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This paper provides a robust statistical approach to nonstationary time series
regression and inference. Fully modified extensions of traditional robust sta-
tistical procedures are developed that allow for endogeneities in the nonstation-
ary regressors and serial dependence in the shocks that drive the regressors and
the errors that appear in the equation being estimated. The suggested estima-
tors involve semiparametric corrections to accommodate these possibilities, and
they belong to the same family as the fully modified least-squares (FM-OLS)
estimator of Phillips and Hansen (1990, Review of Economic Studies 57, 99-125).
Specific attention is given to fully modified least absolute deviation (FM-LAD)
estimation and fully modified M (FM-M) estimation. The criterion function
for LAD and some M-estimators is not always smooth, and this paper devel-
ops generalized function methods to cope with this difficulty in the asymptot-
ics. The results given here include a strong law of large numbers and some weak
convergence theory for partial sums of generalized functions of random vari-
ables. The limit distribution theory for FM-LAD and FM-M estimators that
is developed includes the case of finite variance errors and the case of heavy-
tailed (infinite variance) errors. Some simulations and a brief empirical illus-
tration are reported.

1. INTRODUCTION

Many recent empirical applications of nonstationary regression methods have
involved financial data sets. Examples include econometric tests of the pur-
chasing power parity theory (Johansen and Juselius, 1993), which use ex-
change rate data; tests of forward exchange market unbiasedness (Corbae,
Lim, and Quliaris, 1993), which use spot and forward exchange rates; and
tests of uncovered interest rate parity (Hunter, 1992), which use interest rate
and exchange rate data. A well-documented characteristic of such financial
data is their non-Gaussianity. The leptokurtosis and heavy-tailed features of
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ROBUST NONSTATIONARY REGRESSION 913

exchange rate returns are especially notable, and these features are usually
accentuated when the data are sampled more frequently.

For illustration, Figure 1a shows daily data for returns (i.e., differences
in logarithms) of the Australian dollar spot exchange rate measured against
the U.S. dollar over the period January 1984 to April 1991. Outlier activity
is a fairly prominent characteristic of this data set. Figure 1b graphs a non-
parametric estimate of the density of these data against those of a normal
distribution whose mean and variance are fitted to those of the data. The
leptokurtosis and heavy tails of the nonparametric density are evident in com-
parison with the fitted normal.

Two commonly used regression methods for analyzing such data in lev-
els or log levels form are reduced rank regression (RRR) (Johansen, 1988;
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Ahn and Reinsel, 1990) and fully modified least squares (FM-OLS) (Phillips
and Hansen, 1990). Both these procedures are Gaussian in the sense that they
can be deduced as maximum likelihood estimators under certain conditions
when the data are Gaussian, and in this event they also deliver optimal esti-
mates in nonstationary cointegrating regression (Phillips, 1991a). These tech-
niques were designed to deal with nonstationarity in the data but, like other
least-squares and Gaussian methods, they were not designed to deal specif-
ically with data where there is prominent outlier activity. In such cases, there
would seem to be a need for estimators that are more resistant to the pres-
ence of outliers than Gaussian estimators while at the same time being able
to cope with data nonstationarity and endogenous regressors.

This need is addressed in the present paper. We develop extensions of
robust regression procedures that allow for data nonstationarity and ende-
geneities in the regressors and serial dependence in the shocks that drive the
regressors and in the errors that appear in the regression equation. Our sug-
gested estimators involve semiparametric corrections to accommodate these
possibilities, and they belong to the same family as the FM-OLS estimator
of Phillips and Hansen (1990). Specifically, we develop a fully modified least
absolute deviation (FM-LAD) estimator and a fully modified M (FM-M)
estimator from the corresponding LAD- and M-estimators of ordinary re-
gression. These estimators are designed to combine the features of nonsta-
tionary regression estimators like FM-OLS with the outlier resistant features
of the common robust estimators.

Because the criterion function for the LAD estimator and for some com-
mon M-estimators is not smooth, we cannot rely on usual Taylor expansion
methods to do the asymptotics. Recently, convex function approximations
and stochastic equicontinuity arguments have been used to deal with this type
of difficulty (for some discussion and illustration of these methods, see Pol-
lard, 1990, 1991). The approach used here is rather different, although it does
retain a convexity argument like that of Knight (1989) to assist in establish-
ing the weak convergence of extremum estimators. Qur approach is to treat
the objective function in an extremum estimation problem as a generalized
function and use generalized Taylor series expansions to extract the asymp-
totics. To facilitate this process, we introduce the concept of a generalized
function of a random variable and give a strong law of large numbers and
some weak convergence theory for partial sums of generalized functions of
random variables.

The paper is organized as follows. Section 2 gives the model, our main
assumptions, and the preliminary limit theory. Section 3 introduces the idea
of a generalized function of a random variable by means of a class of suit-
able approximating sequences of ordinary functions of random variables.
Some limit theory for generalized functions that is used later in the paper is
given in this section. The FM-LAD estimator is constructed and its asymp-
totic theory is derived in Section 4. Section 5 deals with the FM-M estima-
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tor and its asymptotics. Extensions of the asymptotic theory to cover the case
of heavy-tailed (infinite variance) errors are given in Section 6. Some simu-
lation results and a brief empirical illustration are reported in Section 7. The
paper concludes in Section 8 by mentioning some further extensions of robust
nonstationary regression. Proofs are given in Section 9.

2. THE MODEL, ASSUMPTIONS, AND
PRELIMINARY LIMIT THEORY

We will work with the model
Ve =% 8+ uy,, (1a)
Axy = Uy, (1b)

where x, is a k-vector of full rank (i.e., not cointegrated) integrated regres-
sors. The error vector u, = (ug,, 4,,)" in (1) is possibly temporally dependent
and is required to satisfy Assumption EC, below. This assumption is con-
venient for our purposes here but could be replaced by a variety of similar
conditions without materially affecting our subsequent results, provided the
finite second moment requirement is retained. If hat condition is relaxed,
then the limit theory and, indeed, some rates of convergence will change. We
will discuss this possibility later in the paper. Model (1) can also be extended
by the inclusion of deterministic trends, and this extension affects our results
in the usual way (see Park and Phillips, 1988) provided the finite error vari-
ance condition holds.

Assumption EC (Error Condition).

(a) u, is a strictly stationary and strong mixing sequence with mixing numbers «,,
that satisfy

o

Dy < o )
1
for somep > f > 2.
(b) " ut"ﬁ < .
(¢) The probability density A(-) of ug, is symmetric and is positive and continu-
ous in a neighborhood (—5,b) of the origin for some b > 0.

Mixing condition (2) and moment condition (b) in EC are sufficient to
ensure the functional weak convergence of partial sum processes of w,,, i,
and bounded functions of u,, as will be needed later. These conditions will
also validate the weak convergence to stochastic integrals of sample covari-
ances between the regressors x;, and the errors u,, and bounded functions of
uq,. A requirement like part (c) is conventional in the development of an
asymptotic theory for the LAD estimator, whose limit theory depends on the
value of /4 (-) at the origin, A (0). However, the symmetry condition on 4 (-)
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is stronger than usual and could be relaxed, but it will be convenient in our
generalized function proofs.

Under Assumption EC, the long-run covariance matrix of u, exists, and
we partition this matrix conformably with u, as

& Qoo Doy
Qu= 2, E(uou,z)=[ oo ]

k=—o0 Q.)(O Qxx

We also use the transformed error process v, = sgn(up,) = 1,—1 for uy, = 0,
Uy, < 0, respectively, and define w, = (v,,u},). Because v, is a bounded
function of uy,, the long-run covariance matrix of w, also exists under As-
sumption EC, and we partition this matrix conformably with w, as follows

& Q Q..
wa: E 7 = v vx .
(2 ECwowi) [Qm Q}

In a similar way, we define and partition the one-sided long-run covariance
matrices of u, and w,, respectively, as

A()0 AOX}

Au = E(uou/é) = [
) k§) AxO Axx

and

hiad A, A
Ay = 2 E(wowg) = [ “ ”X]'
k=0 Axv Axx
Under Assumption EC, a multivariate invariance principle for w, holds,
namely,
[7r]

T2 3 wo=g Bu(r) = BM(Qy,,), 0<r=l, @A)
1

as shown in Phillips and Durlauf (1986). We partition the limit Brownian
motion B in (3) conformably with w, and Q using the notation B, (r) =
(B,(r),By(rY). A similar invariance principle holds for partial sums of i,
namely,

[Tr]
T7' > u, >4 B(r) = BM(Q,,), O0<r=<]l, )
1

where the limit process is partitioned as B, (r)’ = (By(r), B, (r)’) conform-
ably with u; = (uy,, uy,). In addition, Assumption EC ensures that sample
covariances between the regressors x, and the error vectors have limits that
can be expressed as stochastic integrals with drift. In particular,

[Tr] r
T3 x,0,- f B.dB, + rA,,, O<r=l, (5)
1 0
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and

17r]

T 2% xul =4 f B.dB, + 1A, 0<r=<l, (6)
1 0

where A, = [A,, A,,] (see Phillips, 1988; Hansen, 1992).

3. GENERALIZED FUNCTIONS OF RANDOM VARIABLES
AND GENERALIZED LIMIT THEORY

Our approach is to treat nonsmooth objective criteria like those that appear
in LAD estimation as generalized functions and use generalized Taylor series
expansions to represent their local behavior, The basic ideas behind this
approach and an application to LAD estimation in a stationary regression
were laid out by the author (Phillips, 1991b). We will follow those ideas here
and develop some additional concepts to make the approach rigorous.

