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FULLY MODIFIED LEAST SQUARES AND VECTOR
AUTOREGRESSION

By PeTER C. B. PHILLIPS'

Fully modified least squares (FM-OLS) regression was originally designed in work by
Phillips and Hansen (1990) to provide optimal estimates of cointegrating regressions. The
method modifics least squares to account for serial correlation effects and for the
endogeneity in the regressors that results from the existence of a cointegrating relation-
ship. This paper provides a general framework which makes it possible to study the
asymptotic behavior of FM-OLS in models with full rank /(1) regressors, models with 7(1)
and [(0) regressors, models with unit roots, and models with only stationary regressors.
This framework enables us to consider the use of FM regression in the context of vector
autoregressions (VAR’s) with some unit roots and some cointegrating relations. The
resulting FM-VAR regressions are shown to have some interesting properties. For
example, when there is some cointegration in the system, FM-VAR estimation has a limit
theory that is normal for all of the stationary coefficients and mixed normal for all of the
nonstationary coefficients. Thus, there are no unit root limit distributions even in the case
of the unit root coefficient submatrix (i.e., f,_,, for an n-dimensional VAR with r
cointegrating vectors). Moreover, optimal estimation of the cointegration space is attained
in FM-VAR regression without prior knowledge of the number of unit roots in the system,
without pretesting to determine the dimension of the cointegration space and without the
use of restricted regression techniques like reduced rank regression.

The paper also develops an asymptotic theory for inference based on FM-OLS and
FM-VAR regression. The limit theory for Wald tests that rely on the FM estimator is
shown to involve a linear combination of independent chi-squared variates. This limit
distribution is bounded above by the conventional chi-squared distribution with degrees of
freedom equal to the number of restrictions. Thus, conventional critical values can be
used to construct valid (but conservative) asymptotic tests in quite general FM time serics
regressions. This theory applies to causality testing in VAR’s and is therefore potentiaily
useful in empirical applications.

Keyworps: Causality testing; cointegration; fully modified regression; fully modified
vector autoregression; hyperconsistency; long-run covariance matrix; one-sided long-run
covariance matrix; some unit roots.

1. INTRODUCTION

IN RECOGNITION OF THE FACT that most economic time series have some
nonstationary characteristics much recent attention in time series econometrics
has been devoted to issues of modelling with, estimation for, and inference from
such data. As a direct consequence of this attention, a huge literature has
emerged that seeks to confront these issues. Although the field is still very
young (it is still under a decade old) the volume of contributions is so large that
it is reasonable to think of it as having come a long way in a short time. Two
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early developments in this field opened up the area for subsequent research and
are still of central importance as it begins to mature. One of these was the
careful formulation of models that allow stationary and nonstationary time
series to coexist in the same equation and that relate nonstationary series in
long-run cointegrating relationships. Although there were many precursors to
this research in empirical error correction modelling (see Hendry (1993) for a
recent overview), the paper by Engle and Granger (1987) was certainly the
primary stimulus. The other early contribution that has since opened up many
different avenues of research in this area was the development of an asymptotic
theory of regression for integrated (or (1)) time series. There were precursors
to this work too, coming from research in the statistical literature on scalar
autoregression, starting with White (1958) and leading up to the work of Fuller
(1976), Dickey and Fuller (1979), and Solo (1984). The development of a
regression theory for multiple time series with unit roots came from work in
econometrics on spurious regression (Phillips (1986)) and on multivariate func-
tional central limit theory and its application to multiple time series regression
(Phillips and Durlauf (1986)). The arithmetic of (1) and 7(1)/1(0) asymptotic
analysis, as we might now call this theory, enables us to study the asymptotic
behavior of statistical procedures in the context of models that admit both
stationary and nonstationary time series. This means that we also have the
apparatus to explore the statistical implications of one methodology, such as the
use of error correction models, against those of another, like the use of
unrestricted vector autoregression.

The present paper is in one sense an extended illustration of this exercise. But
it also has a more basic purpose. This is to develop an approach to regression
for time series that takes advantage of data nonstationarity and potential
cointegrating links between series without having to be explicit about their form
and without preliminary pretesting. Cointegrating links between nonstationary
series lead to endogeneities in the regressors that cannot be avoided by using
vector autoregressions (VAR’s) as if they were simply reduced forms. This is a
point that was explained in earlier work (1991a) by the author and is illustrated
here in Section 2. Nevertheless, we often do wish to use VAR’s in empirical
research without prefiltering to “induce” stationarity, without pretesting to
determine the number of unit roots (or the dimension of the cointegration
space), and without prior knowledge of either the directions in which the data
may be stationary or the transformations that may be necessary to achieve this.
However, least squares (OLS) regressions on levels VAR’s which are treated as
reduced forms do not have generally good properties in models of this type,
especially with respect to the coefficients of (nonredundant) nonstationary
variables in the system. For example, as we explain in Section 2, OLS estimates
of any cointegrating relations are asymptotically second order biased in the
sense that their limit distributions are mislocated or shifted away from the true
parameters, even though the estimates are consistent (or first order unbiased).
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The reason for this is simple. OLS regressions are not designed to take into
account long-run endogeneities in the regressors and the presence of such
endogeneities produces the aforementioned bias.

Ideally, we need a statistical estimation procedure that offers many of the
advantages of an unrestricted levels VAR while at the same time allowing for
potential long-run endogeneities. The procedure suggested in this paper is
designed to achieve this marriage of the two principles. The method proposed
here we call fully modified vector autoregression (FM-VAR) and is based on, but
not identical to, a time series regression estimator known as fully modified least
squares (FM-OLS) that was put forward in earlier research by Phillips and
Hansen (1990).

The FM estimator was originally designed to estimate cointegrating relations
directly by modifying traditional OLS with corrections that take account of
endogeneity and serial correlation. One reason the method has proved useful in
practice is that one can use the FM corrections to determine how important
these effects are in an empirical application. This has helped to make the
method less of a “black box” for practitioners. In cases where there are major
differences with OLS the source or sources of those differences can usually be
easily located and this in turn helps to provide the investigator with additional
information about important features of the data. Recent simulation experience
and empirical research indicates that the FM estimator performs well in relation
to other methods of estimating cointegrating relations—see Cappuccio and
Lubian (1992), Hansen and Phillips (1990), Hargreaves (1994), Phillips and
Loretan (1991), and Rau (1992).

The present paper explores the use of the FM-OLS procedure in a more
general time series context than earlier research. Our framework includes vector
autoregressions with some unit roots and some cointegrating vectors, without
having to be explicit about the configuration or the dimension of the stationary
and nonstationary components in the system and without the need to pretest the
data concerning these characteristics. The resulting FM-VAR regression, as we
call it, has some surprising properties:

(i) First, when there is cointegration in the system the limit theory of the
FM-VAR estimator is normal (and asymptotically equivalent to OLS) for the
stationary coefficients, and mixed normal for a/l of the nonstationary coeffi-
cients including the unit roots. We get mixed normal limit theory for the
FM-VAR estimates of the identified components of the cointegrating matrix,
and these estimates are asymptotically equivalent to the maximum likelihood
estimates that are obtained by using knowledge of the dimension of the
cointegration space, as in Phillips (1991a) and Johansen (1988). Thus optimal
estimation of the cointegrating space is achieved by FM-VAR even though the
regression is unrestricted and there is no knowledge of the dimension of the
cointegrating space or even of the existence of cointegrating vectors. In addition,
the FM-VAR estimates of the unit root coefficient submatrix (/,_, in the case

n—r

of an n-dimensional VAR with an r dimensional cointegrating space and n —r
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unit roots) also have a mixed normal limit theory. So there are no wunit root
distributions and there is no asymptotic bigs in the estimation of the cointegra-
tion space in the FM-VAR limit theory.

(ii) When the system has a full set of unit roots, the FM-VAR estimator of
the complete unit root matrix (/, for an n-dimensional VAR) is hyperconsistent
in the sense that the rate of convergence of the estimator exceeds the O(T) rate
of the OLS and MLE estimators. This extends some earlier work by the author
(1992a), which showed that the FM-OLS estimator is hyperconsistent for a unit
root in a single equation autoregression.

(iii) The normal and mixed normal limit distributions of FM-VAR estimates
facilitate statistical inference in cointegrated VAR’s. Wald tests that are based
on the FM-VAR estimator are shown to have a limit distribution that is a linear
combination of chi-squared variates. The limit variate is bounded above by the
usual y? distribution with degrees of freedom equal to the number of restric-
tions that are being tested. Thus, conventional critical values can be used to
construct asymptotically valid (but conservative) tests in quite general FM-VAR
regressions. This theory includes causality tests and therefore offers an alterna-
tive to sequential test procedures such as those in Toda and Phillips (1994), and
to intentional model overfitting procedures like those in Toda and Yamamoto
(1993).

The paper proceeds as follows. Section 2 provides an illustration and some
background discussion of the relevant ideas that help to motivate the need for a
modified VAR estimation procedure. Section 3 gives our regression model and
assumptions. Section 4 develops a theory of FM-OLS asymptotics that covers
models with 7(1) and I(0) regressors, models with cointegrated regressors where
the directions of cointegration are unknown, and models with (1), 7(0) and
deterministic trending regressors. Section 5 considers the VAR models, develops
an asymptotic theory of regression for the FM-VAR estimator, and Section 6
derives the limit theory for Wald tests of restrictions, based on FM-VAR
regression. Section 7 concludes the paper and summarizes its main results.
Derivations and proofs are given in an Appendix.

The notation and terminology that we use in the paper for nonstationary
regression asymptotics is now fairly standard in the time series econometrics
literature. Thus, we call the matrix £2=X%_ _, E(u,u;) the long-run variance
matrix of the (covariance stationary) time series u, and write Irvar(x,) = 0. 1In a
similar way we designate long-run covariance matrices as Ircov(-) and we use
Ircov_ (+) to signify one-sided sums of covariance matrices, e.g. A = L7 _, E(u, ujp),
which we call for convenience a one-sided long-run covariance (in a slight abuse
of notation because A is not itself a covariance matrix). We use BM({2) to
denote a vector Brownian motion with covariance matrix {2 and we usually
write integrals like [JB(s)ds as [¢B or simply [B when there is no ambiguity
over limits. The notation y, = I(1) signifies that the time series y, is integrated
of order one, so that Ay, =(0) and this requires that lrvar(Ay),>0. In
addition, the inequality “ > 0” denotes positive definite when applied to matrices

and the symbols “—,”, “—_ 7, “as.”, “=" and “=" signify convergence in
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distribution, convergence in probability, almost surely, equality in distribution,
and notational definition, respectively; and we use |||l to signify the matrix
norm {tr (4 A)}/2, | A| to denote the determinant of A4, vec(:) to stack the rows
of a matrix into a column vector, [x] to denote the largest integer <x, and all
limits in the paper are taken as the sample size T — %, except where otherwise
noted.

2. BACKGROUND IDEAS AND MOTIVATION FOR MODIFIED
VAR ESTIMATION

To illustrate some of the ideas that come into play in the present paper we
will consider in this section the following first order n-vector autoregression

(1) V=AYt & (t=1,...,T),

where & =1id(0, 3,,) with X__ >0 and the initialization y, is any random
n-vector. Suppose the coefficient matrix A in (1) has the simple form

0 B
A= [0 [nr} =(4;,), say,
for some r X (n —r) matrix B. Partitioning y, = (y},, ¥5,) conformably with 4
we have the following explicit form of (1):

(1a) Yu=By,_t+ey,
(1b) Y2 =Yau-1 1 €25

showing that y,, is a full rank 7(1) process and that y,, is cointegrated with y,,.
Thus, (1) is a simple VAR with some (n — r) unit roots and some () cointegrat-
ing vectors that have the form B’ =[I, —B]. (This model extends a simple
exercise given in Phillips (1992b).)

Premultiplication of (1) by B’ gives the stationary relation

(1a) B'y, =y, — By, =Be=v, say,

which shows the directions in which the n-vector y, is stationary. Since these
directions (and indeed the form of the coefficient matrix A4 in (1)) are not
known, we may well consider estimating the matrix A directly from (1) as a
levels VAR. In such a regression y,_, is treated as predetermined and the
model is usually regarded as a “reduced form.” However, because of the
nonstationarity in the data, the endogeneity in the variable y,, that is clear from
the form of (1a') is also present in the lagged variable y,,_,. This can most easily
be seen by noting that (1a) is really just another way of writing (1a')—we simply
add and subtract Be,, to the right side of equation (1a).

To be more explicit we note that E(ey,y5,_,) =0, so that y,,_, appears to
satisfy the usual orthogonality condition of a “good” regressor or predetermined
variable. Nevertheless, since y,,.; is nonstationary the sample covariance
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T 'YTe,, 5, does not converge to zero. Instead, we have, using standard weak
convergence results (see Phillips (1988)),

T
- . 1 !
(2) T 12311)’21—1_’df dB, B;,
1 0

where B(rx1) and B,(n—rx1) are subvectors of the Brownian motion
B =(B), B,Y = BM(3,,). Now, although E(e,y5,_;) =0, the limit processes B,
and B, will be correlated Brownian motions whenever the contemporaneous
correlation between &,, and &, is nonzero (i.e., when 3, is not block
diagonal). This correlation between B, (the limit process of 7°!/%y,,_,) and B,
(the limit process of partial sums of ¢,,) is the manifestation in the limit of the
“endogeneity” of the regressor y,,_, in (la).

The effects of the “endogeneity” of the regressor y,,_, on a levels VAR
regression are simple to determine. (See Remark 5.8 below for a general
analysis and discussion.) It is most convenient here to consider the OLS
estimator of B in the restricted model (1a). The limit distribution is given by the
following expression:

T T -1
T(B-B)= (T~1 281:)"2:—1) (T_z Zy?.t—ly/Zr~l)
1 1

-1
e os)

whose right side we can decompose into two terms (following Phillips (1991a)) as

1 1 - 1 1 -1
(fo dBl,zB;)(foBzB'z) +2122;;(f0 deB’z)(fOBzB'z) ,

where B,,=B,—3,35,'B,=BM(%,,,) with X,,,=3,-3,3.'5, . The
second term in the above expression is the “simultaneous equations bias” that
results from the “endogeneity” of the nonstationary regressor y,,_, in equation
(1a). This term leads to a miscentering and skewness of the limit distribution of
B and its dependence on nonscale nuisance parameters that are impossible to
eliminate in foto at least in general VAR regressions. The first term in the above
expression is the limit distribution of the optimal estimator under Gaussian
errors &, in (1), as shown in Phillips (1991a).

To deal with the fact that levels VAR’s are not “reduced forms” when some
of the variables are nonstationary we need to find ways of dealing with potential
endogeneities of the predetermined variables. Since these endogeneities arise
from cointegrating linkages of the type (1a'), one way of proceeding is to pretest
the data for the presence of cointegration and the rank of the cointegration
space, which in the simple example above is just the rank of the coefficient
matrix /—A. One can then perform a reduced rank regression to obtain an
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optimal estimate of the submatrix B (after suitable transformations), as in
Johansen (1988). Other methods, such as those in Phillips (1991a, 1991c), are
also possible.

This paper considers an alternate approach that is more in keeping with the
principle of unrestricted levels VAR regresiion. Our proposal is to deal with
potential endogeneities by making a correction to the OLS-VAR regression
formula that adjusts for whatever endogeneities there may be in the predeter-
mined variables that is due to their nonstationarity. We seek to make these
adjustments without knowing in advance the directions in which the variables
may be stationary and what the rank of the cointegration space may be. We also
seek to avoid pretest or sequential inferential procedures so that our approach
maintains the essential methodology of the unrestricted vector autoregression.
In the absence of prior or pre-test information about the cointegration space, we
need to allow for our correction to be sufficiently general to accommodate all
potential endogeneities and our procedure must be capable of handling vari-
ables that are stationary in some directions and nonstationary in others without
knowing these directions in advance and while preserving the usual VAR limit
theory for the stationary components. Our method of achieving this is to use in
the VAR context a version of the fully modified least squares (FM-OLS)
procedure in Phillips and Hansen (1990). The precise details of our approach
are laid out in Section 5. The next section shows how the asymptotic theory of
FM-OLS regression can be extended to accommodate the type of situations that
arise in general time series regressions where the dimension of the cointegration
space is unknown. This theory is an essential element in dealing with the case of
a general VAR with some unit roots.

