

Proof of Corollary 7. With H = H;, the model has only 1(2) variables, and it
follows from (16) that

Oy = 03, = A%3, + 0, (T,

giving

Quy5, = Quyus + O, (KT 2. (A.60)
We also have from the proof of Lemma 3(¢) that

lig; = iy, + (A3 — A3)x3,;

therefore,

L9, (J) = Doy (J) + O, (T 0, (J) + O, (T72).

It follows that

Qroes = Qugus + Op(T )0y + Op(KT™V2)

Q{lo i3 ugley

=0y, + O,(K/T) + O,(KT™V?),
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because wa; = 0,(TK) as shown in (A.23). We now have from (A.60), Lemma
6(b), and the preceding result that

Qoo b (T35 X5 = T A ) = Quguey 2l Nasr + 0, (K72) + O, (KT™H72).

0303
Then, by parts (c) and (h) of Lemma 4 and the preceding result, we have
TXHAT - A4)

= THUG X3 — TA} 40 (X3 X5)7!

= (Nosr = Qugus Liys Nsr T 2 X5.X3) 71 + O,(K7%) + O, (KT ™2

Houz Uy

1 1 =1
ﬂf dBO_3B§<f &B;) ,
0 0

for k € (0,3), where the error terms O,(K~?) and O,(KT~'?) are 0,(1). This
establishes the required result. ]

Proof of Corollary 8. Now the model includes no stationary variables. Then, from
the proofs of parts (a) and (b) of Lemma 3, we have

o =0 <I+M§ Nﬁ)_l_(Op(fKT) Op(fKT)>
B S Opfxr) OplUkr) )’

o - <<I+Mz O)Q <I+M£ N:ﬁ_)) + <0p(f;<r) op(fkr))
Uptp N2 Ji Upitp 0 I Op(fKT) 0[)(fKT) 3

where fixr = K72+ 1/NTK = o(1) for all k € (0,1). Let
I+M, O
N, I

which is nonsingular. It can be shown that

Qo O = Q0,05 G+ 0,(1).

UpUL " UpUh
By using the result in Lemma 6(b), we also have
(V&Xb - A[r,,Ax,,)Dr—l = Gb/\_]bbT + O[)(K_Z) + OP(K/T) + 0/)(7"—1/2)'

We finally note from the proofs of parts (d) and (¢) of Lemma 3 that

Qugo, = Qugwy, + Op (KT ™) + 0, (K 2),

in,i'n = Ql'i:”h + OD(KTA/Z) + OP(K_I)’

where (KT ™2+ K~%) > 0 as T— o when K = O,(T*) with k € (0,3). Hence, we
can use £,,,, and @, as consistent estimates for { and &, ;, for k € 0,4).
Combining all the preceding results together gives

(U’ X, — TAY

g Axy

folp

)D7' = Nopr — p Q' Gy G Ny + 0, (1),

where we used the result established in the analysis following (A.48) for the under-
braced term and the fact that all the error terms appearing in the preceding ex-
pression are 0, (1) for all & € (0,1). Hence, the preceding statement holds for &k €
0,3) N (0,1) = (0,3).
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Now, we normalize the estimation error (A — A) by Dy, as the estimator is
defined only in nonstationary directions, and use the preceding results to give

(A% — A)YDr = (Nopr — Qs Qs Nopr + 0, (IN(XF X))

1 1 1 -1
(f dByBj, — QObQ&;'f BbBl’;> (f Bsz;)
o 0 )
1 _ ]‘ _ -1
f dBo-bB/;<f Bsz')) ,
0 0

for £ € (0,1). This establishes the required result. |

1B