Our main concerns will involve generalized functions of random variables
and stochastic limit operations with partial sums of these generalized functions
of random variables. The concept of a generalized function of a random vari-
able is different from the idea of a generalized random process, as it appears
in the existing literature on generalized functions (see, e.g., Gel’fand and
Vilenkin, 1964, Ch. III), wherein such a process is defined as a mapping from
a given space of test functions into a random variable. An example of the
latter is the continuous linear functional B(¢) = f(}go(r) dW(t), which is
here expressed as a stochastic integral of the Wiener process W (¢) on C[0,1].

Instead, our need is to give a meaning to objects such as 6(u,), where #, is
areal valued random variable (indexed by discrete time 7) and (-) is the Dirac
delta generalized function, which has the property that [ 8(x)F(x) dx =
F(0) for any continuous function F(x). There are, in fact, several ways in
which this can be done. In defining generalized functions like 8(-) (i.e.,
before we deal with such “functions” of random variables), we will use the
“regular sequence” approach given in Lighthill (1958). Associated with (and,
in fact, defining) any generalized function f(x) is a sequence f,, (x) of good
Sunctions (i.e., functions that are continuously differentiable any number of
times with derivatives of O(|x|™") as |x| — e for any N; the set of such
functions is denoted as GF') with the property that

o

lim Fn(X)F(x) dx )]

n—oo

exists for any F € GF. The integral of f(x) is then defined by the equation

o

fmf(x)F(x) dx := lim T (xX)F(x) dx.
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A sequence such as f,,(x) with this property is called a regular sequence
for f(x).

Since the sequence f,,(-) is measurable, f,,(#,) has a meaning as an ordi-
nary random variable on the probability space where u;, is itself defined. The
generalized function f(u,) of the random variable u, is then defined by the
associated regular sequence f, (u,) or, more precisely, the class of all regu-
lar sequences that are equivalent to £, (-) in the sense that (7) is the same for
each sequence. It follows that if pdf(u) € GF is the density of u, then we
can define the expectation of the generalized function f(-) of u, by

E(f(u)) 1= lim E(f,(u,)) = Jim S (u)pdf(u) du. @®)

n—oo

Provided the limit on the right side of (8) exists, we can relax the requirement
that pdf(u) € GF.

Now suppose we wish to establish a weak law of large numbers (WLLN)
or strong law of large numbers (SLLN) for partial sums of the generalized
function of random variables f(u,). Because f(-) is defined in terms of the
regular sequence f,,(-), we can define a WLLN and SLLN for f(u,), that is,

T
T_lzf(ul)_)p,aj‘ E{ f(u)), )
1

by the corresponding weak and strong laws for partial sums of the regular
sequence f,, (#,) of ordinary random variables, that is, by

T
T 20 S () =pas. ELfn (1), ¥m, (10)
1

and the limit that appears on the right side of (10) is given by (8). This defi-
nition is, in fact, compatible with that of a WLLN or SLLN for ordinary
functions of u,.

LEMMA 3.1. (SLLN for Ordinary Random Variables as Generalized
Functions of Random Variables). Suppose u, is strictly stationary and
ergodic and f(u,) is an ordinary (measurable) function of u,. Then, (9)
holds in the sense of ordinary random sequences iff it holds in the sense of
generalized functions of random sequences, that is, iff (10) holds.

Proof. To prove necessity, suppose f(u,) is an ordinary function of ,
satisfying (9) and E(f(u,)) is finite. We need to demonstrate (10). We con-
struct the following regular sequence of good functions to approximate f(-)
(cf. Lighthill, 1958, p. 22):

Fonlu) = fwf(v)S{m(v — u)me=v>"m* dy. an
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In (11) the function S(-) is a “smudge function,” whose role in f,, (&) is to
smudge out f(v) when v is outside the interval (¥ —m ™", u + m~'). S()
is defined as

1
S(y)y=s(y) f s(y)dy, (12)
—1

where

e~ l/u-y%) |y <1
s(») ={
0 Iyl =

and

1 1
fs(y)dysz eV gy = 2/e)f A= gy
-1

= (l/e)f 32721 + 2)73* dz,  with 7 = »2/(1 — »?)

= (7'%/e)¥ (3,05 1),

where ¥ is the confluent hypergeometric function of the second kind
(Erdelyi, 1953, p. 255). Note that S(y) and all of its derivatives are 0 at
y = +1.

Now, S{m (v — u,)} is a measurable and integrable function of #, and
therefore constitutes an ergodic sequence, so that

o0

T
TP 2 8(m(v—u)} =, E[S{m(v—u,)}] =f S{m(v—u)}pdf(u) du.
1

—a

Hence,

T~ Efm(ut)—f fU)T ES U—Ll)} —v2/m? dv

. fmf(U)E[S{m(v _ u{)}]me~u2/mz dv

= E{j;n(ur)}s vm,

giving (10) as a necessary condition for (9) in the case of ordinary functions
S(u;) of the random sequence u,.

To show sufficiency of (10) in this case (i.e., when f(u,) is an ordinary
function of u,), note first that, because f,(-) is a regular sequence for f(-),
E{ f(u,)} is finite and is given by the limit shown in (8). Equation (9) then
follows directly by the ergodic theorem because f(u,) is an ordinary function
and measurable (as the limit of a sequence of ordinary measurable functions)
and E{ f(u,)) exists. [ ]
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Example 3.2

Let 8(u,) be the Dirac delta generalized function of the strictly stationary
and ergodic time series u, with continuous marginal density pdf(u). A cor-
responding regular sequence for §(u,) is

b (uy) = (m/7)V2e—mud (13)
We have from (9)

o0

T
T 20 8(u,) —pas E(8(u) = f 6(u)pdf(u) du = pdf(0). 14)
1

—oo

The corresponding result for the sequence 8,,(1,) is

o0

-
T 20 8m(ty) =pas. B8 (u)) = (m/W)l/zf e=™ pdf(u) du
1

= pdf(0){1 + O(m~")},
where the last equality follows by virtue of the Laplace approximation.
Example 3.3

Let x, be the integrated process given in (1b) and suppose u,, satisfies
Assumption EC. We wish to show that

T 1
T2 378 (uo0) %, ) — pd£(0) f B.B.. 15)
1 0

Note that by changing the probability space this can be written as an almost
sure convergence result, in which case we can invoke the earlier definition
of a.s. convergence of generalized functions of random variables in terms of
regular sequences. The corresponding condition in the original probability
space is then

T 1
T2 6, (o) %, X, —a E1 6, (ttor)] f B.B., vm, (16)
1 0

where §,, () is the regular sequence for the delta function given in (13).
To establish (16), we will show that

.

T2 E [0, (1) = E{8,n (tho)}] X0 X7 ~p 0. a7
1

First, in view of (3), we have T7'2x;;.; =4 B,(-). Next, because uy, is

strong mixing, z,,, = 8,,(4g,) — E{d,(ug,)} is also (with the same mixing
numbers) and

Wy = Irvar(z,m) = E E(mezmt+j)3

j=—e
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which is finite for all 7. Note, however, that w,, = O(m"?) as m — o, as
is apparent from the fact that

Var{am(u[)] = E{am(ut)zl - E{am(ut)}z

= (m/r)f e™2m* pdf(u) du

) 2
—_ {(m/,n_)l/Zf e—mu2 pdf(u) du}

—00

= (m/m)"* pdf(0){1 + O(m™1)} — pdf(0)*{1 + O(m~")}
= O0(m'?). (18)

(Note that higher order covariances, that is, E{8,,(u,)0,,(.4;)} forj =1,
are of O(1) as m — o.) Thus, w,, is unbounded as m — o. But for all finite
m, w,, exists, and we have the functional law

[7r]
T2 3 2 ~a B, (r) = BM(w,,). (19)
1
To prove (17), we simply note that

T
T2 E [8,(ug,) — E{0, (o)} X,/
1

T
— T—I/ZE (T_l/zzm,)(T—I/ZX,)(T_I/ZX;) = OP(T_VZ), vm.
{

In fact, it is not difficult to establish the explicit limit

T 1 ! !
77372 Z thxtX[ —4 f de,,, BxB)f» + Azxf B+ f BA:’.X’ vm, (20)
1 0 0 0

where A, = 2720 E (Zm;Xo), Which is a limit result that is related to one
given in Hansen (1992, Theorem 4.2). Thus, (17) holds and this gives (16)
and, thus, the required limit of (15).

Example 3.4

Under Assumption EC, we have the functional CLT

[Tr]
T-Y2S sgn(ug,) —a B,(r) = BM(Q,,) Q1)
1

(see (3)) with

o0

Q,, = Irvar {sgn(ue)} = 2, Efsgn(ug,)sgn(uo,.;)). (22)

J=—00
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If we treat the ordinary function sgn(uy,) of u,, as a generalized function of
Uy, result (21) can be viewed as a functional law for partial sums of gener-
alized functions of random variables. The limit process B,(r) can then be
interpreted as a generalized process, although of course it also has meaning as
an ordinary random process, namely, a Brownian motion with variance ,,.
A regular sequence for sgn(i,) can be constructed as in (11). We get

sgn,, (o) = fw sen(v)S(m (v — u))me """ dy. (23)

Note that with this construction we have

sgnm (—or) f sen(v)S(m (v + tio,)) me """ dy

—f_ sgn(—w)S(m (uy, — w))me """ dw

+oo

~f sgn(w)S (m iy, — w))me ™" dw = —sgn,, (uy,),

—00

so that sgn,, () is an odd function of u, just like sgn(u). As a consequence,
E[Sgnm ( uOl)} = 0;

because the density of u, is Ssymmetric.