3. MODEL AND ASSUMPTIONS
The basic model we will work with in this section has the form
(3 Y, =Ax, + uy,,

where A is an n X m coefficient matrix and x, is an m = (m, 4+ m,)-dimensional
vector of cointegrated or possibly stationary regressors that are specified accord-
ing to the following equations:

Hix, =X, =uy, (my X 1),
H)Ax, = Ax,, = u,, (m, x 1).

Here H=[H,, H,] is m X m orthogonal and rotates the regressor space in (3)
so that the model has the alternative form

(3) yl=A1x1t+A2‘x2t+u0t

where A, =AH, and 4, =AH,. Data matrices constructed from the variables
in this model will be denoted by upper case letters. Then, (3') is written as



1030 PETER C. B. PHILLIPS

Y =4 X +4,X;,+ U} with X{=U/, AX)=U}, and where, eg, Y'=
[y yrl

The form of (3') is useful because it separates out the 7(0) and /(1) compo-
nents of the regressors in (3). However, the directions (H,) in which the
regressors are stationary will not generally be known in advance, nor even will
the rank of the cointegrating space of the regressors. Procedures are available to
estimate and pre-test for these quantities. But our interest is on the develop-
ment of an approach that enables us to proceed without this information, i.e.
with H unknown. Our approach is designed to enable an investigator to treat
(3) as a time series regression without pre-testing the regressors for unit roots
and cointegration, in effect without regard to the 7(1) or I{(0) characteristics of
the data.

Let u, =(uy,,uy,u5,) and ¢, =uy, ®u,,. It is convenient for our develop-
ment to assume that u, is a linear process that satisfies the following assump-
tion.

AssumpTION EC (Error Condition):

(@) u,=C(L)e, = L7 4Cie,_j, L5j°lICill <0, ICDI# 0 for some a > 1.

(b) &, is iid with zero mean, variance matrix 3,>0 and finite fourth order
cumulants.

(©) E(ep, ;) =E(ug,,;®u,)=0 foral j=0.

By a multivariate extension of Theorems 3.4 and 3.8 of Phillips-Solo (1992),
Assumption EC ensures the validity of functional central limit theorems for u,
and u,u,. In particular, we have

(4) 12"y S B =BM(2),  Q=c)5,cQ)
1

and
T o

(5) Tnl/zquz,() —d N(O’ Qq:gp)’ Qqa;c= Z E(u()tu,()t+j®ultullt+j)‘
1 j: —w

The variance matrix ¥ and long-run variance matrix (2 of u, are partitioned

into cell submatrices 3;; and (2; (¢, =10,1,2) conformably with u,. We simi-

larly partition the Brownian motion B in (4) into cell vectors B, (i =0,1,2).

When u,, and u;, are independent for all ¢, s we have 2, =Y7_ _wEQQ@ U4 j)

® E(uy,u},,;) and when, in addition, u,, = iid (0, 3;,) we have 2, =35, ® 3,
We will also need the one-sided long-run covariances

A= ZE(L‘}'UB): ZF(]):(AU))
j=0 j=0
and
A= ZE(UJ‘”I())= Zl—‘(j)z(A,'j)a
i=1 i=1

where the cell submatrices 4;; and A;; (i,j=0,1,2) again conform to the
partition of the vector u,.
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As will become clear later, our approach relies on estimation of both (2 and
A, which is typically achieved by kernel smoothing of the component sample
autocovariances, a subject on which there is a vast statistical literature and to
which we will have very little to add, noting that our central concern lies
elsewhere—in the estimation of the regression (3). Since u,, must itself be
estimated, we will use in its place in these calculations the residuals &, =y, — Ax,
from a preliminary least squares regression on (3). Under EC(c), A -, A and
the replacement of u, by i, will not affect our results.

Kernel estimates of €2 and A have the general form (see, e.g., Priestley (1981)
or Hannan (1970))

T-1 T-1
Y w(G/KP(G)  and A= Y w(i/K)I()),
j=0

j==T+1

(6) 0

where w(-) is a kernel function and K is a lag truncation or bandwidth
parameter. Truncation in the sums given in (6) occurs when w(j/K) =0 for
|j! = K. The sample covariances in (6) are given by

A

AL _ fa oA ”
F(])=T IZ uz+jult’ ut=(u'0,,u'“,u'2,)/,

where ¥ signifies summation over 1<¢, t+j<7. The class of admissible
kernels that we employ is made explicit in the following assumption.

AssuMpTION KL (Kernel Condition): The kernel functionw(-): R »[—1,1]isa
twice continuously differentiable even function with:

(a) w(0) =1, w'(0)=0, w(0)+ 0; and either

(b) w(x)=0, |x| > 1, with lim,_, w (x)/(1 —|x])* = constant, or

() w(x)=0(x"?), as |x| - 1.

Under KL we have

lilrz)(l —w(x))/x*=—(1,/2)w"(0),

and thus Parzen’s (1957) characteristic exponent () of the kernel w(x) is r = 2.
Under KL with (a) and (b) come the commonly used Parzen and Tukey-Hanning
kernels and undér KL with (a) and (b’) comes the Bartlett-Priestley or quadratic
spectral kernel (e.g., see Priestley (1981, p. 463)). Assumption KL is similar to
kernel conditions employed in other recent econometric work (e.g., Andrews
(1991)) but is somewhat more restrictive. The explicit exponent (r =2 and
w"(0) # 0), truncation (KI(b)) and derivative requirements in KL are helpful in
achieving explicit formulae in some of our asymptotic developments. They could
be relaxed at the cost of greater complexity in some of our proofs and with some
changes in our final formulae and convergence rates. Thus, Assumption KL is
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sufficient for our development but not necessary, and we have made no attempt
to achieve minimal conditions on the kernel function for our results to hold.

We will need to be explicit about the bandwidth expansion rate of K as
T — =, For convenience we will characterize rates of expansion of K =K(T) as
T — « in the following manner:

DErFINITION (expansion rate order symbol O,): For some k>0 and for K
monotone increasing in 7 we write

K=0(T*) if K~c;T* as T — o,

where ¢, is slowly varying at infinity (i.e. C7,/c; — 1 as T — « for x > 0).

Using this notation we impose the following condition on how the bandwidth
parameter K grows as 7 — .

AssUMPTION BW (Bandwidth Expansion Rate): The bandwidth parameter K in
the kernel estimates (6) has an expansion rate of the form

BW(G) K=0,(T*) forsomeke(1/4,2/3);

i.e., K~c,T* for some slowly varying function ¢, and thus K/T** + TV* /K — 0
and K*/T - = as T — . Some of our results require other bandwidth expansion
rates which we designate as

BW(ii) K=0/(T*) forsomeke (1/4,1/3),
BW(iii)) K=0,(T*) forsomeke(1/4,1),
BW(iv) K=0,(T*) forsomek<(0,1).

Conditions like BW(i)—(iii) rule out the “optimal” growth rate K ~ ¢T'/? that
applies when minimizing the asymptotic mean squared error of kernel estimates
such as (2 with kernels that satisfy KL. However, since our objective is
estimation of the model (3) and estimation of (2 and A arise only incidentally in
this process, it is not surprising that BW is not compatible with the “optimal”
estimation of these nuisance parameters. The reason for Assumption BW and
the role of the exponent k that appears in BW(i)-(iv) will become clear in our
later analysis.

We now define u,, =(Au|,u,,) (= Ax,, =HAx,=H'u,, say) using the
subscript “A” to signify that elements corresponding to Au,, and u,,, which
occur after use of the rotation H, are taken together. In a similar way, we define
the long-run covariance matrices {2, £2,,, 4,,, 4,, and their kernel estimates
in terms of the autocovariances and sample autocovariances of u,,. Observe
that the leading submatrix of (2,, corresponding to the difference Au,,, viz.
44,40, 18 @ zero matrix, since Au,, is an I(—1) process and therefore has zero
long-run variance. The first submatrix of £, viz. {244, , is also a zero matrix



FULLY MODIFIED REGRESSION 1033

for the same reason. These degeneracies in the long-run covariance matrices
0,, and (2, arise because of the presence of some stationary components (viz.
x,,) in the regression equation (3). Our approach relies on kernel estimates of
matrices which after transformation by H are the same as {2, and (2,,. In view
of the degeneracies of some of the component submatrices of £2,, and (2,, we
need to be careful in describing the limit behavior of our estimates of these
matrices. This is done in Lemma 8.1 in the Appendix and the limit theory given
there is very important to our subsequent development. When there are no
stationary components to the regressors x, in (3), the matrix (2,, is positive
definite and the development is simpler but also less interesting, as indeed is the
model in this case.

4, THE FM-OLS ESTIMATOR AND ITS LIMIT THEORY

The FM estimator given in (7) below is constructed by making corrections for
endogeneity and for serial correlation to the least squares estimator A4 =
Y'X(XX)! of the matrix A in the model (3). The endogeneity correction is
achieved by modifying the variable y, in (3) with the transformation

yt+=yl - '(A)Ox '()x_xler'

In this transformation (), and ﬁ“ are kernel estimates of the long-run
covariances, {2, = lrcov(u,,, Ax,) and £2,, = Ircov(Ax,, Ax,). The purpose of
the endogeneity correction is to take into account endogeneities in the regres-
sors x, associated with any cointegrating links between y, and x,. As is clear
from (3'), y, and the x,, component of x, are cointegrated. Ideally (i.e. if 2
were known), we would correct the error u,, in (3) for its conditional mean
given Ax,, =u,, (using the long-run covariance matrix). This would lead us to
the equation

-1 ~1
Y~ 20, 05, Ay, = Ax, + uy, — Oy, 03 4y,
which we can write as
(3") vyt =Ax, fug’t

By virtue of its construction, ug,* has zero long-run covariance with the errors,
u,,, that drive the nonstationary component of x, in (3") thereby removing the
endogeneity of the regressors in the long run (as it is the long-run covariance
matrix {2 that is used in making these transformations). Of course, {2 is not
known, nor is x,,, so that y,"* cannot be constructed and a regression on (3") is
not feasible. However, if we suspect that some components of x, are nonstation-
ary then we can make the correction for all the components of x, and construct
y,” as above, i.e. as if all components of x, were nonstationary. It turns out that
this transformation reduces to the ideal correction (i.e. y;*) asymptotically, at
least as far as the nonstationary components x,, are concerned. The stationary
components, i.e. x,,, are present in differenced or I(~1) form in this transfor-
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mation and have no effects asymptotically. Thus, it turns out that we can achieve
an endogeneity correction without knowing the actual directions in which it is
required or even the number of nonstationary regressors that need to be dealt
with.

The serial correlation correction term has the form

A A_1An
A()r AOx 'Q()x 'Qxx Axx

where 4,, and A, are kernel estimates of the one-sided long-run covariances
4y, =lIrcov_(uy,, Ax,) and A,, =Ircov, (4Ax,, Ax,). This correction is employed
to take into account the effects of serial covariance in the shocks u,, that drive
the nonstationary regressor x,, and any serial covariance between the equation
error u,, and the past history of u,,. Such correction is needed because shocks
from the past persist in x,, (due to the unit roots in x,,) and lead to the
presence of one-sided long-run covariances that carry their bias effects in an
OLS regression. We remove these covariances nonparametrically by means of
the kernel estimate Am, so that we are, in effect, allowing them to take quite
general forms. Once again, since x,, and u,, are unknown we proceed to
remove the covariance effects by treating the complete vector x, as if it were a
full rank integrated process (i.e. as if it had a full set of unit roots). In this way
the serial correlation correction is made without knowing in advance the extent
of the nonstationarity that is involved.

Combining the endogeneity and serial correlation corrections we have the
FM-OLS regression formula

(7) Ar=(v"x - T (xx)™

This formula is identical to that used in the original paper by Phillips and
Hansen (1990) where x, was assumed to be a full rank integrated process.

In deriving a limit theory for A* we need to pay attention not only to the
sample moment matrices of the data and their orders of magnitude (which in
turn depend on the directions of stationarity and nonstationarity in the regres-
sors), but also to the behavior of the kernel estimates AOX, A, Q,, and 2,
that appear in the correction terms of A*. The latter is especially important 1n
our case because the presence of stationary components (viz., x,,) in the
regressors x, means that the kernel estimator (2,, tends to a singular limit due
to the fact that (2, , =H{(, H, =0. The technical Lemmas 8.1 and 8.4 in the
Appendix enable us to take this singularity into account in the asymptotic
analysis and determine what impact it has on the asymptotic behavior of the
estimator A* in both stationary and nonstationary directions. In this regard, the
bandwidth expansion rate of K turns out to be very important. Under broad
conditions we find the rather surprising outcome that the limit behavior of A*
is the same as it would be if we knew the stationary and nonstationary directions
of x, and modified the estimator accordingly.

Usmg these results from Section 8, we can proceed to derive the limit theory
for the FM-OLS estimator A*. It is helpful in formulating our asymptotic theory
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to consider the component submatrices 4, = AH, and A, = AH, in the model
(3') that correspond to the stationary and nonstationary elements of the regres-
sors. We have the following theorem.

4.1. THEOREM: Under Assumptions EC, KL, and BW:

@) VT (A"~ AH, —, N(0,(J® 37,") 0, (1 ® 37,

(b) T(A*— A)H2 ., (j(}dBO L B(/IB, B,
where By, = By — 4,5 B, = BM({,.,) and .(200_2 =y — 20,25, Q5. Part
(a) holds for the bandwidth expansion rate BW(iii), i.e. K=0,(T*) with 1/4 <
k < 1. The bandwidth expansion rate required for part (b) to hold is 0<k <
2/3. Parts (a) and (b) both hold when K=0,T*) and 1/4<k<2/3, i.e.
under BW(i).

4.2. COROLLARY (Stationary Regressor Case): When m, = 0 in model (3') and
under Assumptions EC, KL, and BW with bandwidth expansion rate K = O(T*)
for 1/4 <k <1 we have

VT (A*—4) -, N(0,(I® 5N, (I® Z7).

4.3, CoroLLARY (Full Rank Integrated Regressor Case): When m; =0 in
model (3') and under Assumptions EC, KL, and BW with bandwidth expansion rate
K=0.T") for 0 <k <1 we have

-1

~ 1 1
T(A*—A) —m([ dB,., B’z)(f BzB’z)
0 4]

4.4, REMARKS: (a) Corollary 4.2 shows that the FM estimator A is consis-
tent and has the same limit distribution as the OLS estimator A in the case
where A is itself consistent, i.e. under Assumption EC(c). Note that EC(c)
allows the equation error u,, to be serially dependent and in this event the
estimator 4 (and hence A™) is not necessarily efficient. However, efficient
GLS-type extensions of A™ can be constructed along the lines of the FM-GIVE
estimator developed in Kitamura and Phillips (1992).

(b) Let m, = (uy,,u),,,) and F, = o (n,m,_,,...) be the o-algebra generated
by ()" ... The condition EC(c’) ensures that Eu,;u;,)=0 for all j =0 and
hence EC(c) holds:

EC(c'): (uy,,F,,) is a martingale difference sequence (mds).
Moreover, under EC(c¢') we have

X , e 0 for all j+0,
Uyt ®U Uy ) = S0®3, forj=0,
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and therefore {2, = 3, ® 3. In this case, the asymptotics of Corollary 4.2,
(8) VT (A*—A4) -, N0, 3,,® 371,

correspond to those of the usual multivariate linear regression model with mds
Errors.