Being a regular sequence, sgn,, (#) tends to O faster than any negative
power of |u| as Ju| — o (see Lighthill, 1958, p. 22). Indeed, recognizing that
for large m the dominant part of integral {23) comes from integrating in the
neighborhood of v = u, we have from the Laplace approximation

1
S8, (Uo,) :f sgn(uy, + y/m)e Moty m? g3y gy
—1

= sgn(up,)e '™ {1 + O(m™")}. (24)

In view of this behavior for large |uy,|, all moments of sgn,,(u,) exist.
Also, sgn,,(uy,) 1s a measurable function of u,, and is therefore mixing
(with the same mixing numbers as u;,). It follows that

Qm = lrvar{sgn,,,(uo,)} = Z E{Sgnm(u()I)Sgnm(u()l+j)} < ®,
j=—
and we have the functional law

{7r]
T_]/z Z Sgnm(um) 4 Bm(r) = BM(Q,,,), vm. (25)
1
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Moreover, in view of (24), E{sgn,, (to,)s80,, (Uo,+;)} = E{sgn(ug, )sgn(ig,.5)}
and @, — Q,, as m — oo, so that

lim B, (r) = BM(Q,,). (26)
n— oo

Thus, (25) describes a regular sequence of functional laws whose limit (26)
is equivalent to the limit of (21). In this sense, (25) and (26) give an alterna-
tive representation of functional law (21), with the difference that the ordi-
nary random variable sgn(ug,) 1s treated as a generalized function of u, (by
virtue of the regular sequence sgn,, (#,,)). Because sgn(uy,) is an ordinary
random variable and the limit process in (26) is an ordinary random process,
the weak convergence results are equivalent.

Example 3.5
Assumption EC also validates weak convergence to stochastic integrals, as
in (5) and (6). Repeating (5) for r =1 gives us
7 1
T S sen(uo) = | BodBo+ b @n
1 (o}

As in the last example, we can again treat sgn(u,) as a generalized function
of uy,, using the regular sequence sgn,, (#4o,) given in (23). In the same way
as we derived functional law (25) for sgn,, (u#,,), we obtain

T 1
T_] Z X, 8gn,, ( u()t) —d f Bx dBm + Axm , vm, (28)
1 o]

where Bm = BM(Qm) and A.\‘m = 2-:_7';0 E{ Uy, 581,y ( u()!+j)} . NOW: Axm - Axv =
Zf’;OE{ Uy sgn(iy,,;)} as m — o and, thus, in view of (26), we have

I 1
lim <f B,\' dBm + A,\'m) = f Bx de: + Axv' 29
0 0

"m0

It follows that (28) describes a regular sequence of weak convergence results
whose limit, from (29), is distributionally equivalent to the limit of (27). Thus,
(28) and (29) give a generalized function characterization of limit law (27).

4. LAD AND FM-LAD ESTIMATION

The LAD estimator of 8 in model (1) is defined as the solution of the extre-
mum problem

T
Biap = argmin[Z |y, — x,’BI] : (30)
1

We examine the asymptotic behavior of the estimator 8 p and use this
theory to suggest suitable modifications to the estimator that lead to
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improved asymptotic performance in nonstationary regression situations.
Our approach to the development of the asymptotic theory uses generalized
functions of random variables and the limit theory for such functions devel-
oped in Section 3 to deal with the fact that the objective criterion in (30) is
not differentiable as an ordinary function of S.

We start with 8 4p and give its asymptotic distribution in the following
result.

THEOREM 4.1. Under Assumption EC,

1 -1 1
T(BLAD - B) —q |:2h (0)f Bx B,é:| |:f Bx dBv + Axu:| . (31)
0 0

Remark 4.2,

(i) Theorem 4.1 shows that 3, ap is consistent at the usual O(7T) rate for a non-
stationary regression estimator. But like OLS, B ap suffers from second-
order asymptotic bias arising from the presence of A, in the second factor
of (31) and the fact that the limit Brownian motions B, and B, are, in gen-
eral, correlated (i.e., ,, # 0in Q,,,). In fact, formula (31) is very similar to
the limit result for the OLS estimator £, namely,

1 -1 1
T(B—Bw(f BXB,:) (f Bdeo+Axo)
0 0

(from Phillips and Durlauf, 1986).

Limit distribution (31) depends on the value at the origin of the probability

density of uy,, that is, #(0). In this respect, (31) is similar to the usual limit

theory for the LAD estimator that applies in the stationary or linear regres-

sion case. However, because (31) is not mixed normal in general, the scale

effects of A(0) affect more than just the dispersion of the estimator.

(iif) When v, = sgn(uy,) is a martingale difference sequence with respect to F,_, =
0(Usoy, Uypis=tt—1,..5p= ... t+1,,t=1,...),thena,,=0,Q,=0
and (31) specializes to

1 -1 1
T(Brap — B) —=u [Zh(O)f B,\‘B,(’] [f B, dBv]
0 0

(i

~

1 -1
= MN (O,(Zh (0))‘2<f BXB,’() ) (32)
0
(because B, and B, are independent), which is a mixed normal limit that is compa-

rable in form to the normal limit theory for LAD in stationary models. In this spe-
cial case, x, is exogenous and the system has no feedback between v, and u,,.

4.1. The FM-LAD Estimator

Our purpose is to modify the LAD estimator so that we obtain a mixed nor-
mal limit theory like (32) even when x, is not exogenous. To do so, we need
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to adjust for serial dependence to eliminate the one-sided long-run covari-
ance A,, and adjust for the endogeneity of x, that is manifested in the long-
run covariance Q,,. Our construction is based on the idea of the FM-OLS
estimator developed by Phillips and Hansen (1990). However, in the present
case we need to take into account the following: (i) the extremum estimator
properties of LAD (i.e., unlike OLS, there is no explicit formula for LAD),
and (ii) the fact that the limit theory for LAD, as given in Theorem 4.1, relies
on the robust function v, = sgn(u,,) of the equation errors rather than the
errors themselves.

We define the FM-LAD estimator of 8 in (1) as the following corrected
version of S ap:

Biap = Brap — RAO)X' X1 [ X'AX QL' Q,, + TAL]. 33)

In (33), X'X =37 x,x/, X’AX = 3T x,Ax], h(0) is a (nonparametric) con-
sistent estimator of 4(0), the probability density of u,, at the origin, Q,, and
Q,, are consistent estimates of the long-run variance submatrices Q,, and Q,,,
and A;ﬁ, is a consistent estimate of the one-sided long-run covariance matrix

ATJ, = Z E(uy Uj+) = Axy - Axex_xl vas (34)
s
where

+ _ ~1
v =0 — QL’XQXX AXx,.

To estimate A},, we need first to estimate error v;*, which in turn involves
the estimation of v,. This is achieved by a first-stage LAD regression that
produces the error estimate iy, = ¥, — B{ ap X; and consequently 9, = sgn(iy,).
We then construct

o =0, — Q5 0t Ax,, 35)

using conventional kernel estimates of the long-run covariance matrices €,,
and Q,,, whereupon we can estimate A}, as given by (34) directly by using
a kernel estimate of the one-sided long-run covariance of u,, and o,* (for
more details on kernel estimation of long-run covariance matrices, see Park
and Phillips, 1989; Andrews, 1991; Phillips, 1995). Note from (34) that the
estimation of A}, effectively involves the estimation of the four submatrices
A, Ay, Q. and Q,,. We use the notation Q;, in (35) to make it clear that
our estimate of Q,, (and A,,, for that matter) relies on ¢, rather than on v,,
which is unobserved.
We can also write (33) in the form

Biap = Brap — [2A(0)X' X1 TALY,
where

ALY = (TT'X'AX — A) 05 Qe + A



926 PETER C.B. PHILLIPS

In this formula for A, the first expression on the right side is an endo-
geneity correction. This term adjusts the regression estimate for potential
endogeneity in the regressor x,. In LAD estimation, what is important is the
correlation between Ax, (the shocks in x,) and the signed equation error
function v, = sgn(u,,). Because there is persistence in the shocks to x, we
measure this correlation by means of Q,,. The variable Ax;/Q.;!Q,, then
adjusts the regression coefficient for the conditional mean of the signed error
v, given Ax,. The term involving A,, adjusts for the effects of serial depen-
dence in Ax, on the covariance 7' X’AX in the limit. Finally, the second
term in ALY is A,,, and this adjusts for serial covariance between the past
history of shocks Ax, and the signed error v,. In all these cases, we make the
corrections by nonparametric (kernel) density estimation. Thus, Sfap is a
semiparametric LAD estimator with nonparametric corrections for endo-
geneity in the regressor x, and serial dependence in the equation errors and
shocks to x,.

THEOREM 4.3. Under Assumption EC,

1 -1 1
T(BITAD - B) ~d I:Zh(O)f BAB)/(] |:f Bdev-x:|
0 0

[ —1
EMN(O,(Zh(O))‘ZwW.X[ f BXB)’(] ) 36)
0

where Bu~x = BL‘ - QL‘XQX:’IBX = BM(wUL“x) and Gop.x = vi - QUXQX}J va =
Irvar(¢,*).

Remark 4.4.