(c) One case where condition EC(c’) is especially relevant occurs when there
are lagged dependent variables in the regressor set. Suppose some linear
combinations of the dependent variable y, in (3) are stationary and are also
independent of future realizations of the equation error u,, and suppose u,, is a
pure innovation (or mds). If the stationary variables x;, in the transformed
system (3') include these variables in lagged form, then EC(c’) holds and we get
the limit theory given in (8). This situation arises in stationary autoregressions
and will be examined further in the next section of the paper.

(d) As it stands Theorem 4.1 says nothing about possible dependence between
the limit distributions of the stationary and nonstationary components given in
parts (a) and (b) of the theorem. It turns out that with a slight strengthening of
condition EC(c’) we can establish that these distributions are independent. Let
m, = Uy, o1, 50 and F, = o (n,m,_y,...) be the o-algebra generated by
{n}. _» This enlarges the o-algebra used in condition EC(c’) in Remark (b)
above. The condition EC(c"), is stronger than EC(¢’) and ensures that, in
addition, E(u,,,;u5,) =0 for all j = 0.

EC(c"): (uy,, F,,) is a martingale difference sequence with E(u,,uy |F,, ) = 3y
as.

As the proof of Theorem 4.1 makes clear, the limit distribution in (a) depends
on that of 772Uy X, =T V2L uy,x,, = T~ 1/*LTu,,u),. The limit distribution
in (b) depends on that of T7'U;X,, T7'U, X,, and T™>X}X,, which in turn
depend on the limit of the process T~/ W(u),, t,). Under EC(c”) we have

E(ug, @ uq, @ u,,) =ElI @ 10u, )| E{(u, ®uy ® DI, )] =0,
and
E(ug, ®u,, ®u,,) =E{E[u0, Qu;, ® uz,lz,_l]} =,

so that the limit distributions of 7 '/2XTu,u), and T V2L Nu),,u,,) are
uncorrelated and, being Gaussian, are therefore independent. The functionals
of these limit processes that appear in parts (a) and (b) of Theorem 4.1 are
therefore also independent. Hence, under condition EQ(c”), VT (A7 —A4,) and
T(AF — A,) are independent in the limit. An important case where condition
EC(c”) holds is the vector autoregressive model with some unit roots and this
will be our subject of analysis in Section 5.

(e) The limit theory for the nonstationary coefficients that is given in Theorem
4.1(b) applies without making any condition like EC(c) or EC(¢') on the
stationary components of the system. This limit theory corresponds to that of
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the optimal estimator obtained by maximum likelihood under Gaussian errors
with the number of unit roots known in advance, which was derived in Phillips
(1991a). Thus, even if EC(c) does not hold and the OLS and FM-OLS estimators
of the stationary components may be inconsistent, the FM-OLS estimator of the
nonstationary component is still an optimal estimator and this is so even though
the degree of cointegration among the regressors x, is unknown. This result
holds because we still have a negligible contribution from the /(0) component in
the (1) asymptotics. In particular,

T U,y — Ay yy, = 0,(K3) +0,(1/VKT)
and
T_ IAU{Ul - AAAU]AUI = OP(K_Z)

as in the proofs of Lemma 8.1(¢) and (f). Hence, referring to the proof of
Theorem 4.1 in the Appendix, the first term in (P31)—which carries the effects
of the estimation of the stationary components on the asymptotics for the
nonstationary coefficients—is 0,(1) as T — o and can therefore be neglected.

(f) From Theorem 4.1 we get the (potentially degenerate) asymptotics for the
full coefficient matrix 47, viz,

VT (A"~ A)=VT(A*—A)HH'
=VT (A7 —A\)H; + VT (A; - A;)H;
) -, N(0,(J® H, Z;) 2,,(I® 37'H)))
(10) =N(0, Sy ® H, 3 H}),

the last line holding under EC(¢).

(2) When EC(¢') holds we can construct a consistent estimate of the covari-
ance matrix Iy ® H, 37'H; of the limit distribution (10) directly from the
matrix 3, ® T(X'X)~!. This is because
an  T(x'x)'>, H I H;

(see Phillips (1988, p. 95)) and since 4, 47—, 4,
R T T
200 =T " L lglly, =T " Yug ity +0,(1) >, Zgp.
1 1

The covariance matrix in (9) can also be consistently estimated. We may use the
matrix

(7@ T(X'Xx) 10, , [1& T(X'X)™ ],
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where Q@% is the kernel estimate
A K_ 1 A
Qo= L wU/K L. (),
j==-K+1

and &, =iy, ®x,. Noting from (11) that T(X'X)™' =H,31,'H; + 0,(1) and
Hix,=x,,=u,, we have U® H|)p, ={,, ® u;, = &, and so

(12 UeHDO, ,(IeH)=0,,-,0,,.

Combining (11) and (12) we obtain

(13} UeT(X'X) '10,,leT(x'Xx) ']
-, (IeH )0, (I 3 'H)).

(h) Results (9) and (13) suggest that inference about A can be performed
using the asymptotic approximation

14 VTA - ~NOIeT(xx) 10, , 1o T(X'X)™']).
Suppose we wish to test the restrictions
Zy: Rvec A =r, R(g X nm) of rank g.
A natural test statistic is the Wald statistic
(1s)  W;=T(Rvec A*—r}{RII® T(x'X)" 10, , [T T(X'X) IR} B
X (Rvec A*—r).
In view of (9) and (13) and provided the following rank condition holds:
(RK,) rank[R{U @ H 57N, (Je SHDIR] =4,
we have
(16) W)=, x;, asT-o

and so conventional chi-squared asymptotics apply.
(i) When Assumption EC(c’) holds, the limit distribution (10) applies and we
can use the asymptotic approximation

(14)  VT(A =) ~N(0, 3, e T(x'X)7").
To test %, the natural statistic in this case is
Wi=T(Rvec A=) [ R[S0 @ T(X'X)'|R] ™ (Rvec A"~ 1)
and if
(RK)  rank [R{Z, ® H, 3,'H{}R ]| =¢

we have Wy, —, x/ as in (16).
(j) We now consider the interesting case where the rank condition (RK) fails.
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This occurs when the restriction matrix R isolates some of the nonstationary
coefficients. Thus, suppose R = R, ® R, and the hypothesis # has the form

an Zy. RiAR, = Ry, vecR;=r,

GiXn  mXgy  4,Xq;

where R, and R, are of rank ¢, and g,, respectively. If R, H, is of deficient
row rank, then (RK) fails. In this case we may write

S Si 0
(18) R,= [RZI Rzz] =[H,, H,]
21 922 0 Sh S
= [HISZO’HIShl +H,S,, stzz]

for some matrices S,y, Sy, Su,, and S,,. Without loss of generality (and by
rotating the restrictions (17), if necessary) we may assume that the matrix S,
has full column rank. The hypotheses about A4 that correspond to the columns
R, of R, relate solely to the nonstationary coefficients in A4, i.e. to A, =AH,,
because R, AR,, = R,AH,S,, =R, A,S,,. Now R}, H, =0 and then we have

R{ ZOO ®H1 Zl—]lH]’}R’ = R] ZOORII ®

H
1]21'1‘[H{R21,0L

which has rank ¢,9,; <g,(g, +g5) =q. What is the limit distribution of the
statistic W, in this case when Condition RK fails? The following theorem
provides the answer.

4.5. THEOREM: Under Assumptions EC, EC(c'), KL, and BW(i) the Wald
statistic Wy for testing the restrictions #,: R, AR, =R, has a limit distribution
which is a mixture of x* variates. In particular, when R, has the form given in (18)
we have

91 g1 91

(19) Woo=a 2 x50+ X dix. () _Xcmm + 2 d qu(])
i=1 j=1 j=1

where ., (i)—iid()(qﬂ) x. () = iid( Xq ) and x; (i) and x} (j) are independent
for all | and j. The coeﬁiczents d; in (19) are the latent roots of the matrix
(R 2y RIXR Zyo R

4.6. REMARKS: (a) Under EC(c'), 2y, = Q4 — 2,250, = 3 —
Qg 2370y < 5y Thus (R, 'QOO~2R’1)1/2(R1 TR TR 0y, RV <1 and
therefore the latent roots dj (j=1,...,q,) that appear in (19) as weights satisfy
O<d < 1. It follows that in the hmlt (19) is bounded above by the variate
quq N + i, an(]) = quqm quqn = Y‘hqz Tests of conservatlve size (asymptot-
ically) can therefore always we constructed for W, using the )(q 4, distribution.

(b) Now suppose we construct the Wald statlstlc usmg the variance matrix
estimator 2.4, = 249 — .Qox.(l '00= 04— D), .th 0, constructed from the
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long-run variance and covariance matrices of 4, and dx,. Since g4, =, 249
— 02y, 050, = 04.,, we obtain in the same way as Theorem 4.5 and under the
same condmons the limit result

-1 P
0= T(RvecA*—r)[R 00Ax@T(XX) }’] (Rvec A™—r)

91

>, ¥ Q/dIxE D+ X,

i=1

It follows that in the limit W;;., is bounded below by the limit distribution ., .
An asymptotically liberal test of the hypothesis /%] can therefore be constructed
using W,

(c) Note that d,=1 (i=1,...,q,) when Xy, = {2, i.c., when 2y, =0 or
when u,, and u,, = Ax,, have long run zero covariance. Observe also that when
there are no nonstationary components (i.e., x, = 1(0)) we have 2.4, =, =
Sy under EC(c’) and then both W, Wi, =, x2,, in the limit. When there are
no statlonary components in the model we have (2.4, =, {24, and again
W00 ey Xq 4, Thus, W4, has the desirable property of being asymptotically
)(q 4, in both extreme cases (stationary regressors only or full rank nonstationary
regre%sors) It will be interesting to explore the finite sample performance of
Wy, and Wy, in intermediate cases where there are both stationary and
nonstationary components to the regressors.

Since the d;’s can be consistently estimated from the matrix
(R, 2y 4, R (R, ZOOR )1 we will in some cases also have the possibility of
using the correspondmg mixed x? limit theory in these tests if the dimensions
in the submatrices of (18) were known. In the case of W .., we would then get
a Wald test that has the correct asymptotic size for all cases, i.e. station-
ary regressors, full rank nonstationary regressors, and partly nonstationary re-
gressors.

(d) The reason for the mixed x? limit theory for the Wald statistic W, can be
explained in the following way. The statistic Wy, is constructed using a variance
matrix metric of the form 3, ® (X’X)" . By virtue of this construction the
error variance matrix EOO is a communal” weighting metric for each column
(or linear combination of columns) of the coefficient matrix A irrespective of
whether the associated variable is 1(0) or I(1). For I(0) regressions with mds
errors this choice of weighting matrix is appropriate. However, for 1(1) regres-
sions the “effective” error vector in an FM regression is ug.,, = tty, — 20, 4257 5,
which is u,, corrected for its conditional (long-run) mean given u,, = Ax,,. (This
implicit modification of the error is due to the endogeneity correction within the
FM procedure.) The long-run variance matrix of u,,, is {2y,, and as pointed
out in (a) we have the matrix inequality (2., < Xy. Thus, FM regression
reduces the long-run error variation by conditioning out the effects of Ax,,.
Since the weights in the communal metric 3, ® (X'X)~" are heavier than are
appropriate for the FM estimates of the nonstationary coefficients we find the
limit distribution x* mixture given in (19) has weights d; that satisfy 0 <d; <
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4.7. Extensions to Models with Deterministic Regressors: The main results given
earlier in this section continue to hold (with some modifications to the formulae)
when there are deterministic regressors in the system (3) and when the regres-
sors x, may have deterministic components. The limit theory for the FM-OLS
estimator and associated Wald tests can be developed as in Theorems 4.1 and
4.5. These generalizations are not difficult and we will therefore only illustrate
what is involved here. For example, suppose the model (3) is replaced by

(3") y,=dAx, + Ok, +u,, = Pz, + u,,, say

where k, is a p-vector of deterministic regressors and the vector x, can be
decomposed into 1(0), /(1) and deterministic components as

x,=Hx, +H,x,, + Fk,,

for some m X p matrix F.
The regressors k, will usually involve polynomials in time, in which case we
can write

k=t e, %), 0<s <5y < - <5,

for some integers s; (i = 1,..., p). Note that s, may be zero and we therefore
allow for the presence of an intercept in (3"), a possibility which seems to be
excluded in work by Hansen (1992) on FM cointegrating regressions with
deterministic trends. (We show how this possibility is accommodated in the next
paragraph.) For such regressors we use the weight matrix &= diag(T™*,...,T%)
and then

5; 1k[TI‘] - k(r) = (’A‘] 3. wrsp),,

uniformly in r<[0,1]. The limit functions k(r) are linearly independent in
L,[0,1] and [{kk' > 0.
The FM-OLS estimator of @ in (3") is

b= [Anir] = (vrz - [risof)z 2,

which is an augmented version of (7) and a formula that was given originally in
Phillips and Hansen (1990). But in the above exprewon the long run covariance
estimates that arise in Ao;:* AOI 0, 07} are based on (#,,4',), where
oy, =y, — 4x b1 k, is a first stage OLS re51dua1 and i, = A4d,,, wherein
d,,=x,—Fk, is the residual from the OLS regression of x, on k,. We remark
that if 4, 1nvolves an intercept as its lead component then the correspondmg
column of F is inconsistent (and, in fact, diverges) when m, > 1. However, this
component of F is eliminated by the difference transformation a,, = Ad,, and
the remaining columns of F are consistent since s, = 1 (i > 1) and the regressors
. (i >1) dominate the stochastic trend and stationary components of x,. Thus,
=H,Ax,,+ H,Ax,, + (F — F)ak,=H, Axy, + Hy Ax,, +0,(1) and therefore
the correction terms work in the same way as those in regressnon% with no
deterministic trends.
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The limit theory for the components of the FM-OLS estimator &* can be
deduced in much the same way as Theorem 4.1. But some care needs to be
taken over the extra partitioning in & corresponding to the 7(0) and I(1)
components. Again, we will just provide the basic approach here.

In making the construction it is useful to employ a composite weight matrix of
the form

bo- [H,:H,T'?]  Fs;
! 0 5y

Then

le HI’ X1y
- F
D;'=||T"'?H; T7'2H; | |, and Djlz,=|T Y2, |,
0 5;1 8;1/{1

which reorganizes and suitably weights the components of the regressors z,.
Note that for some fixed r > 0

Di 'z, =4 (K, By(r), k()Y = (&, J(r) ), say,

giving the limit processes that correspond to these standardized regressors. The
limit theory for @* is now

VT ("= @)Dy = VT (A"~ )H, : T(A*~ A H, - VT{UT —11)
+(A*~ A)F}a, |

4

NO,(Te 3N, (Te X1

-1
fOldBO_z J’(fO]JJ’) l

which extends Theorem 4.1 to allow for deterministic trends. The component of
this limit distribution corresponding to the stationary part of x, is identical to
part (a) of Theorem 4.1, where there are no deterministic regressors. The
component that corresponds to the nonstationary part of x, differs from part (b)
of Theorem 4.1 in that it involves the deterministic function &(r) as part of the
limit function J(r). The coefficients of the nonstationary part of x, and the
deterministic regressors k, in (3") are taken together in the limit variate
([dB,.,J' )X jJ7')~!. Like part (b) of Theorem 4.1 this limit variate is mixed
normal and thereby facilitates statistical inference in the same way as before.
For instance, if we wish to test %, the natural Wald test is

W¢=T(R vec A+—r)’[R{ZOO ® T(X’QKX)"}R’] (Rvec AT =1),
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where Qy is the orthogonal projection matrix onto %(K)* and K is the matrix
of observations of k,. It is easy to show that T(X'Q X)™! -, H, 3,'H} and
then W¢ —, qu, provided condition RK holds. If RK fails and the hypothesis is
of the form #; given in (17), then W¢ has the same limit as (19) and Theorem
4.5 applies.