(i) The limit theory of FM-ITAD is similar to that of the FM-OLS estimator
Bt = (X' X)W X'y* — TAY), where y* =y — AX’Q5' Q0. This is given by

1 1/ p 1 -1
T(BT=B)=y (f BxB,(—) (f Bdeo~x) EMN<0’woo-x<J; BxB.Q) ),
0 0

37N

where B[)-x = BU - QU.‘(QX;\'I Bx = BM(‘-’JOO-X) and Wop-x = Q00 - QUXQ;YI Q,\'O'
The relative asymptotic efficiency of the two estimators depends on the ratio
Wyp-x/ (28 (0)) % wgg. »» 50 that FM-LAD is more efficient than FM-OLS when

h(0)? > wyy. /gy x- (38)

In the case where x, is exogenous and ug, is i.i.d. (0,0%), we have w,,., =
Wy = 1, wop.x = wop = 05y, and (38) reduces to

h(0)? > 1/d0%,,

which corresponds to the criterion for the asymptotic superiority of LAD over
OLS in linear regression.
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Wald statistics for testing restrictions on 3 can be constructed in the usual way
from the limit theory in Theorem 4.3. For instance, consider the restrictions

Hy:p(B) =0,

where ¢ is a g X | vector function with ®(3) = /38’ of full row rank g. The
Wald statistic for testing H, based on FM-LAD is

W* = o(Biap) (214402 X X177 17 0(B'aD) /Guyxs (39)

where &, = €, — 2,02 Q.. is a consistent estimate of the conditional
long-run variance wy,., A(0) is a (nonparametric) consistent estimate of
h(0), and ®* = $(Bap)- In view of (36), we have the limit W+ — x2 under
H, by a simple deduction. Thus, the statistic W™ can be used for testing
in the usual way.

Fully modified standard errors for the B;'yp estimator can be constructed
from (the square roots of)

5P = (Qp AROD X X)) (=1,...,k), (40)

where &y, = Q55 — 05,05 Q. Variance estimate (40) is based directly on the
(conditional) asymptotic variance matrix that appears in (36). Correspondingly,
we have the fully modified LAD z-ratios ; = (B8 »p — B:)/s;, which are
asymptotically N(0,1). These statistics simplify the statistical reporting of
FM-LAD regressions—in effect, we report the estimated coefficients, standard
errors, and r-ratios in the usual way. The modifications that are built into these
statistics mean that they can be interpreted as in conventional stationary lin-
ear regression.

In applications (such as the empirical illustration given in Section 7.2), regres-
sion model (la) will often include a fitted intercept. In this case, the theory
leading to Theorem 4.3 continues to apply after some modifications to the lim-
its of the terms in the generalized Taylor series expansion of the LAD objec-
tive function. These modifications have the effect that the Brownian motion
B.(r) that appears in the mixed normal limit in (36) is replaced by the de-
meaned Brownian motion B, = B, — fO‘ B.. In a similar way, when there is a
polynomial deterministic trend in (1a) the limiting functions in (36) involve
detrended Brownian motion, The derivations follow in the same fashion as
those described in Park and Phillips (1988). Inference is unaffected by these
changes because the limit theory is still mixed normal. Cases where X, itself
has a deterministic component (for instance, where (1b) has a nonzero con-
stant) can also be considered along the lines of the Park and Phillips (1988)
analysis. In such cases one needs to distinguish the directions where the deter-
ministic component of x, dominates and the residual directions in which the
stochastic trend dominates. The limit theory can be constructed from these con-
stituent pieces just as in Park and Phillips (1988). Finally on this matter, we
note that there is no need to make endogeneity corrections for deterministic
components, and the formula for the FM-LAD estimator 3{f4, can be corre-
spondingly adjusted. Phillips (1993) gave a detailed discussion of this matter
in the context of FM-OLS and FM-VAR estimation. Because the same con-
siderations apply here, the reader is referred to that paper for a full treatment.
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5. FM-M ESTIMATION

A more general class of robust procedures is that of M-estimators. In the
present case, these estimators can be defined by the extremum problem

T
B = argmin [Z p(y: — x{B)] , (41)
1

for some function p. When p(u) = |u|, this includes the LAD estimator.
Other common choices are p(u#) = |u|® for 6 € [1,2], thereby including
OLS when 6 = 2, and the Huber (1964) loss function

(3)u? for |ul <c,
pelu) = (42)
clu| = (3)c? for |u| > c,

which combines the OLS criterion for deviations bounded by the parameter
¢ with the LAD criterion for bigger deviations.
The estimator 8,, can also be defined as a solution to the equation

T
ZXI‘J/(}’I — X/ By) =0, 43)
1

and when p is differentiable ¥ = p” and (43) are the first-order conditions.
Definitions (41) and (43) are equivalent when p is convex and differentiable
because in that case there is only one solution to (43). A scale estimate can
also be employed in criteria {41) and (43), and this can be obtained using the
residuals of a preliminary consistent regression (possibly by OLS), as dis-
cussed by Huber (1981).

Like the LAD and OLS estimators, (84, needs some modification before
it has good asymptotic properties in nonstationary regressions. We will con-
struct a fully modified M-estimator 37 to improve the asymptotic behavior
of Bas, and the construction is similar to that of 8%,,. As in the LAD case,
we first need the limit theory for the unmodified estimator 3,,. This calls
for some additional conditions that relate to the properties of the functions
that appear in (41) and (43).

Assumption ML (M-Estimator Loss Function Conditions).

(a) ¥ (u,) has mean zero and |y (u,)|, < o,
(b) ¥'is Lipschitz continuous and {| ¢'(u,)|, < o, for some p > > 2, asin (2).

Conditions of this type are fairly standard in the development of M-estimator
asymptotics. The pth moment conditions (which relate to the strong mixing
condition in (2) in Assumption EC) on y and ¥’ in parts (a) and (b) are help-
ful because of the allowance for serial dependence in u, (cf. Knight, 1991)
and because of the need to establish results on weak convergence for sam-
ple covariances such as 7' X7 x4/ (u,) to stochastic integrals with drift.
However, for many i functions, these conditions will be implied by the cor-
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responding conditions on u,, and often y and ' are bounded, in which case
they hold automatically. The centering condition E{+ (2,)} = 0 in Assump-
tion ML (a) is the analog for M-estimation of the zero mean and zero median
conditions for OLS and LAD estimation.

Some M-estimators are excluded by the differentiability condition of As-
sumption ML(b). When ' fails to exist at a finite number of points, we can
proceed by treating y and ¥’ as generalized functions. The asymptotic results
given later will then continue to hold under some additional conditions on
the probability density 4 () of u,, so that, for instance, we could write

E{y (u)] =f d/’(u)h(u)du=—f Y(u)h'(u) du;

that is, this linear functional of the generalized function v’(#,) of the ran-
dom variable u, is equivalent to —f%_ (u)A'(u) du, which exists as an ordi-
nary function. In the addendum to the proof of Theorem 5.1 (see Section 9),
we will outline how this particular extension of the theory proceeds. The
development follows our analysis of LAD asymptotics using generalized
functions of random variables and generalized Taylor series.

Here we will focus attention on the nonstationary regression M-estimator
asymptotics and the construction of the FM-M estimator.

THEOREM 5.1. Let Assumptions EC and ML hold. Suppose also that
either of the following two conditions apply.

(a) p is convex, y = p', and (35, satisfies (41).
(b) Bay is a solution of (43), and TV*(8,, — B) = 0,(1).

Then,

1 -1 1
T(Byr — B) —a [E{J/’(uo,)}f BXB,L] [f B,dBy + Aw], 44)
0 0
where

B¢EBM(Q¢¢)’ Qw: 2 E{‘J/(UOI)‘J/(MOI+j)}

Ji=—x

and

A.\'\,& = Z E{ 2 1J/(L{01+j)} .
j=0

5.1. FM-M Estimation

As with the construction of the FM-LAD estimator, our purpose is to mod-
ify the M-estimator 3,, so that the second-order bias effects in limit theory
(44) are removed and the Iimit distribution is mixed normal. The required
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corrections are similar to those used in the LAD case, and we define the
FM-M estimator as

T -1

Bir=Bum — HT“‘ 2 d/’(ﬁo,)}X’X] [X'AXQ5 Q + TALL, (45)
{

where Q,W, is a consistent estimator of

o
Qx\,b = Z E[“A‘I‘J/(u01+j)}
Jj=—o0
and AQ is a consistent estimator of
A;‘I/ = A,\J/ —_ AXXQ,;\‘I QX\L‘

Again, all of these component matrices can be estimated using kernel tech-
niques. But we do need a preliminary consistent estimate of 3, say Bu, to
construct the residuals i, from which we can form the function (i),
which is required for the estimation of Q,; and A,,.