In addition to these extensions of our theory, we can also consider the case
where the regression equation (3”) does not include all of the deterministic
regressors k,. Again, closely related results are obtained. As in the case above,
the limit theory for the FM-OLS estimator of the coefficients of the nonstation-
ary part of x, and the included deterministic regressors must be taken together
but the limit distribution is still mixed normal. In consequence, Wald statistics
that are formed in the usual way have limit chi-squared or mixed chi-squared
distribution, just as in Theorem 4.5.

Further extensions of this theory to include deterministic regressors with
breaking trends are straightforward. In this case the corresponding limit func-
tions will involve some simple cadlag functions, as in Park (1992). The other
aspects of our limit theory for & go through as before, as does the limit theory
for the associated Wald tests.

5. FM VECTOR AUTOREGRESSION WITH SOME UNIT ROOTS

In this section we will consider the use of FM-OLS regression in VAR models
where there are possibly some unit roots and some cointegrating relations. The
model we will adopt is similar to that of Johansen (1988) in that we will allow
the levels coefficient matrix (in a VAR in differences) to be of reduced rank, but
our approach is different in that we do not employ reduced rank regression and
we do not employ any knowledge or pre-test information about the rank of the
cointegrating space. Thus, our procedure will be an alternative to unrestricted
levels VAR estimation and may be used without regard to the number of unit
roots in the system.

The n-vector time series y, is assumed to be generated by the following kth
order VAR model:

(23) y,=J(L)y,_, + ¢ (r=1,2,...,7),
where J(L)=X%_,J,I)~'. The system (23) is initialized at t = —k +1,...,0 and
since our asymptotics do not depend on the initial values {y_,, ,..., y,} we can

let them be any random vectors including constants. However, it is sometimes
convenient to set the initial conditions so that the I{0) component of (23) is
stationary (rather than asymptotically stationary) and we will proceed as if this
has been done. We define

k-1 k
JH(L)= Y JrLTY, with Jr=— Y J,,

i=1 h=i+1

A=J(1),
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and then (23) can be written as

(24) y,=J*(L)Ay,_, +Ay,_, + &,

or in the equivalent error correction model (ECM) format
(25) Ay, =J*(L)YAy,_, +(A=Dy,_, +¢,.

To fix ideas in what follows we need to be more specific about (23), its
allowable roots, the dimension of the cointegration space, and the form of
the cointegrating coefficients. The following assumption is convenient for this
purpose.

AsSUMPTION VAR (Vector Autoregression): (a) e, satisfies Assumption EC(b),
i.e. is iid with zero mean, variance matrix 3,,> 0 and finite fourth cumulants.

(b) The determinantal equation |1, —J(L)L| =0 has roots on or outside the unit
circle, i.e., | L] > 1.

() A=1+aB’ where o and B are nXr matrices of full column rank r,
O<r<n. (Ifr=0then A=1; if r=n then B has rank n and B'y, and hence y,
are (asymplotically) stationary.)

(d o (J*(V)=1,)B, is nonsingular, where o, and B, are n X(n—r)
matrices of full column rank such that o, a=0=B', B. (If r=0 then we take
a, = In =8, J

Under Assumption VAR, y, has r cointegrating vectors (the columns of 8)
and n —r unit roots. Condition VAR(d) ensures that the Granger representa-
tion theorem applies, so that Ay, is stationary, 8'y, is stationary, and y, is an
I(1) process when r <n. These conditions are now standard in the study of
VAR’s with some unit roots and are discussed more fully elsewhere, e.g.
Johansen (1988, 1991) and Toda and Phillips (1991).

Qur attention will focus on unrestricted estimation of the system (24), where
the regressors have both stationary and nonstationary components but the
dimension (n — r) of the latter is unknown a priori. In studying this problem it is
helpful to transform the system so that it conforms to our analysis in Section 4
of the paper, thereby allowing us to make use of the theory developed here. We
can do so without loss of generality in the following way.

First let the columns of 8 be orthonormal. (This can be achieved with no loss
of generality, and no issues of identification of individual cointegrating relations
will arise in our work, so we need not be concerned with the problems raised in
Park (1990) and Phillips and Park (1991).) Construct the orthogonal matrix
H=[B,B.1=[H,, H,), say and define y, = H'y,. The system (24) transforms to

Q4)  y=I*(L)Ay,_ +Ay,_, +e
where the transformed coefficients are

(26) A=HAH, J*(L)=HJ*(L)H, g=Hs, 3, =HS,H.
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We emphasize that H is unknown but that the asymptotic properties of
regression estimators in (24) can be studied via the properties of the correspond-
ing estimators in (24') by simply reversing the transformations given in (26). For
example, if A is the unrestricted OLS estimator of A in (24') then A = HAH'
where A is the OLS estimator of A4 in (24), and so on.

We partition y, according to the partition of H as

g i
C7 W EA I il I S N

- Yo H,y, I jn—r
Note that the matrix A in (24') has the specific partitioned form

(4, A4, I +Ba 0
_/_421 45, Bra I, .|

The rXn —r zero submatrix A,, in (28) delivers r(n —r) restrictions on the
matrix 4. These restrictions on A4 correspond to the reduced rank (or cointe-
gration) restrictions on the matrix 4 —I= «af’. Observe that there are 2nr
parameters in the matrix product a8’ but only ar + r(n —r) = 2nr — r? identi-
fied parameters. We can, of course, choose to write the cointegrating matrix g’
as B'=I[I, B] leading to r(n —r) identified parameters in the submatrix B.
These parameters together with the nr “factor loading” parameters in the
matrix o produce the 2nr — r? identified parameters of the a8’ matrix product.
The r(n —r) zero matrix A,, in (28) on the other hand is clearly identified as a
submatrix of the coefficient matrix 4 in the system (24'). As such it can be
regarded as the parameterization in (24') of the identified components of the
cointegrating matrix 8’ in the original system (24) with A =TI+ aB’.

Notice, in addition, from (28) that the submatrix A,, has the special form
A, =1 _,. Here the coefficient matrix A,, embodies the n —r unit roots that
occur in the original system (24) and relates these unit roots specifically to the
subsystem of (24') that corresponds to the generating mechanism for the I(1)
Process ys,.

Define z,=(Ay,_,,...,Ay,_,.,Y and J=[JF,...,J¥ ,]. Then (24') can be
written more simply as -

(29) y=Jdz,+Ay._, +¢

(28) A=

or, in partitioned form, as
(30a) yu=hz,tAuy, o tApyu-at e
(30b) Ya=hz, tAnyu1tAny, 1t &y

Using the explicit form of A4,, =0 and A4,, =1 from (28), the true form of this
system is

(31a) Yu=nhz,tAnyu-1t &
(31b) Yo =Ya-1 Tl Uy =&y, +J472, +A5 y1, -1
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In (31a) we can arrange initial conditions so that the variables y,, and z, are
stationary. Hence, 4, =0 in (30a) necessarily; otherwise the regression would
be spurious. In (31b) y,, is I(1), there are n — r unit roots in the equation, and
the error u,, is stationary.

We will need the long-run covariance matrix of n, = (g/,u%,) in the theory
that follows and we accordingly introduce the matrix

0 ) 0 5 £1£1 £1£2 £
— - £H 21 1 3 3 0
(32) Irvar (n,) =02 [ng {222] ngg, . £22 |

28

partitioning the final matrix above conformably with (g/,u},) = (g}, £3,,u5,).
With this notation in hand, we define the conditional long-run variance matrices

(33) 2,,,=%,- 0,00, £ 3pe — 20 Q;zlﬂzgl.

g2 21812 “eig
Observe that in (32) and in the formulae just given we use the fact that g, is iid
under Assumption VAR(a) and therefore (2, =3

We now estimate (29) by FM regression. erte (29) in matrix form as

(29) Y =JZ'+AY  +E=FX'+E

and let Q, =1—2(Z'Z)"'Z' and AY' =Y’ ,—Y',. The FM regression esti-
mator of F in (29') is

(34) £+=[f+;4“+]= Y'Z: Y'Y - Tay,|(xx)™

=|rziyy, -7h., - 0,004y Y, - Th,,, )| (X0
In these formulae !2”, !2 are kernel estimates of the long-run covariance
matrlces of (¢,= o Fx,,Ayt ;) and Ayt 1» respectively. Similarly, AEAy and
AAy 4y are kernel estimates of the one-sided long-run covariances of (& =y, —
x,, Ay, 1) and Ay,_;, respectively.

Note that in constructing F* we use the endogeneity correction that involves
the use of Y™ only where it is needed, i.e. with respect to the levels regressors
Y_, in (29). The regressors z, in (29) are lagged differences Ay, , (i=1,...,k
— 1) which are known to be I(0) and therefore correction with respect to the
estimation of their coefficient matrix J is known to be unnecessary.

In addition, under Assumption VAR(a) the error g in (29) is a martingale
difference and it is therefore not necessary to make a serial correlation correc-
tion with respect to the term E'Y_,. More specifically, under VAR(a) we know
that A, = Y7, oE(gdy_)=0 and hence, we can exclude the term TAsAy
(34) with no affect on the asymptotics. Although the limit distribution is
unaffected by the inclusion or exclusion of TAS 4y, there may be some advantage
arising from reduced variance in small samples from excluding the term. This

gives us the following adjusted formula for F:

(34’) E+= X’ZEX’X—I"QQO;;(AX’—lz - T4 Aydy)](XX)—
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A further partitioning of (29') is useful in the development of our asymptotic
theory. This is because some elements of Y’ are stationary (corresponding to
¥1:-1) and some are nonstationary (the elements of y,,_,). We therefore writc
(29') as

(29")  Y'=E X +EX,+E,

where x;,=(z),y),_,) is the composite vector of stationary regressors and
X5, =Y, is the vector of full rank nonstationary regressors. In this form, (29")
corresponds with the earlier model (3') of Section 3 and we can therefore avail
ourselves of the earlier theory that relates to this model more readily.

The limit distribution of F* is given as follows.

5.1. THEOREM (FM-VAR Limit Theory): Under Assumptions KL, BW, and
VAR,

(a) VT (F; — F,) —, N(O, 3,.®30") where X, = E(x,x\,); and

(b) T(E; —F) >, (JodB,, B[ B, B;)"", where B, =B, —0,05/B, =
BM((, ), B,=BM(Q,,), and Q,_,=0_—0,0,00, =3 —0,0,42,,.

The bandwidth expansion rates under which (a) and (b) hold are the same as
those given in Theorem 4.1. In particular, both (a) and (b) hold when the
bandwidth K = O(T*) and 1/4 <k <2/3, i.e. BW(i).

The limit distributions given in parts (a) and (b) above are statistically indepen-
dent.

5.2. COROLLARY (Stationary VAR Case): When r =n and under Assumptions
VAR, KL, and BW with bandwidth expansion rate K = O,(T*) for 1/4 <k < 1, we
have

\/7 E+‘E) —a N(O’ 2§§®2K_&‘1)

5.3. CoROLLARY (VAR with n Unit Roots): When r =0 and under Assump-
tions VAR, KL, and BW with bandwidth expansion rate K = OE(T") for 0 <k <1,
we have

\/T(E1+_f|) = ﬁ(_f+_-]) -, N(O, 2§§®2f11)

and
T(E5—1,)=T(A*~1)—,0;

ie. f 5 is hyperconsistent for I, in the sense that its rate of convergence exceeds the
usual O(T') rate.

5.4. REMARKS: (a) Theorem 5.1 shows that the limit theory for the FM
regression estimator £ is normal and mixed normal. Note that in the case of
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part (b) of Theorem 5.1 we have

~-1/2
(fl dB, , B, ) (leng) =N, 1,,,®1)
0 - 0 o
and then

T(£5-F) _>df N(0,0,,,® G ") dP(G).
G=f{B,B;>0

Of special significance is the fact that a submatrix of F, involves the n —7 unit
roots of the system. Thus, from (28) we have

0 Ey
fz: [Inwr] -

£y
In consequence, part (b) of Theorem 5.1 can be decomposed into the following
two parts:

, say.

—1
~ 1 1
(35) Tf;m(f0 ngl.zBa)(/0 BzB;) ,

and

-1
36)  T(F5-1) —>d(f01d362‘2 B’2) (fOleB;) .

The latter result (36) shows the surprising outcome that in FM-VAR estimation
when there are some unit roots in the system, there are no limiting distributions
of the unit root (or matrix unit root) type. All the limit theory is normal or
mixed normal irrespective of the number of unit roots or the dimension of the
cointegrating space (provided r > 0) and with » unknown a priori.

(b) When r=0, there are no cointegrating vectors in the system and the
nonstationary part of the system is a full set of unit roots of dimension . In this
case Corollary 5.3 applies and we have hyperconsistent estimation of all of the
unit roots in the system by FM regression. This gives a matrix generalization of
an earlier result by the author (1992a) on hyperconsistent estimation of a unit
root in a single equation model with one unit root. As shown in the single
equation case, the precise rate of hyperconsistency depends on the bandwidth
expansion rate.

(c) The mixed normal limit given in (35) for the submatrix F,, relates to the
cointegrating space restrictions. As explained in the discussion following (28) the
submatrix F,; {(which is the same as the submatrix A4,, in (28)) has true value
zero and in the transformed system (see equations (29) and (31a)) this can be
regarded as a parameterization of the identified components of the cointegrat-
ing matrix B'. In other words, when B’ is a cointegrating matrix y,, = 8'y, is
stationary and equation (31a) for y,, involves only stationary variables, because
F,, =0 (equivalently, 4,,=0 in (28)) eliminates the nonstationary variables
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Y2, = By, from this equation. Loosely speakmg, therefore, we can regard the
Timit distribution of 7F;; given in (35) as relating to the errors of estimation of
the identifiable components of the cointegrating matrix. The following simple
example taken from Section 2 will help to illustrate. Suppose B'=([, +
BB)~ 'Y I, —B] for some r X n —r matrix B and the original system (23) is

. 0 B
y,=Ay,_,+e, withAd= [O I }
The first subsystem of this equation is the cointegrating relation
(37 Yu=Byy 1+ &y,
and the second is the I(1) relation
(38) Y2, =Y2,-1 1 &3

We now transform this system using the orthogonal matrix
=[B:B.]= H _IB,](IwLBB’)‘”2 : [ﬂ(HB'B)“”].

We obtain, following (24) and (26), the new system
(39) !t=HI/4H_YI-l+§I=A——-_yt—1+§t’

with
0 0 0 0
ST lu+BB)Y B (I+BB) 1”‘,}=[z_421 1]‘
Explicitly,
37 y,= £

(38) Yu=Anyu-1tyu-1+ &

The cointegrating relation (37) is replaced in the transformed system by the
stationary relation (37'). What was, in (37), the matrix of identified cointegrating
coefficients (viz. B) is replaced in (37') by the zero coefficient matrix for the
nonstationary variable y,,_;. The I(1) relation (38) is replaced in (38') with a
system of full (n —r) unit roots and some additional stationary inputs (viz.
/_‘121)’11~1)-

(d) The explicit form (38') helps to explain why the FM-VAR estimates of the
unit root coefficient matrix F,, =1,_, have a mixed normal limit distribution
rather than the conventional matrix unit root distribution. The latter would arise
if we ran the regression of y; on y,_, giving the estimate F3) =
(Y,Y, (Y5 1Y, _)~', which has the limit theory

-1
(40) T(E;Q—I,,__,)ed(folde B’z)(fOleB;) .
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What happens in the case of the FM-VAR estimator f{z is that the coefficient
of y,,_, in (38') is treated as a cointegrating coefficient matrix and because of
the endogeneity correction in the FM procedure the FM estimation errors
depend on the “endogeneity corrected” errors from this equation, viz. £3,= &,,
-0, uz!)u% 2, where uy, =&, + Ay y,,_;. Thus, because of the presence of
the stationary component Ay, in (38"), var(g;,) >0, and g3, has long-run
zero covariance with u,,. Consequently, the limit Brownian motion B, s(r) =

B, .. (r) that arises from partial sums of &3, is independent of the Brownian
motion B, (r) that arises from y,,_,, i.e. from part1a1 sums of u,,. In contrast to
(40), the limit distribution of the FM estimator is (fs dB,_., BYX([/B,B) ! and
the independence of B, ., and B, ensures that this hmlt d15tr1but10n is mixed
normal.

(e) The explanation of the mixed normal limit distribution for the unit roots
estimator £, just given in Remark (d) also applies to subsystem estimation of
unit roots. Thus, suppose we treat (38') as a subsystem of (39) but estimate (38')
independently. The limit theory for the FM estimator of the unit roots matrix
F,, =1 is the same and is mixed normal, again because of the presence of the
stationary component y,,_; in this regression. When this additional stationary
component is not present in the regression the FM estimator is hyperconsistent
because in this case g,, =u,,, and s0 &3,= 0 a.s., which leads to the fact that
T(Fh—1) —, 0, just as in Corollary 5.3.

(f) The hmlt theory given in Theorem 5.1 can be compared with that of the
OLS estimator F =[F, F;_,] Y'X(X'X)~'. We have the following theorem.

5.5. THEOREM (Levels VAR Limit Theory): Under Assumption VAR the limit
theory for the OLS regression estimator F =[F, ' F,] is

(a) \/T(F ~F) =, N0, 3, 3),
-1

®  1(E-E) [ 5[5
-1

(41) - (fO‘dB_S.ng)(foleB;)

5.6. REMARK: Note that the limit theory for the OLS estimator of the
stationary component F; in Theorem 5.5(a) is identical to that of the FM
estimator. The limit theory of F, given in (b) has two components. The first is
identical to the limit theory for the FM-VAR estimator fz. The second is a
matrix unit root distribution whose overall importance depends on the magni-
tude of the coefficient matrix (2_,(2;,). Note that from (31b) we have the
representation u,, = g,, +J,2,+ A5, ¥1,_, 50 that u,, involves &,, as one of its
components. Consequently, (2,, will be nonzero. Indeed, when there are no
additional stationary elements in equation (31b) (i e. when J, =0, 4,, =0) we
have u,, = g,,. In this case, (2, , 025, = 0, 09} =I,_, and only the second

-1
-1 1 1] 1 1]
+!2£2!222f0dB2B2(f0B2B2) .

—r
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component of (41) is retained in the sub block corresponding to F,, because
B, =0 as. When this occurs, the limit distribution of the levels VAR estima-

P')

tor f22 is the matrix unit root distribution, i.c.,

T(£yn-1) m(/]de B;)(/IBZB'Z)

This is precisely the case when the FM-VAR estimator F s hyperconsistent
for F,, =1 and therefore when F22 dominates F,, by virtue of its faster rate of
convergence. Q.E.D.

Finally in this section we will consider the limit theory for the FM estimator in
the original coordinate system. Recall that in the original VAR coordinates (see
equations (23) and (24)) we have y, = Hy,. Using the matrix H to transform
(24'), and hence (29), back to the original coordinates we obtain

29  y,=HI(,_,®H')z,+ HAH'y, |+ ¢ =Jz,+Ay, | + ¢

(42) =Fr,+e, with F=[J,Al=HF(U,®H'").

The FM-VAR estimator of F in these original coordinates has the form
@) F=|yzivy, -0,0 (av Y, - Th,, 4 )| (xx)™

and can be computed directly from the original data using this formula.
F* as given in (43) can be obtained from F* in (30') by reversing the
coordinate system, i.e.,

(43)  F*=HF*(I,®H') =H[_f+,g+]<1k®H'>,

and this connection enables us to deduce the limit theory for F* from that
which we have derived for £*. Thus, we have the following theorem.

5.7. THEOREM (FM-VAR Limit Theory in Original Coordinates): Under the
conditions of Theorem 5.1,

(a) VT(F*—F)—, N, 3,,® GZ;,'G"),
where
o [1,(_1 ®H 0

0 'B]nkx(n(k—l)+r)
Alternatively,

(a) VT (F*—F)G —», N0, 3,,® 3;,'); and

-1
(b) T(E* - F)G | —m(/]st.z B’z)(lezB’z) ,
0 0
where
G’J' = [0 B’J-](n—r)xnk'
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5.8. REMARK: The limit theory for the OLS levels VAR estimator F is
obtained in the same way as (a') and (b) of Theorem 5.7 using the results of
Theorem 5.5. For this estimator we have:

(44) VT (F—F)G -, N, 3,,® 371),

and

-1
45  T(F-F)G, —>d(f01ng B’z)(foleB’z) .

So, in stationary directions, F is asymptotically equivalent to the FM estimator
F*. But the estimators differ in nonstationary directions, where the rate of
convergence is O(T). The limit theory for the FM-VAR estimator in nonstation-
ary directions is mixed normal. This involves: (i) the identified components of
the cointegrating matrix, where the limit theory of the FM estimator corre-
sponds to that of the optimal estimator (see Phillips (1991a)); and (ii) the matrix
of unit roots in the system, where the limit theory of the FM estimator is again
mixed normal and, when the system has a full set of unit roots, is actually
hyperconsistent. The levels VAR estimator F is O(T) consistent in nonstation-
ary directions, but involves: (i) second-order bias (i.e. simultaneous equations
bias) effects in the estimation of the identified components of the cointegrating
matrix; and (ii) a composite of a matrix unit root distribution and a mixed
normal in the estimation of the system’s unit roots. The bias effects and matrix
unit root distribution arise because of the dependence of the two Brownian
motions B, and B, that appear in (45) and were discussed earlier in Remark
5.6. Asymptotic theory therefore clearly favors the FM-VAR estimator because
of its better properties in nonstationary directions.

6. HYPOTHESIS TESTING IN FM-VAR REGRESSION

For testing purposes we use the VAR model (24) in original coordinates and
write this for convenience in condensed format as we have done earlier in (42),
to repeat here:

(42) y=F+¢, F=1[I,A], g =1iid (0, 3_,).
Suppose we wish to test restrictions such as
(46) #Z,: Rvec(F)=r,  R(gxn%k)ofrank g.

When R has the Kronecker structure R =R, ® R}, then %, has the simpler
form

47 Z: R\FR,=R
for some suitable matrix R. This set up corresponds to the framework used for

our analysis of hypothesis testing in Section 4—see the earlier Remarks 4.4(h)
and (i). A special case of /Z that arises in VAR modelling that is of particular
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importance in practice is the case of causality restrictions. In the notation of
equation (24) the hypothesis that the subvector y;,(n; X 1) has no Granger-causal
effect on the subvector y,(n; X 1) would be formulated as

(48) & Ui =0 (i=1,..,k—-1), A;=0.

In (47) this would correspond to the following settings of the restriction
matrices:

(49) R = [1,,150], R,=1,®

0
| R=0.

For unrestricted levels VAR estimation of (42) Wald tests of the causality
restrictions (48) have been used extensively in past empirical research. An
asymptotic theory for such tests that accommodates nonstationary data has
recently been developed for trivariate systems in Sims, Stock, and Watson (1990)
and in full generality by Toda and Phillips (1993). These authors show that when
the VAR system has some unit roots and some cointegrating relations, the
asymptotic theory of Wald tests of (48) involves nuisance parameters and
nonstandard distributions that make a valid asymptotic basis for inference very
awkward. Toda and Phillips (1993, Theorem 1) show that the form of the limit
distribution depends on the rank of a certain submatrix of the cointegrating
matrix. But the cointegrating matrix is estimated only indirectly in levels VAR
estimation, and since, as we have discussed earlier in Remark 5.8, the limit
theory for these V VAR estimates of the cointegrating matrix involve nonstan-
dard distributions and nuisance parameters, it is not possible to provide an
asymptotic theory that justifies the general use of VAR regressions for causality
testing at least in correctly specified models.

On the other hand, we can artificially augment the correct order of the VAR
so that normal asymptotics obtain with respect to the coefficient matrices up to
the correct lag order (much as F, is asymptotically normal in Theorem 5.5(a))
and then asymptotic chi-squared tests of causality restrictions can be applied to
the submatrix of the coefficients up to the correct order. This idea was explored
in some recent work by Toda and Yamamoto (1993) and relates to a similar
suggestion made by Choi (1993) for avoiding nonstandard distributions in scalar
unit root tests. The method is interesting but does involve the inefficiency, which
may be costly in terms of the method’s power properties, of having to estimate
coefficient matrices for surplus lags.

The alternative approach we explore is to use Wald tests based on the
FM-VAR regression estimator. From Theorem 5.7(a) we have VT(F*—F) >,
N, 3,, ® G3;'G"), and since T(X'X)™' =, GZ;,'G" we consider using the
asymptotic approximation

(50)  VT(F*—F)~N(0,3,, 8 T(X'X)"")
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just as in (14'). To test Z; the natural Wald statistic is then
A ’ a _ -1 A
(51)  Wi=T(Rvec F'—r)[R(S,, ® T(X'X)"|R|  (Rvec F*=1).
When
(RK;) rank|R{3,,® GZ'G'}IR| =¢q

we have W —, qu, and standard limit theory applies.
When (RK;) fails the situation is different. We follow the analysis in Section
4 of this case, now in a VAR setting. (RK;) fails when the restrictions in %
relate to some of the nonstationary coefficients. We therefore focus again on the
case of /%, where R=R, ® R, and R, = diag[R,,, R, ,]is nk, X (g, +q,), so
that the restrictions can be written out explicitly as R, FR, =R|[J: AR, =R, or
Zy RJR,;=R, and R,AR,,=R,.

Next suppose that R, , has the form

(52) RZA: [R21 . Rzz] =[H17H2]
g 4xn
=[H\ Sy, H\ Sy + H,S,2 Hy 85

with g, = g,, + g,,, and for some matrices S,y, S,;, 42, and §,,, just as in (18).
The hypotheses about A that correspond to the columns R, of R,, in Z&
relate to nonstationary coefficients. Observe that

R,,(I,_,®H) 0 Ry, (I,_,®H) 0
(53) R,G = 0 RyB|= 0 Ry B |
0 R B 0 0

which is of deficient row rank and therefore condition (RK;) fails. The situation
is entirely analogous to the one studied in Remark 4.4(j). We have the following
analogue of Theorem 4.5 for the VAR case.

6.1. THEOREM (FM — VAR Wald Test Asymptotics): Under Assumptions KL,
BW(i), and VAR with 0 <r <n, the Wald statistic Wi for testing the hypothesis
2. RFR,=R has a limit distribution that is a mixture of x?* variates. In
particular, when R, has the form R, = diag(R,,, R, ,) whose dimension is nk, X
(g, + q4) and where R, , is given by (52), we have the limit

3} q1 q1
(54) I/V; d Xf121¢11 + Z quzl(i) + Z df X‘lzzz(j) = Xf121(¢lj+flzl) + Z dj Xllzzz(j)
i=1 j=1 ji=1
where Xq222(]-) =iid( qu,z) (j=1,...,q,) and are independent of the qul(q;ﬂm)
member of the last equation of (54). The coefficients d; (j=1,...,q,) that appear
in (54) are the latent roots of the matrix (R 02, ,RIXR, 3R~

ee 2
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6.2. REMARKS: (a) Since {2,,,=23,, — 0,030, <3_, the latent roots d,
(j=1,...,q)) in (54) satisfy 0 <d, < 1, just as in Theorem 4.5. Hence the earlier
Remarks 4.6(a)-(d) are also relevant here. In particular, tests that are conserva-
tive asymptotically can always be constructed using a qul (q,+q, limit distribution
as this is an upper bound for (54). Similarly, asymptotically liberal tests can be
constructed using the Xfll(‘{] +q, limit distribution when the Wald test statistic
Wi uses the error variance matrix estimate .(2 =5, - .(2 .(222 -ng in place
of 2 in formula (51).

(b) It will be of interest to explore how close the actual size of the tests
suggested in Remark (a) are in relation to the nominal size of the bounding
variate )(q (¢,+q, in finite sample simulations. This approach could also be
usefully compared with the sequential testing procedure suggested in Toda and
Phillips (1993) and the lag augmented regression procedure of Toda and
Yamamoto (1993) that was mentioned earlier.

(c) The case r=0 is rather special. In this case there are no cointegrating
vectors and the limit theory of Corollary 5.3 for the FM-VAR estimator Ft
applies. Obviously, in this case a VAR in differences could be run. But since the
fact that there is a full set of »# unit roots in the system is unknown in general
we do need to consider the effects on F* and related tests. From Corollary 5.3
we know that F,'=A" is hyperconsistent for the unit root matrix /,. In this
case, also, tests based on the statistic Wy and a x] (g=g,(q, +q,)) limit
theory will be conservative, as the following theorem shows.

6.3. THEOREM: Under the Assumptions of Theorem 6.1 but with r =0 (so that
there is a full set A =1, of n unit roots in the system (42)) the limit distribution of
the Wald statistic W for testing #;': R\FR, =R is given by

(55) WF+ 4 qum’

where q, = rank(R,,) and R,; is the leading submaitrix of the restriction matrix
R, =diag(R,,, R, ,).

6.4. REMARK: When g, =0 we have W —, 0 in place of (55). This follows
directly from the hyperconsistency of A*.In thls case we would accept the null
hypothesis with probablllty tending to unity as T — = (i.e. the actual size of a
test based on a x; (¢ = ¢,9 4) limit would tend to zero as T — ). Use of a more
efficient estimator, like 4 in this case, therefore does not always lead to a
better test. The estimator also needs to be efficient under the alternative for
that to be so and the correct size of the test must also be employed. When the
number of unit roots in the system is unknown, as we assume in this paper, the
size of a test based on W, will inevitably be conservative in large samples, as we
have seen. How this conservatism affects the power of the test in finite samples
can be investigated by simulation.
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7. CONCLUSION

This paper has developed a general asymptotic theory for time series regres-
sion using the principle of fully modified least squares. While the method was
originally developed for estimating cointegrated systems, where it delivers opti-
mal estimators of the identified components of a cointegrating matrix under
Gaussian assumptions, the paper shows that FM-OLS has some attractive
features as a general method of estimation in a wider class of time series
models. Essentially it provides an approach to unrestricted regression for time
series that takes advantage of data nonstationarity if it is present, without having
to be explicit about the presence or number of any unit roots and cointegrating
relations.

The main results are as follows.

(i) FM-OLS is applicable in models with either full rank or cointegrated I(1)
regressors. In such cases, the limit theory for FM estimates of the stationary
components of the regressors is equivalent to that of OLS, while the FM
estimates of the nonstationary components retain their optimality properties
(i.e. they are asymptotically equivalent to the maximum likelihood estimates of
the cointegrating matrix). When the OLS estimates of the stationary compo-
nents are optimal, then this property is shared by the FM-OLS estimator.

(ii) FM-OLS is applicable even in models with stationary regressors and in
this case has the same limit theory as OLS. A case of special importance in
practice is the stationary vector -autoregression. For this model FM-OLS and
OLS have the same asymptotic distribution.

(i) FM-VAR (fully modified vector autoregression) estimation also has
interesting asymptotic properties. For the case of a VAR with a full set of unit
roots the FM-VAR estimator is hyperconsistent, with a convergence rate faster
than the usual -O,(T) rate, for all elements of the unit root matrix /,. This
includes diagonal and off diagonal elements. When there are stationary compo-
nents in the VAR, the corresponding FM estimates of these coefficients have
the same asymptotic distribution as the (levels VAR) OLS estimates.