THEOREM 5.2. Under the conditions of Theorem 5.1

1 -1 1
T(Bir — B) =4 [E{J/'(um)}f BXB.Q] [f Bdew]
0 0

1 -1
:MN<0’0-’-\J¢-X[E{‘J//(HOI)}]_2|:f BxB,L]' ) (46)
0
where ‘
B\b-x = BM(OJVV,,J.X), Wy x = Q‘J,,J, - Q&\' Q\_\l QX\.’/'
Remark 5.3,

(i) In the case where x, is exogenous and uy, is i.i.d. (0,0%,)), the limit theory
given in (46) reduces to

1 -1 1
T(B37 — B) —~a var (¥ (o))" [E{w’(uo,)]f BXB;-] [f BxdW] én
0 0

where W is standard Brownian motion independent of B,. Observe that limit
(47) depends on ¥ only through the factor

var (Y (ug,)) "/ E (¥ (up,)). (48)

Consequently, the efficiency of the estimator 8;; depends on this factor also,
just as it does in the case of linear regression (see, e.g., Huber, 1981, p. 173).
If the density A (u) of uy,, is continuously differentiable, then the M estima-
tors B, 847 will be asymptotically efficient in this case (note that these two
estimators are asymptotically equivalent under the conditions of this remark)
if ¥ (-) is chosen to satisfy

Y(u) = —-ch’(u)/h(u), forc+0 49)
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(cf. Huber, 1981, pp. 70, 176). When the density /() is unknown, there is the
possibility of adaptive estimation, as recently discussed by Jeganathan (1995).
(i) In the general case, we can write limit (46) as

wl/? 1 -1 1
T(Biy— B) =y —— 25— B.B, B.dw], 50
Bt =8 2 TE (fo : ) (fo ) <0

where W = BM (1) is independent of B,. So the limit distribution of the class
of all FM-M estimators depends on the ¥ (-) function only through the factor
wl 2 JEN (1)) = Irvar (Y (ug,) | e ) 2/E(Y (o))} -

vy X

It will be interesting to consider the issue of an optimal estimator in this class.
Note that FM-M estimation is semiparametric and i (-) depends on the equa-
tion error uy,. Maximum likelihood estimation, in contrast, involves the com-
plete specification of the system, including the transient dynamics of the vector
error process u, = (ug,,u,,). If the latter is parametric, like the linear process
u = C(L;0)e, = 7 Cy(0)e,_,; with B5° j'[ C;| < oo, then the likelihood
can be constructed using a form of innovations algorithm (as when u, is
ARMA). For the Gaussian case, the results in Phillips (1991, Theorem 1’) con-
firm that the limit distribution of the maximum likelihood estimator (MLE)
of 8 is of the form given in (50). Indeed, FM-M estimation is optimal with
V() = u in this case; that is, the optimal FM-M estimator is just FM-OLS.
It will be interesting to try to extend this theory to the non-Gaussian case and
to develop a theory of optimal semiparametric M-estimation. This task will
be left for later work.

(iii) Theorem 5.2 can be used as a basis for inference using the FM-M estimator
B4y in the same way as FM-LAD (refer to parts (ii) and (iii) of Remark 4.4).
Thus, to test H, as in Remark 4.4(ii), we can use the Wald statistic

T -2 B
W;’:“’(B‘m’{%[rl‘?“m(”)} (X'X)_IW} 85 0

where &7, = ®(8:7), Dyy.x = Qyy — Q05 Q,, is an estimate of the condi-
tional long-run variance of V (u,,) given Ax,, and @iy, = y, — By x, is the resid-
ual from the FM-M regression. The latter quantity is used in the sample
estimate 77! ©7 ¢ "(ity,) of E{¢’(4p,)} and in the construction of the &gy,
which relies on the sample values y, = V(). In light of Theorem 5.2, we
have Wi — Xj under the null Hy,. FM-M coefficient standard errors and
t-ratios are constructed in the same way as in Remark 4.4(iii) for FM-LAD
estimation.

6. EXTENSIONS TO MODELS WITH INFINITE
VARIANCE ERRORS

This section outlines some extensions of the theory to the case where the
errors in model (1) have infinite variance. OQur purpose is to sketch the devel-
opment and indicate some interesting points of departure from the earlier
theory.
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It is simplest to suppose that the tail behavior of the errors in (1a) and (1b)
is of the same form. It is especially helpful to require that the components
of u,, have distributions with the same tail shape, for then the normalizing
constant in central limit theory for partial sums of u,, is a scalar. The gen-
eral case of an operator stable law when the components of u,, have differ-
ent tail shapes (e.g., follow asymptotic Pareto laws with different slope
coefficients) does not, to the author’s knowledge anyway, seem to have been
worked out. However, because one of the main applications of a regression
theory in the infinite variance case is to series like spot and forward exchange
rates, the restriction of comparable tail behavior does not seem to be too
limiting. At each point in time, spot and forward rates reflect the same infor-
mation set and economic fundamentals. As a consequence, it seems reason-
able to model such series with distributions that have related tail shape.

Accordingly, we will confine our attention to limit laws that are of the
symmetric «-stable (SaS) form. Thus, a k-vector £ has an SoS distribution
in R¥ if its characteristic function is of the form

E(e®r) = exp[—f |p'h]°‘I‘(dh)} , <1
Sk

where S, = {# € R*: A’h = 1} is the unit sphere in R* and I'(+) is a proba-
bility measure (possibly discrete) on S,. Paulauskas (1976) provides a dis-
cussion of multivariate stable distributions in this ¢lass. The most common
examples (arising from discrete measures on S;) are exponentials of powers
of quadratic forms such as exp{— (p’IZp)*?}, which include the multivar-
iate normal when o = 2,

We will assume that the following condition applies to u, = (uy,, #;,) in
place of Assumption EC.

Assumption EC? (Error Condition 2).

(a) u, is generated by the linear process
u,=D(L)e, = ZD,S,_j, D, =1, | D(1)] # 0, (52)
j=0

where g, is an i.i.d. sequence of random vectors whose components have infi-
nite variance and are each in the domain of normal attraction of a stable law
of order o € (0,2). The coefficient matrices in (52) satisfy the summability
condition

2D P <o, withO<bs<anl (53)
0
(b) Partial sums of the ¢, in (52) satisfy the following functional limit law in the

product space D[0,11%*" of k + 1 copies of D[0,1] with the product Skorohod
topology:
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(Tr)
ar' 23 &= Uy(r). (54)
1

The limit process U, (r) in (54) is an o-stable process in D[0,11¥*! whose
increments are SaS, that is, have a characteristic function of the form in (51),
and a7 = TV* is a normalizing constant.

(¢) The sequence u, is strong mixing with mixing numbers «,, that satisfy the
summability condition

o
Do, < oo,
0

(d) Condition EC{c) holds.

Condition EC?(b) is a “high-level” condition. Because each of the compo-
nents of ¢, is in the domain of normal attraction of a stable law with expo-
nent o, simple sufficient conditions for a component-wise version of (54) are
available (for earlier applications, see, e.g., Resnick, 1986; Chan and Tran,
1989; Knight, 1991). Condition (b) requires joint convergence and specifies
the limit process to be in the SaS class. Condition (a) specifies that u, has
a linear process form, and this facilitates the use of arguments like those in
Phillips (1991b) and Phillips and Solo (1992) for obtaining the limit distri-
butions of certain functions of partial sums of u,. Mixing condition (c) is
useful because we need to work with and characterize the dependence prop-
erties of functions of the error process ug,.

Our main result is the following.

THEOREM 6.1. Under Assumption EC?, we have the following:

(a) The estimators By ap and B{a, have the common limit distribution
1 -1 |
Ta(ﬁLAD - :8)» Ta(B]‘f—AD - 6) d (f U).'a U.?’(o:) (f Ux—(x de)
0 0

1 —1y
EMN(O,(Zh(O))’ZQUU(‘/ UmU;a) )
0

where a = 3 + 1/a, Uy (r) = DU (r), and U {r) = Uy (r—) is the left limit
of the process U,,. Here, D, is the second submatrix of D(1)' = [Dy,D,] in
a partition of D (1) that is conformable with u, = (ug,, Uy, )"

(b) The estimators By, and B have the common limit distribution

1

1 -1
TBar ~ B), T(Bry — B) =4 [E[‘//'(uo/)} fo Usa Ui-a] [f Ui dB‘L]
o

1 -1
= MN [O,Q\w (E{ \,V(uor)} f Uxoz U;'a) :| .
0



934 PETER C.B. PHILLIPS

Remark 6.2.

(i) Theorem 6.1 shows that the robust estimators By op and B4, are O(T7) con-
sistent. Because @ = % + I/ > 1 for a € (0,2), these estimators converge
faster than the OLS and FM-OLS estimators, whose convergence rate is still
O(T) in the infinite variance case. The situation is analogous to the case of
coefficient estimation in an AR(1) with a unit root. In that case, Knight
(1989, 1991) showed that LAD and M-estimators of the unit root have a rate
of convergence equal to O(T?), and Chan and Tran (1989) and Phillips
(1991b) have shown that OLS and semiparametrically corrected OLS have con-
vergence rates of O(T). Thus, just as in the unit root case, the robust esti-
mators B ap and SB,, are infinitely more efficient than OLS-based estimation
procedures when there are infinite variance errors.

(i) Interestingly, B ap and Biap are asymptotically equivalent in the infinite
variance case. Thus, there is no need to make corrections for endogeneity or
serial correlation when the errors have infinite variance. Intuitively, this is
because the robust estimators control the effects of outliers in the errors but
retain the additional strength in the signal from X, that arises from the pres-
ence of heavy-tailed and persistent shocks. In doing so, these estimators not
only achieve a higher rate of convergence than OLS and FM-OLS, but they
also remove the endogeneity effects of the regressors and the effects of depen-
dence between the past history of the shocks that drive x, and the equation
error ug,. In effect, whereas 772 =7 u,,uy, = O, (1) (it converges weakly to
the double stochastic integral or quadratic covariation process f(; dU,, dUp,,
where U, () = (Upy (r), Ul (7)), we have T~ STy, sen(uy,) = 0,(1),
so that the endogeneity and serial dependence effects wash out in robust esti-
mation with heavy-tailed errors.

(ifi) Because no modifications to B, 5 are required in the infinite variance case,
we may as well use 8 4p rather than S, if it were known that o < 2. On
the other hand, if we do use B{',p, then it follows from the theorem that
nothing is lost asymptotically because the modifications in 8;4p wash out in
large samples. As we will see, however, in the simulations reported in the next
section, clear evidence indicates that 8%y, does pay a price for the modifica-
tions over B ap in terms of additional sampling dispersion.