(iv) In VAR models with some unit roots and cointegrated variables (a
composite system), the FM-VAR estimator has some surprising features. First,
FM-VAR estimates of the identified components of the cointegrating matrix
have a mixed normal limit theory which is equivalent to that of the optimal
estimator in Phillips (1991a) or the reduced rank regression estimator in
Johansen (1988). Moreover, optimal estimation of the cointegration space is
attained in FM-VAR regression without knowledge of the dimension of the
cointegration space and without pretesting for the number of cointegrating
vectors. Thus, an investigator can perform an unrestricted regression by FM-
VAR and effectively disregard the I(1) or I(0) nature of the data. Any cointe-
grating relations are implicitly estimated as if one was performing a maximum
likelihood estimation of the model with the cointegrating rank known correctly.
Since the cointegrating rank is generally not known, this property of FM-VAR
estimation is quite appealing and somewhat unexpected.
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Second, FM-VAR estimates of the unit roots in a composite system also have
mixed normal limits. This means that the limit theory for the FM-VAR estima-
tor is normal for the stationary components of the VAR and mixed normal for
the nonstationary components. In other words, there are no unit root limit
distributions or matrix unit root limit distributions in FM-VAR estimation.
Correspondingly, the FM-VAR estimates of the stationary and nonstationary
components of a VAR are all asymptotically median unbiased. This gives the
FM-VAR procedure a distinct advantage over OLS levels VAR estimation,
where the estimates of the cointegrating vectors suffer in the limit from a
second order simultaneous equations bias and estimates of the unit roots in the
system have a limit theory that involves unit root distributions.

(v) The normal and mixed normal limit theory for FM time series regression
estimates helps to simplify inference. Wald statistics have a limit distribution
that is a linear combination of independent chi-squared variates when the
hypothesis under test involves both stationary and nonstationary coefficients. If
q is the total number of restrictions, then the qu distribution is shown to be an
upper bounding variate and therefore the usual y? critical values can be used to
construct tests that have conservative size. This avoids problems of pre-tests,
nuisance parameters, overfitting, and nonstandard limit distributions that arise
in other approaches. The theory is applicable to VAR models and causality
testing in VAR's.

Cowles Foundation for Research in Economics, Yale University, P.O. Box 208281,
New Haven, CT 06520, U.S.A.

Manuscript received June, 1993; final revision received November, 1994.

APPENDIX: PROOFS

8.0 KERNEL ESTIMATES OF {2 AND 4

To simplify the presentation of our arguments it will be convenient to assume in our proofs that
we are working with long-run covariance matrix estimates that satisfy Assumption KI(a) and (b).
This leads to estimates of the form

K-1 K-1
0= Y wG/KP(), and A= Y w(i/K)P(),
j=-K+1 j=0

which correspond to (6) when the lag kernel is truncated as in KL(b), i.e. w(x) =0 for |x|> 1. The
proofs given below for Lemmas 8.1 and 8.4 apply as they stand under KI.(a) and (b) and therefore
hold for the Parzen and Tukey-Hanning kernels, for example, which satisfy these conditions. The
results stated also apply for untruncated kernel estimates that satisfy Assumption KL(b'), like QS
kernel estimates, but the proofs need some modification to deal with the fact that the sums in (6) are
not truncated.

To illustrate the type of modification needed we look at the proof of part (a) of Lemma 8.1 given
below. In this proof we have expression (P1) whose second and third terms now become

(P0) w((T =D /K) [ 3, (T =1 =w((=T+ /KT, 4, (=T
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We need (P0) to be ¢ (K") for the remaining arguments in the proof to hold. To show this we
observe that

Pr-0,l(-T)=0,(T"Y,
and
w((T =1 /K), w((~T+ 1)/K) = OK/T),

in view of KI(b'). Combmlng these expressions we deduce that (P0) is O, (K?/T?)as T — «. Thus,
(PO) will be 0,(1/K?*) as required if K*/T*—0, ie. for K= O(T") with & < (0,3/4). This is
certainly true ander the bandwidth condition BW() of Assumption BW whereby K= 0, (T*) with k
satisfying k € (1/4,2/3). Similar modifications elsewhere in the proofs of Lemmas 8.1 and 8.4 help
to establish the stated results under condition KL(b').

8.1. LEMMA: Under Assumptions EC, KL, and BW(iv), the following hold:

(a) Dy sy = =KW (002, +0,(K™2);
(b) i, = KW (O @y + O, (1 VKT ) +0,(K™2), where

2 (./ - 1/2) unlq and

j=~=

Qg =KW (0D + O ,(1/VKT ) +0,(K™2), where

2 (]— 1/2)1—;2141(j);

j= — 0

() Qo s, = iy a0y = Do sy + 0,1/ TY;

(d) o, 05} = [ (D = 22 25/ P 27} + O, (K /T)l/2

+0p((K3/T)1/2) gy 037+ Op(l)] ;

O] K[ T 401U, = 4y, 0] =, w84, — /23 )

€] T UU, = 0, = K7 2w (O) Wy, + O,(1/VKT ) + 0,(K™2), where
Z G=1/D1,,,(
j=1

(g) TTAUX, = Ay, = T tnp o + K2WH(0) W, + 0,(1/VKT) +0,(K™2),  where
Z G+1/20, ()
Jj=0

(h) AAOdul = u[,_\ul =0, (1/\/ )

M Bou, = Ba e, = duy + O(K/TY?);

) Ty = Ay = Nozy = [ B, B33

(k) T X, — 50u2==N(,27~ 4 j:dBoB/z;

m T 2XX, >, [ By B,
0
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The error terms of O (1/ VKT) that ap ear in (b), (f), (g), and (h) are sharp. The same applies to the
terms of O(K>/*/ YE‘/ ) and O(K'/ T /2) that appear in (d) and (i).

8.2. Discussion: (i) Result (a) shows that 0, 4, = Q,(K™2), giving the rate a1 which {2y, 4,
converges to the zero matrix in the limit. Note that one consequence of the exphcn representation of
the limit of K .QA,, au, 18 that we can describe the behavior of its inverse, viz.

K—zﬁ:\-ul] Auy —’p - (l/W”(O)).Ql_ll.

(i) Results (b} and (c) show that .Q(uu also converges to a zero matrix, but at a rate that may
differ from that of . Au, au, depending on the expansion rate of K as T — . In particular, if

K =0,(T*) (with £>1/4 as in Assumptions BW(i)—(iii)) we get
K205, =w (0 Dy, + O,(K¥2T71/2) +0,(1)
=W (0)®y, +O,(TH/271/1)0,(1) +0,(1)
=, Ww{(0)®y, for k<1/3
whereas |

KMy g, = O(T*/271/0)0,(1) +0,(1), for k>1/3,

Qo gu. = 0,1 /VKT ) = O(T*/27 /)0, (1), for k>1/3.

Thus, for XK = O,(T*) with 1/4 <k < 1/3 the rate of convergence of Qﬂdu to zero is the same as
that of 2, ,, s, But for K=0, (T*) with &> 1/3 the convergence rate of .QOA“ to zero is slower
than that of | {24, a,,- This dlfference and the way in which it depends on the expansnon rate of K is
important. In partxcular, it affects the order of magmtudc of terms that appear in the expansion of
the estimation errors of the stationary component in the model (3').

(i) From result (d) of the lemma we see that the first block submatrix of £, ;! has some
elements that are of order O,((K’/T)¥?) and this order is sharp. Thus, if K =0/T*) with
k> 1/3, then these terms dommate and the elements of this submatrix diverge as T — =. However,
when condition B(ii) holds (i.e., 1,/4 <k < 1/3), we have

Qo Qi =, 1= (Poy = gy Q') 07 2 2y, 03]

and this matrix is well behaved as 7 — co. Thus, even though some elements of !),j,} diverge as
T — = (corresponding to the fact that some elements of u,, = (Au“, uy,) are I(—1) processes with a
null long-run covariance matrix), the matrix product QU,, .Q,, » has a finite probability limit, at least
when K=0(T*)and 1/4 <k <1/3.

(iv) Remarks similar to (a) and (b) above apply also to the results (¢), (f), and (g) for the
correction terms that involve one-sided long-run covariance matrix estimates. These remarks
indicate that the bandwidth expansion rate has an important role to play in our asymptotics when
there are stationary components in the estimated model, like x;, in (3').

(v) Proofs of (a)-(1) are given in the next section. The procedure we follow in deriving (a)-(®1) is
closely related to the analysis of the asymptotic bias and variance matrix of spectral estimates, with
the main differences arising from the treatment of the degeneracies that arise from the presence of
I(—1) variables, or first differences. It is particularly helpful to decompose the kernel estimates so
that weighted sums of autocovariances of differences are written in terms of differenced weights of
sums of autocovariances. The properties of the kernel weighting function can then be used to
greater effect in determining the order of magnitude of the degeneracies that occur and the
bandwidth expansion rates under which they apply. There is little that is new in the manner of these
derivations, but it does not seem possible to obtain the results given in (a)-(i) directly from the
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existing literature. Results on the asymptotic bias of spectral estimates do apply to I(— 1) processes
and are relevant, but seem to require sharper limitations on the bandwidth expansion rate than are
peeded here. For example, from Hannan (1970, Theorem 10, p. 283) we deduce that

;t{anzE( ‘()Au] Au‘) = (w”(O)/2) 2 ./.21-|Au1 Aul(j)

je

= —W”(O) 2 [;1“](,}.): _W”(O)Qlj

j=—-

(for the first equality set g =2, f(0)= QA,”_,M/L and k, = —w'(0)/2 in formula (4.9), p. 283 of
Hannan (1970)), giving the correct limiting mean of part (a). However, Hannan’s theorem requires
K—wand K*/T—0as T—o, ie K=0,(T*) with kK <1/2, whereas our derivation of part (a)
requires K— = and only K/T—0, i.e. K=0,(T*) with 0 <k < 1. The less restrictive result is
useful because it leads to a broader range of allowable bandwidth expansion rates in our asymptotic
estimation theory.

8.3. PrROOF OF LEMMA 8.1: Part (a): We proceed by evaluating the mean and variance of the
dominating terms of K2, 4, By definition

K-1 K-1
P1) Qs = L wU/EOL D= X wG/E £ (D = sl = 1]
j=—K+1 j=—K+1
K-2 . )
= X WwG/KY =w((G+ DR b () +w((K= D /KT, L (K= 1)
j==K+1

-w({(=K+ 1 /K) L, 4 (—K).

Under the summability condition in Assumption EC(a) it is easy to show that
(P2) Y il r (ol <o,
j-0

Here I'(K) = E(u,, u,) = 0(1/K%) as K — . Further, var ([(K))= O(T™"), as shown for example
in Hannan (1970, p. 212) and thus

(P3) F(K=-1,F(=K)=0,(T""/) + 0(K™%) =0,(1) as T—
under BW. Moreover, KL implies that
(P4) w((K—1)/K), w((~K+1)/K) = O0(K™?),

so that the second and third terms of (P1) are op(K‘z).
This leaves us with the first term of (P1) which we write as

K-2
(P5) Y IwG/K) = wl(G+ /KON, 4 (D
Jj==-K+1

= ( r+X )[w(j/K) =w((j + 1D/KN 40D
B, B
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where @&, ={j: |jl<K*} and &* ={j: |jl>K*, —K+1<j<K-2} for some K* =K" with
0 <b < 1. Under KL we can use the following Taylor development for w((j + 1)/K) when |j| < K*
and K — oo
w((j+1)/K)—w(j/K)
=w'(j/K)1/K) + (1/2w"(0)(1 /K (1 +0(1))
=w’ (/K1 +0D)) + (12w (01 /K*)1 +0(1)).

The first sum in (P5) is then
—K‘zw”(O){ ZjIAf‘]Aul(j) +/ Y f;‘m,,(j)}[l +o(D)].
@, &,

The mean of the term in braces is

Y A=l D+ /2 Y A =1/T, 40 (D

sk sk

- Z JI-;unl(I)+(1/2) Z I:tl..’lul(j)

j= - j=—x

©

Y iD= X iL D= X LG+

j=—» j=—

oo

(P6) Y L) =

)
J

Note that the limit in the second line above follows because IIwajZILIA,,‘(j)II=||):°im(2j~
DI, (DI <%, in view of (P2). The second sum in (P5) is

2 w(i/K) =w((G+ D/ENE 0 (D =K L w (8D, 0, (D)
B* B*
where j/K < 6; <(j+ 1)/K. This expression has mean given by

K= w8 =Y/ T, a0 (D),
‘g?*
whose modulus is dominated above by

(sup Iw'(ej)l)K‘l TG

lil<K > K*

-l
<constant K~ 3" Y ICIHIC, 4
Ljl>k* s=0

<constant KT'K*7¢ )" Y (s + N ICMIC,
ljI>K* s=0

< constant K-'K70 Y iC Il Y relic |
s=0 r=0
= O(K‘l ~ab).

Note from EC(a) that a > 1. We may therefore select K* = K? with 0 <b <1 in such a way that
ab>1 (ie. choose b so that 1/a <b < 1). Then the mean of the second sum in (P5) has order
o(K™2) as K = =, and therefore the mean of (P5) is dominated by the first term, whose limit is (P6).
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Next we consider the variance matrix of (P5). We start by writing:

K-2
Y wG/K) =w((+ DKL, 4, ()
j=—k+1
K-2 .
=—K' Y w(/KT 4D +00/K)]
j=—K+1
K-2 R R
==k Y WG D) —w /K, G+ D+ 00 /K]
j=—K+1
K-2
=~K—1{ Z [W(j/K)—W((]_l)/K)] u,u‘
J=—K+2
-w((K-2/K), ,( ‘1)+W'((—K+1>/K)fu.u,(—1<+1>}
X[1+ 0(1/K)]
K-2
(P7) =~K? ) wiG-D/KI,, () +0,(1/KY),
j=—K+2
using the fact that under KL w'({(K-2)/K), w({(-K+2)/K)=0(1/K), and u,,,l(K

f;xu.(‘K“L 2)=0, (T71/2) + o(K~9), as in (P3) above. We now consider the variance matrix of
the leading term of (P7). We can follow Theorem 9 of Hannan (1970, p. 280) on the asymptotic
covariancc matrix of spectral estimates because the leading term of (P7) has the same form as a
spectral estimate at the origin and w”(x) is continuous and uniformly bounded under KL. Doing so,
we get

(P8) lim K3T var

T—x

K-2
vec {K'Z Y WG - 1)/K)f;,],‘,(j)}}

j=—-K+2

i

K-2
lim K TK™* var [vec{ Y owi(j-1/K) u,ul(/)}}
J

T j= - K+2

T K-2
lim Z var vec{ Y owiG-0/KI . (j)}}
j

T j= ~K+2
= constant.