(iv) The mixed normality of the robust estimators in the limit means that standard
errors, r-ratios, and Wald tests can be constructed in the usual way, as shown
in Sections 4 and 5.

7. SOME SIMULATION RESULTS AND
AN EMPIRICAL ILLUSTRATION

7.1. Simulations

A small simulation study was conducted to study the sampling performance
of the new robust regression estimators. The model we used for data gener-
ation was the following:

yI:Bforu()h B__‘la
Axl = uxh (55)
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where
ug, = (1/(1 + ¢ }ey, + [¢/(1 + ¢*) ey,

(56)
Uy = &4y

and e, and ¢,, are each serially independent and independent of each other
and are drawn from the following four distributions:

D(a): N(0,1),

D(b): ¢ distribution with 4 degrees of freedom (1),
D(c): t distribution with 2 degrees of freedom (#,), and
D(d): standard Cauchy.

According to construction (56), the equation error uy, is an orthonormal
combination of the independent shocks (e;,,€,,). The parameter ¢ controls
the degree of association between uy, and u,, and, therefore, measures the
amount of dependence in the regressor x, in (55). When ¢ = 0, x, is exog-
enous; when |c| = 1, the squared correlation between u,, and uy, is 1, and
when ¢ — o, u,, and u,, become linearly dependent.

The parameter values chosen for our small simulation study were ¢ =
—1,0,1 and 7 = 100. We computed FM-OLS, FM-LAD, LAD, and RRR
estimates of the regression coefficient in (55). All of the FM estimates were
computed using a Parzen kernel with a “plug-in” optimal bandwidth, as in
Andrews (1991). From 5,000 replications in each case, kernel density esti-
mates were calculated of the sampling distributions of these estimates. The
results are shown in Figures 2-5, where each figure in this sequence displays
the outcome for an error distribution in aforementioned groups D(a)-D(d).
The figures show the estimated densities of the LAD, FM-LAD, and FM-OLS
estimates, as well as the estimates from a reduced rank regression with two
lags in the regression (i.e., one lagged difference), which is denoted RRR_2
in the figure legends. The estimates are centered on the true coefficient and
are scaled by the sample size, so that the given densities are those of T(B -8
for each estimator 8. In each case, we show the results for the association
parameter value ¢ = 1. Very similar results were obtained for ¢ = —1 and
¢ = 0, with the exception that LAD shows no bias in the latter case, as would
be anticipated from the asymptotic theory given in Theorem 4.1 (noting that
A, = 0 and B, and B, are independent when ¢ = 0).

Figure 2 gives the densities for normal errors. LAD is biased (¢ = 1);
FM-OLS, FM-LAD, and RRR_2 are all well centered; FM-OLS shows the
best concentration and, interestingly, FM-LAD has better concentration than
RRR_2. Thus, although FM-OLS and RRR_2 are asymptotically optimal
in this case, FM-LAD appears to do well and to be superior to RRR_2 in
this finite sample case. We reran this simulation and found similar results
and rankings for the RRR_1 estimator against FM-LAD. So the lag length
choice does not appear to be a critical factor in these comparisons, at least
for this set of parameters.



936 PETER C.B. PHILLIPS
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FiGure 2. Normal errors.

Figure 3 gives the results for the case of ¢, error distributions. The out-
come is very similar to the case of Gaussian errors. However, FM-LAD is
now closer to FM-OLS, although FM-OLS still dominates. FM-LAD dom-
inates RRR_2 by a wider margin than in the Gaussian error case. LAD is
still biased (again ¢ = 1).

Figure 4 gives the outcome for ¢, errors. Under these heavy-tailed error
distributions, the rankings have changed. FM-LAD dominates both FM-OLS
and RRR_2 in terms of concentration. FM-OLS continues to outperform
RRR_2. LAD is much less biased in this case.

Figure 5 shows the same densities under Cauchy errors. The results are

0.48 ,
1/\\‘ 1
0.38L | — FM=LAD :' lul -
P — RRR_?2
= LAD
[5)]
o 0.24; 1
©
™
0.12 ]
0.00 =S b ' *

-8 —4 0 4 8

FIGURE 3. 1, errors.
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a.56

0.28¢1

density

0.00

10 —5 T0

FiGURE 4. 1, errors.

dramatic. FM-OLS and RRR_2 are widely dispersed. FM-LAD dominates
FM-OLS and RRR_2 by a wide margin, and LAD is by far the most con-
centrated. Note that in this case both LAD and FM-LAD have rates of
convergence (here, order 73/?) that exceed those of FM-OLS and RRR_2
{(here, order T), so we expect both FM-OLS and RRR _2 to be poor in rela-
tion to the robust estimates. Although FM-LAD and LAD have the same
limit distribution in this case (see Theorem 6.1), the sampling distributions
are very different, with the LAD estimator showing much more concentra-

0.76 , : : ;_
— FM-LAD
--- FM—OLS

2 - RRR-2

2 p.3gf | 0 LAD

QO

'U

0.00

-60 60

FiGURE 5. Cauchy errors.
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tion. Thus, FM-LAD does pay a price in finite samples for the additional
correction terms in this case of very heavy-tailed errors.

7.2. An Empirical lllustration

The robust and nonrobust regression procedures were used to estimate the
foreign exchange market regression equation

Sppr = o+ Bftk + Ui (57

that relates the natural logarithm of the forward exchange rate for a k-period
ahead contract delivery f; , to the logarithm of the future spot rate of the
same currency §,.,. Daily exchange rate data for the Australian dollar over
the period January 1984 to April 1991 were used and the forward contract
period was 3 months. There were 1,830 observations in total.

Figure 6 shows the sample data and the fitted regression lines obtained by
FM-LAD, FM-OLS, and RRR_6 (reduced rank regression with six lags).

In spite of the large number of observations, there are big differences in
the regression coefficients. Both FM-OLS and RRR_6 seem to be substan-
tially affected by outlying observations (particularly the small spot rate and
moderate forward rate pairs). The FM-LAD regression line seems much less
affected by these outliers and seems to follow the general cluster of data more
closely. The estimated coefficients and standard errors are given in Table 1,
and these show that the numerical differences between the estimates are in-
deed substantial. Note that the FM-OLS and RRR_6 estimates of the slope
coefficient are both much closer to unity than the FM-LAD estimate. Thus,
inference about the forward rate unbiasedness hypothesis (under which 8 =1

-0.0 . ‘ ‘ " T

Spot rate

| ! ! !
c © o o©
~ [ N} —

|
o
n
:

|
o
[92]

-0.6 =0.5 -0.4 -0.3 -0.2 -0.1 -0.0
Forward rate

FIGURE 6. Scatter plot and regressions for equation (55).
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TasLe 1. Estimates of equation (57) (standard errors
in parentheses) '

o B
FM-LAD —0.071 (0.012) 0.700 (0.040)
FM-OLS —0.025 (0.029) 0.883 (0.092)
RRR-6 —0.003 (0.028) 0.935 (0.089)

in (57)) is affected by the regression procedure: the nonrobust estimates are
biased in favor of this hypothesis, whereas the robust estimates do not sup-
port it. The reader is referred to the author’s paper (1993) for a detailed
empirical analysis of these data.

8. FURTHER USEFUL EXTENSIONS

The robust regression methods developed here are designed for use in single-
equation nonstationary regression. They can be extended to multivariate
regressions or subsystem cointegrating regression where there is more than
one cointegrating relation. There is also the possibility of adaptive estima-
tion, wherein the error distribution is estimated and used in the estimation of
the regression coefficients. Jeganathan (1995) discusses this possibility in the
context of regression models like (1) with serially independent errors and
exogenous regressors. Given the extensive use of vector autoregressive mod-
els in empirical econometric research and the growing use of RRR methods
in VAR models, it would seem useful to develop adaptive estimation meth-
ods for these models also.

9. PROOFS
Proof of Theorem 4.1. We start by defining the process

T
Zr(g) = Z [luOr - T_lelgl - lMOrl}- (P.1)

1

The vector g, which minimizes Z;(g), is just g = T(Sap — §). Because
Z,(g) is convex, we can make use of the approach given by Knight (1989).
In particular, by Knight’s Lemma A it follows that if the finite dimensional
distributions of Z,(g) converge to those of a process Z(g) and Z(g) has a
unique minimum at &, then the convexity of Z, implies that g, —, £. This
also means that 8o, =, 3, and a separate argument for consistency of 8p
is not required. (Pollard [1991] used a similar approach to LAD asymptot-
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ics, but his Examples 1 and 2 give normal distribution limits and do not
involve random quadratic elements in the limiting process.)