Hence the variance of the dominant terms of (P7) and (P5) is O(1 /TK?).
We deduce from (P1), (P5), (P6), (P7), and (P8) that

Qg s, = =K W00y, +0,(K™2) + O, (K 3/2T~1/2)
= —K2W'(D Q2 +0,(K),

for K satisfying BW. We note that the O,(K™?/2T~!/?) term in the above is a sharp bound because
it arises directly from the convergence rate given in (P8). However, for K = O,(T*) with 1/4 <k <
2/3 as under BW(j), this term is 0,(K”~ 2) and the stated result follows.
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Part (b): Part (b) of the lemma is proved in a similar way. We have

K~1

Ouojul = Z w(j/K)f:JnAm(j)
j=—K+1
K-1 R .
= ¥ WU Fo (D =W /K G+ D]
j=—-K+1 .
K~1 .
= Z [w(j/K) —w((j- 1D /KII, () —wl(K=1)/K)
j=—K+2

Xf:‘(,u,(K) +w((-K + 1)/K)f:l0u‘(_]<+ 1)

K-1

Y wG/K) =w(( = D/KIE, , () +0,(K™?)
j==K+2

(P9)

just as in the analysis following (P1). We write the first term of (P9) as
®10) (z iy )[wu/zo (= DK ()
B, B
and using the Taylor development of w(j/K) —w((j — 1)/K) the first sum in (P10) is
(P11) K’zw"(U){ Y G-DL,(h+a2 Y f:,()l,,(j)}[l +o(D].
ljl<K* ljl<K*

The mean of the term in braces in (P11) is

Y G=DA=/T L, D+ /2 Y A=1j/T) L)

ljls k* jls K*
- Y G-1/DL ().
j: -

The second sum in (P10) is

K'Y wi((j =1 /K) L, (DI +00 /K,
‘@k

whose mean is given by

(P12) K'Y w(j-1D/Ka-j/T,, (DI +00/K)].
g*

The modulus of (P12) is dominated above by
(Sup]w’(x)l)]{‘l Z I anq(j)”(l +O0(1/K)) = O(K~'~4P)
x 11> K*

just as in the proof of part (a), and for 1/ <b < I this expression is oK %) as K,T— e,
It follows that the mean of (2, ., is dominated by the first term of (P9) which is O(K™?), as in
(P11). In particular,

K2E(D 4,) =w' () Y, (G=1/D0L, ().

j
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Next we consider the variance matrix of the leading term in (P9), i.e.,

K~1
Y WG/ = w((G = 1D /K L, ()
j=-K+2
K~-1 .
=K' Y w((j-D/KI, (O + 0K D).
j=-K+2

As in the analysis of (P8) above, we now have

lim KT var

To»

K-1
vec{K‘1 Y oowiG~ 1)/K)f;aul(j)}}

j= K42

T K1 N

= Tlgnm % var[vec{ Y owi- 1)/K)I;Du|(j)}} = constant.
j=-K+2

Thus, the variance matrix of the dominant term in (P9) is O(1 /KT). We deduce that

D, =KW@ Y, (j-1/2T,

J=—o

(N + O (K127 12) 40 (K™2).

(]

The O,(K"'/2T~!/?) term in the above expression is sharp because it arises from the explicit
convergence rate for the variance given in (P9). For K satisfying BW either of the error terms may
dominate, as discussed in Remark 8.2(ii) above. This gives the first expression of Part (b).
The second expression, for the limit behavior of (2, auyps 18 proved in precisely the same way.
Part (¢): To prove part (c) we need to show that

Qom‘1 = Oaﬂ;su, = Oundu] +0,(1/7).

Now
- ~ K_l A A
‘ingdul = ‘Quu.‘lu, - Z W(J/K)(A _A)I;Aul(j)
J==-K+1
(P13) = Dyonu, {—w((K— D/KWA -DF, (K)

+w((=K+ D/KNA -, (~K+1)

k-1
+ Y IwG/K) —w(( - 1)/K)](z‘f—A)f}u,(f)}~

j=-K+2
The second and third terms of (P13) are 0,(T~!) because w((K — 1)/K), w((~K + 1) /K) = O(K™?),

A-4=0,0/VT), I, (K)=0,(1), and K=0,T/**$) for some g >0 under BW. The fourth
term of (P13) is

K-1
(P14) Y wG/K) =wl(j=D/KNA -, ()
j=—K+2
K~1 . .
= X wG/K =-wl(j=1D/KNA -4 T, ()
j=—-K+2

K~1
+ 2 wl/K) =w((j- D/KNA, -A)T,, ().
j=~K+2
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The first sum in (P14) can be decomposed as in (P10) and (P11). Using the fact that A4; — A4, =
O[,(T“l/z), we find that the first term of (P14) is O,(1/VKT)O,(1/ V1) =0,(T~"). For the second
term of (P14) we note that 4, — A4, =0,(T"") and

K-1 K-1

Y G/ =w((=D/KOIE (=K Y W)l () =0,),

j=—K+2 j=—K+2

as in the proof of Theorem 3.1 of Phillips (1991c, pp. 432-433). Thus (P14) is at most O,(T™") and
part (c) of the lemma follows.
Part (d): We prove part (d) of the lemma by using the partitioned inversion of {2;,, which yields

A Aetl A Al A1 Py A1 Py A1
‘QDh ‘th - Qﬂ.ﬂu, ‘Q_‘Iul Auy 'QAu] Aul‘QAu]uz‘Quzuzuﬁ\u,‘Quzdul‘QAu]du,

A= ~ A1 a A1 ~ P LA
: ‘QAul Ju,‘Qu_\uluz‘Quzufdu‘] + ‘Qﬂuz[ Quzuzdu,‘QuZAul‘QAul duy 9142u2-4u,]
= [X()l EXOZ]’ say,

Iy

s = o 50 4w Pa, o, Using parts (2)-(c) of the lemma we find that

v

I
o

+0,(K™2) + O,(K/T) + O,(K~1/2T~1/%)

Uatg Ay Ugliy

1
o

+ op(l) =, {25 >0,

Ugly

oA Ay A Aq ~ Aq a a_
X()l - QOAu,‘QAuI Auq ‘Q[)Aul‘quAu,‘QAu‘uz‘QuzuTAul‘QuzAul Auy duy

- 2,07

- A4
uzuz‘.'_\ul‘QuZAul‘QAul Auy

[= o + OLK2/TVYD0 = [— Py, + O(K¥?/TV))
XOG'O,(K™D) + O, (K/T)[ 2y +0,(1D] [~ @y + O,(K32/TV) 0
~[ 020, + 0,(DI[ 23 + 0, (D] [~ @y + O, (K> /T D07}

= (Do — 04y 251Dy 105} + O(K>2/TV2) + 0, (K32 /TV/2),

and

Y, 1 Py A1 N A1
XO" - ‘QDAul‘OAu] Aul‘QAuluz‘Quzuz-Au‘ + ‘QDuz‘Quzuz-Au‘

—[ By + O, (K2 VKD = 82y, + 0,(D) ' [0,(K™ ) + 0,(1/VKT)]

+ 84, Q3] +0,(1)

It

Oy 07 +0,(1).

The term Q,(K*/*T~1/?) in the final expression for X,; is a sharp order of magnitude because it is
K? times the O,(K~'/2T~1/?) sharp error term in the expression for £, 4,, obtained in Part (b).
This establishes part (d).
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Part (e): To prove part (e) we consider
K~1
T ]‘AU{UI - AJul Auy =T 1Aljl,ljl - E W(J/K)I‘Jul .'_\u,(j)
j=0
K-1
=T AU — ¥ wG /K[ D (D) = Ly G+ D]
j=0
K

[w(j/K) —w((j— 1) /K] J“() w((K—1)/K) ]}, (KD

™7

(P15) w(i/K) =w((j = 1) /Ky 0 () +0,(K™2)

-~
il

using (P3) and (P4). As in the analysis that follows (P9) we rewrite the first term of (P15) as

K* K-1
(P16) - ( Y+ ¥ )[w(j/m—w((j—1)/1<)]12u,u,(j>.
j=1 j=Kk*+1
Upon the expansion of w(j/K) —w((j —1)/K), the first summation in (P16) becomes
K*
w0 Y AG - D+ 1/, (DI +o(D)]
i=1

whose leading term has mean

1
0 Y (J—E)G—UVT)&",M,( )

j=1

1 1
= K2y "(O)Z{( ) ulul(j)—(j—a)]“ulul(j—l)}+o(K*2)
— “/’ "( *m‘l . 1 . l F -
- U) }El {(I_-Z_)_(I_’_E)} ulu‘(j)
. 1 1
+(K>F - 2) u:u;(K*)_ (_) :41‘41(0)} +o(K")

K*~1 1
-2 "(0){ > I:,,u,(j)+(3)1;|ul(0)}+o(1<-2).

j=1
Thus
K*
KE| =K 2w (0 Y (j - 1/2)11,”,”(])] **w"(()){ Yr, WD+ /2L ,,1(0)}
j=1 j=1
(P17) =W ({4, - (1/D3,}.
The second sum in (P16) is
K-1
- X IwG/K) —wl(G=1/K My ()
j=K*+1

whose mean is given by
K-1
~K~' Y w(( = D/KYA =/ T, (DI + 0K D]
J=K*+1
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The modulus of this expression is dominated above by

(sup|w(x)|)K Y I, (DI +00/K) = 0K~ 740) = o(K™2)
j>K*
for 1/a < b <1, just as in the proof of part (a). It follows from (P15)-(P19) that
K2E[T AU, - 4y, 4,,] = w04, ~ (1/2)5,,).

The variance of the dominant term of (P15) may now be shown to be O(1/7TK?), again as in the
proof of part (a), and it follows that

K[ T4y, - 4,, aun] 2o W O{4, - (1/2)3))

as required.

Part (f): To prove part (f) we proceed in the same way as the proof of part (b), the only
difference being that the sums are one-sided rather than two-sided. The mean of 77'UjU, — 4
is O(K™?) and satisfies

Ui

KE[T U, - 4,4, ] > w'(0) Z G =1/, (D) = w0 Ty,
j=1

The variance matrix is of O(1/KT) and hence
VKT {17030, - 4, 4, } — (K 2w (03} = 0,(D)

giving the stated result for part (f).
Part (g): To prove (g) we first note that

T IAUI/XZ - AAuluz = TleI,XZ =T ]U{, 1X2 - AAuluz

(P18) =T w2y = T Uy - AAuluz-
Next, observe that
~ K_l ~ ~
Adu1u2+T_]U;—lU2= Z w(j/K)I-.‘Au,uz(j)_*_I;,uz(_])
i=0
K-1
= Y wG/R[ LD = LG = D] + (=1
j=0
K-2
= X IwG/K) =w((j+ DO, , () +w(K =1 /KT, (K~ 1)
j=0
K-2 .
(P19) = 2 wG/K) =w(+ D /KNE, , () +0,(K2).
j=0

‘We now proceed as in the proof of part (b) but with a one-sided sum. We find that, for the mean, we
have

K-2
K2 Y wG/K) = w((+ D /KL, () = w"(o)Z(JH/z)z:, ()
j=0 j=0

and the variance matrix of the first term of (P19) is O(1 /KT). Hence (P19) is
“IW0)W, + 0,(1/VKT) +0,(K™2),

and combining this with (P18) we get the stated result for part (g).
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Part (h). To prove part (h) we write
K~1 K-1

gse,= X wG/K o (V= X wli /K] T (D = i G+ 1)
j=0 j=0
K-1 .
= Y wG/K) = w((j = D /KONG () + Ty (0 = w((K = 1) /K) [, (KD
i=1
K-1 .
(P20) = 2 wl/K) =w((G = D/KNE, () +0,(K~2T~1/?)
i=1

since 2,0“ = T"ljéU1 =T '0; X, =0 by least squares orthogonality, w((K — 1)/K) = O(K~?)
and [, (K)=0,(T""/2). Now

LoD =L D+ (4 ~-ADIL, ()

and (P20) becomes
k=1 K-l

(P21) 2wl /K —w((G =D /KON, (D) + (A=A Y wi/K) —w((j—1)/K)]
j=1 j=1

(N + O, (KT~ V7).

xu,
The first term of (P21) has mean zero because
L (j)=0 forall j=0
in view of EC(c). The variance of the first term of (P21) is G(1/KT), just as shown in part (b).
Hence,
K—1

(P22) X w(j/K) = w((j= 1) /KL, (j) =0,(1/VKT),

=1

which is a sharp order of magnitude. Next, the second term of (P21) can be shown to be O,(T" b
just as (P14) in the proof of part (c). Thus, combining (P20) and (P22) we have Auoﬁul 0,(1/VK \/_—)
as required for part (h).

Part (i): To prove (i) we write

K-1 K~-1 K-1
Qo= L wl/KIG (D= X wli /KL, (D +(A4-A) Y w(i/KOF, ().
j=0 j=0 j=0
The first term is
K—-1 .
Y wG /K, () = By + O,((K/T) )
j=0

with a sharp error order, since its mean is
K-1

Y wG/KA =i/, () Z iU = Aoz,

j=0 i=0

and its variance matrix satisfies

T K~-1
lim Evar vec{ Z w(j/K) uﬁuz(,)} = constant,

Tox j=0

as in the proof of part (b). This establishes (i).
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Parts (j)-(1): Parts (j)—-(1) follow directly from the weak convergence theory for sample covari-
ances developed in Phillips and Durlauf (1986), Phillips (1988), and Park and Phillips (1988, 1989).

8.4. Lemma: Under Assumptions EC, KL, and BW(i) we have:
(a) Qop 5T U X, — 4y
= [0,(K™2) + 0,(1/VKT) : 003 03 Nyay + O,(T~'/2) + O,(K*/2/T) +0,(1)]
where Ny, =, [} dB, BY;
(b) T 00, 0t [ TV X, = dya, ] = O,(K2TH2) + O,(K /2

(© TV [T 05 X, = Bya,| = T 1V2ULX + O[(K™1/2) 4 N(O, 0,).

8.5. Discussion: (i) The partition in the matrix that appears in part (a) of Lemma 8.4 corre-
sponds to the separation of the FM correction terms into those that relate to the stationary and
nonstationary coefficients, respectively. Part (b) gives the stationary coefficient correction more
explicitly (and when it is scaled by 772, as it is in the analysis of the limit distribution of the FM
estimates of the stationary coefficients). The correction term in this case has magnitude of order
O, (K 2T'/*) + O,{K™'/?) which is 0,(1) when the bandwidth expansion rate K =0(T*) satisfies
k > 1/4. This is the critical condition for the FM-OLS estimates of the stationary coefficients to be
asymptotically equivalent to OLS. Part (¢) shows that the FM correction term for serial correlation
(in the case of the stationary coefficients) also has no effect asymptotically and is O,(K~!/?). Both
these results indicate that, at least for the stationary coefficients, the faster the bandwidth expansion
rate K =0,(T*), the closer the FM estimates will be to the OLS estimates which under Assumption
EC(c) are consistent.

(ii) The second submatrix in the partition that appears in part (a) relates to the FM endogeneity
correction for the nonstationary coefficients. For the endogeneity correction to work we want this
matrix to be O,(1) and to be as close to its dominating term, viz. {2, 3, N1, as possible. Note
that the error in this case involves a term of order O (K3/2 /T), which is sharp, in view of Lemma
8.1(d). Thus the correction term operates satisfactorily provided K= 0,(T*) with 0 <k <2/3. In
this case, therefore, we do not want the bandwidth to grow too fast with T,

(iii) Combining the effects of the error terms for the stationary and the nonstationary coefficients
we see that the correction terms work satisfactorily provided the bandwidth expansion rate
K =0,T") satisfies 1/4 <k <2/3, i.e. the rate BW() given in Assumption BW.

8.6. Proor OF LEMMA 8.4: Using parts (d), (e), (f), (), and (j) of Lemma 8.1, we have
Doy G (T7U; X, - 4]
- [_(‘Dm - 20, 050 07 +0,(K /T D005 + "p(l)]
[ 7- auu, - AA;.m Au,_': T~ AUl X, - Aduluz
: i

TG - A

uodu,

- [_ (@ — 020023 )07 + Op((KS/T)I/Z) [0 05 + "p(l)]

0,(K™%) | O,(T™172) + O, (K™ %)
X[ = L
0,(K™%) +0,(1/VKT) | Nyor
(P23) = [0,(K™3) + O,(1/VKT ) : 200 05 Nypy + O, (T~ /2) + 0,(K*/2/T) +0,(1)]

where N,,; =, [ddB,B5. This proves part (a). Part (b) follows directly from the first block submatrix
of (P23) after scaling by T!/2,
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Part (c) follows from Lemma 8.1(h) and the CLT (5). Thus,
(P24) TV2[T7 03 X, = Ay, | =T V20U, — TV %04, = T 72040, + 0,1 /VK)

-4 N0, 02,.).

8.7. ProoF OF THEOREM 4.1: We write the FM-OLS estimation error as
®25)  AT—A=WUX-TA XXX

where U’ = U) — £2,, 714X, Transforming this system by H and partitioning into stationary and
nonstationary coefficients, we have

(P26) [ H, ((A* - H, | = (A" =) H = (5" X ~ TA{)H(H' X' XH) " H'H.