We will establish convergence of the unidimensional distributions of
Zr(g), and then the higher dimensional distributions converge in a corre-
sponding way by applying the Cramer-Wold device. Note that the process
Zr(g) involves the ordinary random functions |uy, — 7 'x/g| and |ug,|
and is itself an ordinary random process. However, it can also be treated as
a generalized process (here a stochastic process defined in terms of general-
ized functions of random variables) by treating the function f(§¢,) = |,] of
the random variable ¢, as a generalized function of the random variable ¢,,
that is, by using the regular sequence of random variables

.frn(ét)zf ]UlS(m(v_é))me—uz/mzdv

to represent f(£,) as in (11). Thus, as a generalized process, Z(g) is defined
by the following regular sequence of processes:

T
Lrn(g) = Z [.f;n(um - T_lx;g) _fm(uOI)}- (P.2)

1
We now proceed to develop a Taylor expansion of Zr,,(g) and to charac-
terize its limit behavior. Expanding Z,, (g) in a Taylor series about g = 0,
we have

T 1 T
Zra(g) = ~T7' 3 f (o) X/ g + (5) T2y faug)e'x,xl g, (P.3)
1 1

where £\7(+) and f{P(-) denote the first and second derivatives of Sm() and
ug, lies between u,, and u,, — T 'x/g. Because f(§) has first derivative
everywhere except £ = 0 and f'(£) = sgn(£) exists as an ordinary function,
it follows that the regular sequence £\ (-) is a regular sequence for sgn(-)
treated as a generalized function (Lighthill, 1958, Theorem 10, p. 24). Thus,

V() is equivalent to the regular sequence sgn,, (-) given in (23). Similarly,

f,(,,z’(-) is a regular sequence for the generalized function
d/dg(sgn(§)) = 26(§)

(cf. Lighthill, 1958, p. 23) and is therefore equivalent to the regular sequence
28,,(+) given in (13).

Next, we consider the limit behavior of the two components of Z,,(g) in
(P.3). First, by Example 3.5, we have

1

T
T_l ngﬂm(um)xt,g —q (f
1 0

dB, B; + A}m) & (P.4)

and the limit process as m — o is equivalent to (f; dB,B; + A)g; that is,
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1 1
0 0

n—oo

which is an ordinary random variable.

For the second term of (P.3), observe that the regular sequence §,,(-) is
differentiable and has bounded derivative (with a bound dependent on m)
for all m. Thus,

Iém(u(’;t) - Bm(u()t)l = KmlT—lx!,gla vm.

and therefore

T
T_ZZ {5,,,(“0,) - Bm(ugt)}g’xlx;g
1

T
< KnT 72 35 (Xl 2)(g' %, X/ 8) =, 0, vm
1
uniformly over g in compact sets. Now, using Example 3.3, we have

T 1
T2 8 (o )8 X, X! & = E{ 6 (ttor)} f (g'By)?, (P.6)
1 0

whose limit as m — o is g'f} B, Bjg.
Combining (P.4) and (P.6), we deduce that

1

1
ZTm(g) 4 _(f dBmB),( + A;(m)g + E{Bm(um)]g,(f BXB),()g
0 (]

=Z,(g), say,vm P.7)

uniformly over g in compact sets. In view of (P.5) and because lim,,_ o
E{6,,(ug,)) = E{6(ug,)} = pdf(0), the limit process Z,,(g) has the following
equivalent representation as m — oo:

1 1
Z(g) = - (f dB, B, + Aﬁw)g + pdi(0)g’ (f BXBL)g, (P.8)
0 ’ 0

which is an ordinary random variable.

Because Z7,(g) 2y Z,,(g), Ym, and lim,,_ . Z,,(g) = Z(g), we have
established the weak convergence of Z,(g) =y Z(g) as generalized processes
uniformly over g in compact sets. But both Zr(g) and Z(g) exist as ordi-
nary random processes so that the weak convergence applies in this sense
also. The argument that we can neglect the region outside a suitable compact
set for g relies on the convexity of Z,(g) and is the same as that given in
Knight (1989, p. 277). Finally,
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1 —1 1
g =argmin Z(g) = [2 pdf(O)f BXB‘;J [f B.dB, + AXUJ, (P.9)
0 0

and we deduce that g = T(Siap — B8) =4 £ as required. |
Proof of Theorem 4.3. Start by writing the estimation error as
T(ﬁfAD —B)=T(BLap — B)
— (122hON(T2X'X) T X' AX Q5 0 + AL

Then, using Theorem 4.1 and (6), we obtain

I i i
T(Bifap = B) ~u [2h(0)f BxBX'J [f B, dBv+AXU]
0 0

I -1 1
- (1/2h(0))(f BXB_(,) [(f Bde;+Axx)Qx}’Qx,,+A;ﬁu]
0 0

1 -1 1
=[2h(0)f BXBX’] U B.(dB,—9,,03) dBX)J
o} (o}

1 -1
= [Zh(O)f BXB)’(] f B.dB,.,
0 0

1 —1
EMN(O,(1/2/1(0))2ww.x[jv BXB;J ), |
0

as required.

Proof of Theorem 5.1. The argument follows the general lines of Knight
(1989, Theorem 2). Take case (a) of p convex and define

.
Zr(g) = 2 {p(uy, — T7'x/g) — p(ug,)),
1

so that if &7 minimizes Zr(g) we have g = T(8a — 8). Then, by virtue of
the convexity of Z(g), we have g, -, g = argmin Z(g), where Z(g) is the
weak limit of Z7(g). As in the proof of Theorem 4.1, we need only estab-
lish finite dimensional convergence of Z,(g) to Z(g).

Taylor expansion of Zy(g) around g = 0 gives

T

1 T
Zr(g) = =T ' 3 ¥ (up)x/g + (5) T3 ¥ (ug)g'xxi g, (P.10)
1 1

where ug, lies between wuy, and uy, — T 'x,g. Now, | ¢/ (ue) — ¥/ (u)] <
K|T 'x/g| for some K > 0 and therefore
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,

T250 | (o) — ¥ (ud)|g'xxig
1

r
< KT 3 (T7V2x{g (T 'g'x,x/8) >, 0 (P.11)
1
uniformly over g in compact sets. Next,

.
T2 20 W' (u,) ~ E(¥/ (w1 g'x, X/ 8
1

,
= T2 | S TV ) — (W (tt0)}] (T“’Zx,)(T‘”Zx{)]g
1

=0,(T™V?), (P.12)

uniformly in g because the expression in large brackets converges to a sto-
chastic integral with random drift, just as in (20). Finally,

i

-
T2 E{(Y (ue)le'x, X g =4 E| \b’(uor)}g’f B, B.g (P.13)
1 4]
and
T 1
TVI Z\L(uOI)xI’g g g’(f Bdew+ Axx,//>$ (P-14)
1 ¢
because y (up,) satisfies the functional law
T
T—]/Z 2 ]‘b(uO,) e d B"l, = BM(Q\,’AL)
1
and the conditions for the convergence to the stochastic integral with drift

in (P.12) in view of Assumption ML. Combining (P.13) and (P.14) with
(P.11) and (P.12) provides the following limit for Z,(g):

i

Z:(8) >4 —8’ (fol B.dB, + A,W) + (%)wauo,)}g'fo B.Big = Z(g).
We deduce that

by g = [E{¢'<uo,>} fol BXB.:.]'I UO] B.dB,+ AW],

giving the required result.

In case (b), where TV2(8x — B) = 0,(1) and B, satisfies (41), we expand
the first-order conditions, giving

T T
0=T7"2 x ¥ (ug) — T2 29 (uo)x, %, T(Brs — B) + T™'Ry,
1 ]
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where

T

T 'Ry = T7' 35 (¥ (o) — ¥/ (g, }x, %/ (Bar — B)s

1

and ug, lies between ug, and g, + x,(8 — Brr). Now,

-
|IT~'Ry| < KT 2}] 10718 — B

,
= KT ' I T2, | T(Bar — B TVH(Bar — B)|
1

= [T(Bar — Bl 0p(1).

Hence,

T ~1 T
T(By—B) = [T_z 22V (g )X, x] + Op(l):l [T" Z.x,lﬁ(uol)]
1 1

1 -y M
—d [E{\V(Um)}f BxB,Q] [f B.dB, + Axﬂ,:l:
0 0

just as in the case of convex p. [ ]

9.1. Addendum to Theorem 5.1: ¥/(:) Nonsmooth

We will consider here the case where y( ) i1s differentiable except for a count-
able number of points of IR. We will retain the other conditions of Assump-
tion ML. The arguments follow the same general lines as those given in the
proof of Theorem 4.1 for the LAD estimator.

Take case (a), where p is convex. As in the LAD proof, we need to show
that Zy(g) = 51 {p(uy, — T 'x/2) — p(uy,)} has a suitable quadratic
approximation as 7— co. Because ¥ (-} is not everywhere differentiable, we
cannot use (P.10). Instead, we proceed by treating the ordinary function p(-)
in Zr(g) as a generalized function by means of the corresponding regular
sequence p,,(-) given by

Pm (1) ':f P(U)S(m(v—u))me_“z/’"z dv.

—co

(The existence of this integral poses no practical constraints on e (v), which
will, for robust estimation purposes, generally be bounded by a function
that is at most O(v?) as |v| — o.) Then, Z;(g) is defined by the regular
sequence of processes

7
ZTm(g) = Z {Pm(um - T_lxllg) - pm(u()[)}'
i
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Expanding Z7,, in a Taylor series about g = 0 gives

T 1 T
Zrm(g) =T D ¥m(uo) X g + (5> T2 ¥ (ug)g'x,x 8, (P.15)
1 1

where ,,(-) = p,,(+) 1s a regular sequence for ¥ (-} = p'(+) and ¢, (-) is a
regular sequence for ¥’(-), where both ¥ and ¥’ are treated as generalized
functions.