Note that by partitioned inversion

-1 [ -1
_ XX, XiX (X710, X))
(H'X'XH) ‘H'H1=[X3X' e [(I,]= o5 .
2 Xy XX, (X0, X)) X x (X X))
and
-1 ] -1 —1]
_ XX, XiX (X X,) X{X, (X0, X,)
(P27) (H'X'XH) 1H’H2= 1’ 1 3 2 [O]___ 141 142 ZIQl 2 ,
XX, X3X, I (X50,X,)"

where O, =7 — X(X/X;)7'X] (i =1,2). It follows that
VT (A — ) H, = VTIT U)X — 0, Q70T AX X) — 4]
PR ~1
(T7'X10, X))

xH .
T YT 2X50,X,) (T7'X x0T X X,)

-1

=VTIT WX — 0, O HT AX'X) ~ ngx][HI(T"IX;X])‘1 + op(T‘l)]
= \/T[T-lu(;x1 — O, HUHO, H)  H(T 4X'X,)

(g~ Do A | @ X XD T+ 0T )

=1

(P28) =VT[{17 0%, = Bos ) = Qon 05 (T 10, = B, ) (7'
+0,(T"1/?7)
= [T~ V2Us X, + O,(K™ VD) = {0,(K™*T'/?) + 0K~ VT~ X1 X))
+0,(T7'7%),
by virtue of Lemma 8.4(b) and (¢). Thus
(P29) VT (A% = AVH, = (T~ V2 X, (T 1X] X)) +0,(K~ /%) + 0, (K~ 2T'/?)
-, N(O,(Ie 3710, (Ie 31),

as tequired for part (a). From (P29) we also see that the stated result holds for a bandwidth
cxpansion rate K= 0,(T*) with 1/4 <k <1.
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Next, using (P26) and (P27) we have

(P30) T(A*—AVH, = [T "X - O, O (T ux'X) — A

x

—(T X X)) (T X X NT X0, X))

(T72X,0, %)

X H

e D S e oty SR T
XH(T™' X X)) ™ (T X1 X, (T 2X00, X,) ™
T U X = 0y, 07 (T AX'X) — A 1H(T- 250, X,)
(P31) =- [(T71U(3U1 - ADAul) -, f)l?hl(T—]Ul;Ul - AAhdu,)]
X (T X1 X)) (71X X,)(T 230, %) ™!
* [(T— Wy X, = Ay, ) = Qo T U X)) — AAhuz}] (T2%;0,%,)"
(P32) = - [{o, 17 + 0,(kT) /D)) - 0,(kT) VD] 10,)]

+{Ngg +0, (1)} = {020 05, (Nyyy +0,(1)) + O,(K¥/2/THNT2X30, X,)

~a

-1
1 r_ —1 {1 " ! :
_/;)dBo B, -Qoznzz_/;)de Bz] [_/;JBsz]

= [fOldBO,Z Bg] [foleB;]

as required for part (b). From (P32) we see that the stated result holds for a bandwidth expansion
rate K= 0O,(T%) with 0 <k <2/3.

Parts (a) and (b) of the theorem hold simultancously when the bandwidth expansion rate is
K=0,T*) with 1/4 <k <2/3.

-1

8.8. PROOF OF COROLLARY 4.2: We work from the proof of Theorem 4.1. Since there is no
second block in (P26) and no need for a rotation of the regressor space, the stated result follows
directly from (P28) provided K = O,(T*) for 1/4 <k < 1, as stated.

8.9. PROOF oF COROLLARY 4.3; This follows from the original analysis in Phillips-Hansen (1990).
We can deduce the result directly from (P31) with the stated bandwidth expansion rate by noting
that when m, = 0 there is no first term in this expression and then

(P33) T(A*-A)= [(T* VX, - Z\Ouz) - ‘éoh‘é;hl{T_lU};XZ - Ahuz}] (172X, %)™

-1

= [(77 10X = Buy) = P 5T 10 X, - 4,0} (T2X3.X)

ZEUT

= [{Npar +0,(1)) — (20,025 +0,(LH Nyyp + 0, (DT 2X3X,)

ad(j;)ldBO.z B;_)(j;leB’z)_l

as required. The only restriction on X for this result is K—w, T/K— o as T — . This applies
when K=0(T*)and 0 <k < 1.
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8.10. PrOOF OF THEOREM 4.5: Under the null hypothesis %, the Wald statistic W™* has the form
Wi =T((R, ® Ry)vec (A* = AV (R, S0y R, ® RyT(X'X) 'Ry}
X (R, ® R,)vec(A*—A)
= T {(R, 30 R) 'R (AT = DRRTXX) ' R,] [Ry(A* = AR, ).
From (18) we have
Ry =[H Sy, Hi Sy + Hy Sy Hy S0 = [H; S + [0, H, 8421 1 H, 551

where S,, =[5,0,5;,] has full row rank. The submatrix of coefficients [0, H,S,,] in the restriction
matrix R, produces terms that are of smaller order than those arising from H,S,, and can be
neglected in what follows. Thus, without loss of generality we will set R, =[H,S,,. H,S,,] in the
ensuing development, We start with the decompositions ’

_ SLHI(X'X) 'H,S CHU(X'X)HL,S

(P34) RL(X'X) 1R2= pYREN B 1921 2141y , 2922
SHUXX) VH S, Sy, HY(X'X) ' H, S,

and

(P35) R(A* =R, = R [(A] - 48,1 (A} - 4,)8,].

Set D = diag[/, Tl/zlqu] and then we can write

4217
(P36) Wia=tr {(R, S00R) ™ [R, TV (A* = A)R, ]
~1 -
X DD, R,T(X'X) 'R, Dy ] DT[RIT'/Z(A+~A)R2]’}‘
Now
T =TH(E X X)) =TH| 0T XX —IH'
XX, XX,
~ (x;0,X)7" —(X10, X)) XX, (X X0 7 |
~(X30,X,) 7 X X (X X)) (X30,%,)7"
and
TH{(X'X) ' H, = T(X{0, X)) ™" =, 5,
T2 H{ (X' X) ™ Hy= =T /2(17 ' X0, %) (T X[ X, (T2 X)) T =077,
-1
TZHZ'(X'X)“HE=(T-2X§Q]X2)"»d(ft)leB'z) .
Hence,
S5 30'Sy 0
D R, T(X'X) 'R, Dy . -1
0 SéZ(/;)BZBf?) 522

Also Ry 3R, =, R, 2y R, and
[R\ TV (A* = DR, 1D, = [ RTV2(AF ~ A8y, RiT(AF —4,)85]

==[21§Zz]-

-1
' . — . ! v L ’
—a N(D,R1500R1®5212111521);Rl(_/;dBo-sz)(j:)Bsz) Sn
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|

Combining these limits we have

-1
- - 1
Wa =4 tr{(RIEOOR’]) : Z (85 308y ]Z§+225'22(_/;)323'2) S22y

=t {(RIEOOR’I)_ 121(5’2121—11521).l Zﬁ}

-1
- 1
+tr<(R1200R’1) 122 ’22(_/;)323'2) 5222’2}

= (V) + el R, 299, R AR 2 R TR 0209, R VW3,
where
V1 = (R] EooRll )" l/221(5"21 2;11521)—1/2 = N(D’ Iqiqzx)’
and

V= (Rl-Qoo-zR’l)_l/zzz

-1 -1
- ] ! I u 1 [ 1’
= (R 240, RY) ‘”(RJ dBy., Bz)(f Bsz) 522{ 22([ Bsz) 522}
0 0 0

=N, I,,,.)-

-1/2

Now let C be an orthogonal matrix for which
C'(Ry 240, R (R 34y R ™' (R, 249, R C = D = diag (d, ..., d,),

and let ¥, = C'V, =N(0, I, ,..). Then

q)
Woo =g t (V) +tr (D) = x2 o + 3 d, x2 (),
i=1

where 2 () =iid(x; ), i=1,...,q,. Thus, the limit distribution of W* is a linear combination of
x? variates and the stated result follows.

8.11. PrROOF OF THEOREM 5.1: The matrix X is partitioned into stationary and nonstationary
components as
g= [Z,XWI] = [Z’-‘I"IEXZ"]] = [Z’VEXZ,—I] = [X1 Xz]
Using this partition and the formula for £* given in (34') we have in an obvious subscript notation

(P31 Fr-F=|EZEV-0,0;)(ay. V-Th,,,)

LEX, = 0, 050 (AY X, ~ Ty, )l (X7

Now, partitioning the inverse of X'X we obtain
1

VI =F)=VT [T EZ, T EV- 0, 0,11y, V-4, )| (T7'X10, %)
— T[T E X, - 0, 0 (T Y X, - Ay,
1

X(T72X5%,) (T X X)(T7 1 X0, X))

=[T"V2E'X, + O,(K 3T'/?) + O,(K /AT ' X, X)) +0,(T /),
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where the error orders of magnitude follow from Lemma 8.4 much as in the proof of the first part of
Theorem 4.1. We deduce that

(P38) VT —F) = (T 2E X)) (17X X) " +0,(1) =, N, 3, 8 37,1,
1 4 £33

where 2, = E(x,x},) and is positive definite, as shown in Lemma 1(iii) of Toda and Phillips (1991).
Next we consider the second block of (P37), i.e.

T —F) = — [TTEX, + 0,(K2) + 0, (K~ /AT~ /)]

-1

X(T7' X0, X)) (T X X, (T 2 X3 X,)

+ [T EX, - B, 4 (T 8y X, = Ay )| TG0, )

=0, V) + [TEX, - 0,05 (T 8x3 X, - &y, 4))]
X[T"2X3X, + 0T~ )"

using Lemma 8.4. Now

TE'X, -y fU]ﬂ'BﬁB':, T2X5 X, >y _/;)leBéw

- 1 1 / Iy
T IAXZXZ 4 j;] dBZ BZ + Auzuz: and ijz Ax; _bp Auzuz'

Hence

-1
(P39) T(ff—fz)_’d(_/;)lngzB'z)(j:BzB'z),

where Bc~2 = B!.‘ - ‘QSZ “QEZIBZ = BM( ‘Qr:z:‘Z) with !26'6'2 = '055 - ‘QI:Z ‘052]‘02.‘: = Ef:e - “(252 !2521‘025'

Again, the error orders of magnitude in these derivations follow as in the proof of Theorem 4.1.
Consequently, the bandwidth expansion rates under which (P38) and (P39) hold are the same as
those given in Theorem 4.1 for the stationary and nonstationary components. The stated result
follows directly.

8.12. Proor oF CorOLLARY 5.2: This follows directly from Theorem 5.1 because the submatrix
F, is null when r = n.

8.13. ProoF oF COROLLARY 5.3: When r=0, F,=1, and A =1, in (24). We then have the
model
[I —!*(L)L]Ai\’, =4
or

(P40) Yo=Yy +u, with u,=[I-J*(L)L] g,

In this case the subscript “2” that appears in our various formulae, like the limit theory in part (b) of
Theorem 5.1, refers to the entire vector u, or g, as the case may be. From (P40), the long-run
covariance matrix of u, is

0 =C0,,C=C3,C, C=[1-7*W]".

Let B,(r) = BM(2,,) and B,(r)=BM({1,,) be the limits of the partial sum process T~ ' /2L ly,
and 77'/2L""),. Then, necessarily, B,(r) = CB,(r) (e.g., sec Phillips and Solo (1992)), and

B, (r)=B,(r)— 0, 0.'B,(r) =B.(r) - 0,,0(C0,,C) ' CB(r)

=B.(r)-B,(r)=0 a.s.
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Hence, the limit distribution given in Theorem 5.1(b) for this case where r=0 is

(j;)ldBﬁ,uB;) (fo‘BuB;,) "o as.,

and thus T(FF ~1,) =, 0.

8.14. PROOF OF THEOREM 5.5: The error in the levels VAR estimator is £ — F=E'X(X'X)™ .
Partitioned regression yields:

VT —F) = (T7'PE'Q, X (T 1X0, X)) =, N0, 5,8 5,

giving part (a); and

-1

T(E, - F)) = (TTE'Q, X,)(T2X}0,X,) w(flstB’:)(lezBé)
Q - 0

Using the decomposition B, = B,., + £, {25,' B, (from Phillips (1989, Lemma 3.1)) we get the stated
result for part (b). o h

8.15. PROOF OF THEOREM 35.7: From (42) and (43') we have
Er~F=HE~F)I,2H").

We now partition £+ — F on the right side of this equation as £+ — F =[£ ~ F, ' ES — F,] with the
corresponding partition of I, ® H', viz. '

L., ®H 0

Note that
. , G’
VI = F) = H[VT(£7 - F)): 0,(17 /)] [—G—f —] -, N(O,H3, H' ® G3},'G")
) 1

using part (a) of Theorem 5.1. Observing that 5, =H'S, _H gives the stated result (a), and (a)
follows immediately.
To prove part (b) we write

T(E* - F)G, =H|[T(Ef - F): T - B)|GG,

0
—H[T(E;—F): T - F]| 0 |=HTE -F)

-, H(j;)lng.z B;)(/O‘BZB'Z)_I - (foldBe.zB’z)(j;leB'z)i ,

giving the required result.

8.16. PrROOF OF THEOREM 6.1: The proof is esscntially the same as the proof of Theorem 4.5, The
additional X‘IZI‘IJ term that appears in the limit (54) of W,} comes from the quadratic form associated
with the restrictions R,JR,; =R, in %" that relate to the known stationary coefficients J in the
model (42). The remaining components in (54) arise precisely in the same manner as those in
Theorem 4.5.
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8.17. PROOF OF THEOREM 6.3: When r =0 we have F =[J:A4]=[F, F,]. From Theorem 5.7 we
have ’ ’

(P41) VT (E*—F) =, N0, 3,,© G, 25'G}y)
where

G = [Ik_,®H]
" 0 nkxn(k~1)

and
(P42) T(A*-1)-,0.
Next the test statistic is
Wi = Ttr{(Rlﬁ“R'l)'l[Rl(ﬁhF)Rz][RgT(X'X)‘IRZJ_'[Rl(ﬁtF)RZT}
=tr{(RISEER'I)”‘[R1T1/2(f+-J)R2,;RJ(A”*—I)RM]
(P43) ><[DTR’zT(X’X)"lRZD-,A]—l[R]Tlfz(f*—J)Ru;RlT(ff*—l)RM]’}
where Dy = diag(/, ,T'/?], ). Now, writing X =[Z,Y_,] and performing a partitioned inversion of
(X'X)"! we have, in a conventional notation (denoting a, = -7 YZ'Q,Z)"!
(TZY  XT2YLY_ )Y ay = =T NI YL Y_ )T 'Y, ZXT 20, 2) ")

D, R,T(X'X) 'R,D;

'z, a
=D;R, e _1 |R2Dr
a5, T-YT~2Y,Q,Y_ )
| Ru(T'Z0,2) Ry, O,(T1/%)
N — ’ o 7] ~1
O(T~1/2) Ry (T72YL.0,Y_ ) Ry,
L (TZ22Z2)'R 0
(P44) = ¥ i +0,(1).
i 0 RyATIYL Y. ) Ry,

Inverting (P44) and using the fact that T(A*—1,) = 0,(1) from (P42), we deduce that

N — n _ -1
Wi=tr {(RIEHR'I) [RTVA = DRy Ry (T-122) 7 Ry |

><[R1T1/2(f+—J)R2,]‘> +0,(1).

Finally, from (P41) we have
VT EF—F) = VT (J*=J) >, N, 3, @ ([,_ | ®H)Z U, 9 HY)
and
NZ2Z2) ' =T @ H)Z'Z(, ©H) 7 5, (I, @ H) 37 (U, ® H).

Thus, Wi —, x7,,, as stated.
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