We examine the limit behavior of the two components of Z4,,(g) sepa-
rately. First, as in Example 3.5, we get

T 1
T#I Z llbm( uOl)x;g 4 (f dB!,’/,n B.\/’ + ,:n,b,,,) &> (P°16)
1 0

where By, =BM(Qy, 4,0, Qy o = 27 o E{Ym (o W (g,+)}, and Ay =
23720 E{ e ¥ (Uge4;)} . The limit process in (P.16) as m — oo is

1 1
lim ( f dBy, Bl + Ajwm) g= ( f dB, B + A;¢>g. (P.17)
m-ow 0 0

In the second term of (P.15), ¥, () is a regular sequence and therefore is
differentiable with a bounded derivative for each m. Thus,

Illbl/n(ugl) - ]lbr’n(u()t)| = KmT_,xr’g3 Vm

for some K,,, > 0 and
T T

T723) (iluo) — Y ug e xx g < K, T2 20 1% gl =, 0, vm
1 1

uniformly over g in compact sets. Just as in Example 3.3, we now obtain the
limit

- , :
T2 3 ¥ (U0 8'X X[ & = E{, (up,)) f (8'B.)*. (P.18)
1 0

By definition of the regular sequence ¥, (-), we have the limit

lim fm v (u)h(u) du = fm Vi(u)h(u)du = —fm V(u)h'(u) du,

H— oo
which exist as ordinary Riemann integrals; that is, we have

E{y (ug)} = E{Y/ (1)}, (P.19)
Combining (P.16) and (P.18) gives us
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1
ZTm(g) —d ——(f dB\»’/m B: + A:\'\»’/m>g
0

1 1
+ (§>E{¢,’n(uo,)1g’f B.Big=727,(g), say,
0

and in view of (P.17) and (P.19)

1
h—oo 0

1 1
+ (§>E{¢’(uol)1g'f B.Bg =2(g).
0

This establishes the weak convergence of Z;(g) = Z(g) as generalized pro-
cesses uniformly in g over compact sets. The argument then follows as in the
proof of Theorem 4.1, and we get

&r = argmin Z,(g) 4 § = argmin Z(g),

and thus the conclusion of Theorem 5.1 continues to apply in this case where
¥ (-) is not everywhere differentiable.:

An analogous proof when p is not necessarily convex (i.e., case (b) of Theo-
rem 5.1) is constructed by following the lines of the second part of the proof
of Theorem 5.1 and using generalized functions of random variables in the
same way as the earlier part of this addendum.

Proof of Theorem 5.2. The error of estimation is

T(By—B)=T(Br—B)
,
- {I/T“ D w'(ao,)} (T2X'X) T x'AX Q5 O + AL
1

Note that

T T
7! 2 (' (iy,) — ¥ (1)) ‘ <KT™' 2 "x/” ”BM - B” ) 0
1 1
and
-
T 23 (1) =as. EQY (14,)}
1
so that
T
T~ 29 (o) =y E(¥/ (1))
1
In a similar way, we can replace \b(“m) by ¥ = ¥ (i4,) in the sample covari-

ances that enter into the formulae for €2, and A, and retain the consistency
of these estimators. Then, using Theorem 5.1, we get
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1 —1
T(By — B) =4 [E{\V(uol)}f B,\-B;] [f
Q 0

1

1

-1
— (IVE{Y (uo,)}) (f BXB)?)
Q

1
X [( f B.dB. + Axx> Qo Qg + A,@]
0

i —1 i 1
=[Ew'(uo,)1 [ BXB.:-] { [ Boas,- | BXdB,;Q,;.‘Qw]
0 ¢ 0

1 —1 1
=[E{\V(uor)}f BXB.;.] U Bdew,x]
¢ ¢

1 —1
= MN(O,w¢¢<.1-[E{lﬁ'(uol)}]"z[f BXB,Q] >
0

as given in (46). [}

Proof of Theorem 6.1. We first consider 8 ap, and our line of approach is
the same as in the proof of Theorem 4.1. However, instead of (P.1), we take

,
Zr(g) = 2 {luo,— T7x/g| — |up,|} and gr = argmin Z;(g)
1

with @ = 4 + 1/o. As before, we treat Z;(g) as a generalized process,
defined in terms of the regular sequence

,
Zrn(8) = 25 [ fmltto, — T7%[g) — fin(10,)},
1

and use the Taylor expansion

1

,
2) T35 faug)g'xx/g,  (P.20)
1

T
ZTm(g) - _Tgaz‘fl(nl)(u()!)xl/g + (
1

where uZ, lies between uo, and uy, — T~“x;g. Here the sequence f5,(-) is

equivalent to sgn,,(-) and f,ﬁf)(-) to 6,,(-), as defined earlier.

First, consider the second term of (P.20). We use the “BN” decomposition
u, =D(L)e, = D(l)g, + §_, — & (P.21)
(see Phillips and Solo, 1992), where & = D(L)e, and D(L) = 3¢ D; L’ with
D, = 37 Dy. Now, in view of (53),

21500 = EOJ/CIIDJ(II‘5 < o,
a
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and thus §, = 3,J Djet_j converges almost surely and & € D(«a). Now, set
P, =X\¢ and W, = 2 u;. We have W, = D(1)P, + & — & and then

T T T
T2 W,W,;=D()T 23, P,P;D(1Y + D()T % 3, P (& — &)
1 1 1

T T
+ T2 3 (B8 = E)P{D(1) + T2 3] (8 — B) (B~ &))"

1 1
(P.22)
Note that & € D(«/2), so that T2 X1 §E = 0,(1), T T & = 0,(1)
and therefore the final term of (P.22) is 0,(1). Also, T™'~"* 3 P, = 0,(1)
and T2 Z{ P,&, = 0,(1) (the latter can be shown by using a further “BN”
decomposition for &,). Hence, (P.22) is dominated by the first term. How-

ever, T~V*Py,; =4 U, (r) by (54), and by virtue of the continuous mapping
theorem we obtain

T T
T2 5, W, W, =D(1)T % 3, P,P/D(1) + 0,(1)
i 1

1
—y D(l)(f Ua(r)Ua(r)’dr>D(1)’. (P.23)
0

We deduce that

T 1

T*‘Z(l lexll —d f Uxo:(r)UXo((r), drs
1 o}

where Uy, (r) = DyU,(r) and D’ = [D, D, ] is partitioned conformably with

U, = (Uy,, u,)" In the same way as in the proof of Theorem 4.1, we can now

show that

7
T_Za Z {Bm(uOI) - Blrl(u;[)}gtxlx;g ) 0

uniformly over g in compact sets, and

T !
T2 37 8, (Uo, ) 8% X, 8 —a E{b,(Ug,)) f (8'Uw)*.
] V0

Next, consider the first term of (P.20). Noting that £ (1,,) = sgn,,(4,),
which is a sequence of strictly stationary bounded functions of u,,, we have
the martingale difference decomposition (see Hall and Heyde, 1980)

Sgnm(uOI) = ),ml + th - Qm!‘]s vm, (P-24)

where the Y, are stationary square integrable ergodic martingale differ-
ences (with respect to the filtration generated by {ug,;:j < ¢}) and the Q,,
are square integrable stationary processes V. As in the proof of Lemma 2
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of Knight (1991), we can use (P.24) and the BN decomposition for u,, that
follows from (P.21) to establish the weak convergence

T T 1
T2 sgn, (ug,)x, = 2, (T2 sgnm(uo,))(T“”"x,’)*df dB, U,
1 1 0
(P.25)

where U, signifies the left limit of U,,(+). In the limiting stochastic integral
(P.25), the Brownian motion B,, = BM(Q,,) is stochastically independent of
the stable process U,,. There is also no drift or bias term in the limit (P.25),
unlike the finite variance case. The independence is a consequence of the dif-
ferent rates of convergence to B,, and U,, and follows from a result origi-
nally shown by Resnick and Greenwood (1979).

Combining these results produces

1 1
Zrm(8) 4 —(f dBmUx;'>g + E{Bm(uo,)}g’(f UXGU;(X)g
0 0

=Z,(g), sayvm,

and, as in the proof of Theorem 4.1, the convergence holds uniformly over
g in compact sets. Again, because lim,, .. B, (r) = B, = BM(Q,,) and
Hm,y oo E{0,,,(10,)} = E[6(up,)} = pdf(0), we have

1 1
lim Z,,(g) = — (f dB, U;(x')g + Ddf(O)g’(f Usa Ufca)g =Z(g), say,
Q 0

m—oo

which is an ordinary random variable. The remainder of the argument
now follows exactly as in Theorem 4.1, and the result for T9 (B ap — B) is
established.

Next, consider the estimator Bsp. We have

TBtap — B) = T(BLap — B)
T -1
- [2fz(O)T‘2“2xtx,’]
1

-
X [T—Za(zx,u;,> Q0 + TH“A;U]. (P.26)
1

We need to show that the second term on the right of (P.26) is 0,(1). Be-
cause BLap is consistent (from the first part of the proof) and LAD residuals
are used in the construction of 4(0) and the long-run variance matrix esti-
mates that appear in (P.26), we may proceed as if these estimates were con-
structed using the true errors u,,. Then, A(0) -, h(0), and following the
same line of argument as that given in Section 2.3 of Phillips (1991b), we
find that T'-2¢Q,, = 0,(1), T'"%4,, = 0,(1), T'~%Q,, = 0,(1), and
T'"29A,, = 0,(1). Then,
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T ~ S

T_za (2 x[ u)’([) Q.x—."(l QXU + Tl-‘zaA:U
1

,
= (T““me;) (T'72Q, )T 2,
1
+ T72A,, — (T 2ANT 20,0 T Q)

= (0,(N(0,(1)7"0,(1) + 0,(1) = O,(1)(O,(1) 10, (1) = 0,(1).

We deduce from (P.26) that T(8;'ap — 8) = T%(BrLap — B) + 0,(1) and the
stated result follows.

A similar argument gives the limit distribution of T9(8,, — 8) and shows
the asymptotic equivalence of 8,, and 8. |
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