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A limit theory for instrumental variables (IV) estimation that allows for pos-
sibly nonstationary processes was developed in Kitamura and Phillips (1992,
Fully Modified 1V, GIVE, and GMM Estimation with Possibly Non-stationary
Regressors and Instruments, mimeo, Yale University). This theory covers a case
that is important for practitioners, where the nonstationarity of the regressors
may not be of full rank, and shows that the fully modified (FM) regression pro-
cedure of Phillips and Hansen (1990) is still applicable. FM. versions of the
generalized method of moments (GMM) estimator and the generalized instru-
mental variables estimator (GIVE) were also developed, and these estimators
(FM-GMM and FM-GIVE) were designed specifically to take advantage of
potential stationarity in the regressors (or unknown linear combinations of
them). These estimators were shown to deliver efficiency gains over FM-1V in
the estimation of the stationary components of a model.

This paper provides an overview of the FM-1V, FM-GMM, and FM-GIVE
procedures and investigates the small sample properties of these estimation pro-
cedures by simulations. We compare the following five estimation methods:
ordinary least squares, crude (conventional) 1V, FM-IV, FM-GMM, and FM-
GIVE. Our findings are as follows. (i) In terms of overall performance in both
stationary and nonstationary cases, FM-IV is more concentrated and better cen-
tered than OLS and crude IV, though it has a higher root mean square error
than crude IV due to occasional outliers. (ii) Among FM-I1V, FM-GMM, and
FM-GIVE, (a) when applied to the stationary coefficients, FM-GIVE gener-
ally outperforms FM-IV and FM-GMM by a wide margin, whereas the differ-
ence between the latter two is quite small when the AR roots of the stationary
processes are rather large; and (b) when applied to the nonstationary coeffi-
cients, the three estimators are numerically very close. The performance of the
FM-GIVE estimator is generally very encouraging.
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1. INTRODUCTION

In our recent paper (Kitamura and Phillips, 1992), a general theory of fully
modified instrumental variables (FM-1V) estimation with possibly nonsta-
tionary regressors and instruments was developed. The estimation of models
with nonstationary endogenous regressors was discussed, allowing explicitly
for cointegration in the regressors even though this possibility was excluded
in the FM regression procedure that was originally introduced in Phillips and
Hansen (1990). Also, efficient instrumental variables (IV) methods such as
the generalized instrumental variable estimation (GIVE) method (e.g., Sar-
gan, 1988) and the generalized method of moments (GMM) (e.g., Hansen,
1982) were merged with the FM-IV procedure. The resultant estimators, the
FM-GMM and FM-GIVE procedures, were shown to be (i) asymptotically
more efficient than the FM-1V procedure with respect to the stationary com-
ponents and (ii) asymptotically equivalent to FM-1V estimation with respect
to the nonstationary components.

Because all of the preceding results are asymptotic, a finite sample anal-
ysis is naturally of interest. The versatility of the FM-1V, FM-GMM, and
FM-GIVE estimators in practice seems quite important and, thus, the behav-
ior of these estimators in a realistic setup seems worthy of study. The main
goal of this paper is to investigate the sampling characteristics of these FM
estimators and compare them with conventional methods like ordinary least
squares (OLS) and IV through Monte Carlo simulations.

Closely related to this paper is an earlier study by Hansen and Phillips
(1990), which provides a systematic treatment of the sampling behavior of
FM-1V estimators in which the regressor and the instruments are known to
be full rank nonstationary a priori. Simulation studies of conventional instru-
mental variable estimators with stationary processes can be found in exist-
ing literature. A recent study by Nelson and Startz (1990), for example,
provides some finite sample results of the conventional IV estimator focus-
ing on the relevance of the instruments and feedback from the regression
errors to the regressors. (Phillips [1989] provides some analytic evidence on
the finite sample effects of the same factors.) These two factors are also rel-
evant to our FM-IV procedures and will be investigated in this paper. In our
case, however, because we are considering the estimation of models with sta-
tionary, nonstationary, and cointegrated processes, the specification of the
data generating process (DGP) for our simulations can quickly become much
more complicated than the aforementioned conventional cases. To avoid
unnecessary complexity, a rather simple and idealized DGP is employed in
this paper, but it is designed to represent some interesting features of time
series that may be encountered in practice.

The plan of the paper is as follows. Section 2 reviews the limit theory
developed by Kitamura and Phillips (1992). Section 3 provides details of the
DGP and the estimation methods that are used in the simulations and gives
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the findings from the sampling experiments. Section 4 contains some
conclusions.

The following notation is used throughout the paper. The symbol = is used
to signify weak convergence. The inequality > 0 denotes positive definite
(p.d.) when applied to matrices. We use /(d) to denote a time series that is
integrated of order d. Vector Brownian motion with the covariance matrix
) is written BM (), and MV (0, V') signifies a mixed normal distribution with
the conditional variance matrix V. We write integrals with respect to Lebes-
gue measure such as f§ W(s) ds more simply as f; W to achieve notational
economy. All limits given in this paper are taken as the sample size tends to
o unless otherwise stated.

2. A BRIEF REVIEW OF FM-IV, FM-GMM, AND FM-GIVE

Before reporting our simulation results, we provide a brief review of the
FM-1V estimation procedures with possibly integrated processes discussed by
Kitamura and Phillips (1992). The purpose of this section is to illustrate our
procedures in a rather simple model. For example, we will focus in this expo-
sition on a single equation model, though the extension to multiple equation
models is rather straightforward. The reader is referred to the cited paper for
further details and discussion.
Consider the time series { y,} and {x,} generated by

Y= B'x + ug,, 2.1.1)
H{X,=X1,=ul,:m| X 1, (2.1.2)
HiAX, = Axy, = uy, i my X (2.1.3)

where H = [H,,H,] is an m X m orthogonal matrix. We also define the sto-
chastic process of instrumental variables z, by the following equations,
which separate out the I(0) and I(1) components of the instruments:

Giz, =210y X 1, 2.2.9)
Giz, = Azy,:0, X 1, (2.2.2)

where G = [G,,G,] is a ¢ X g orthogonal matrix.

As we shall see later, the preceding notation is helpful in the development
of our theory, where we want to allow (explicitly or implicitly) for cointe-
grated regressors and instruments. We shall also extend our model to allow
for cointegration between the regressors and the instruments. For that pur-
pose, we add the following notation:

F{<x2’> = v %1, 2.3.1)
224
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Ax

1?5( 2’) =y, %1, (2.3.2)
Azy,

where F = [F,,F,] is an ! x [ orthogonal matrix with / = m, + g,. For later

use, define X' = (x,....x7) and Z"’ = (z,,...,27). We now impose

assumptions on the random variables w, = (ug,, 4{,,2},,V};s05,)"

Assumption EC (Error Condition).

(a) {w,]7 is fourth-order stationary with absolutely summable fourth-cumulant
function.
(b) The partial sum process s, = 2./, { w;} satisfies the invariance principle

[77]
T2 3w, = B(r) = BM(Q), O0=<r=<1l.

i=1

(c) The long-run variance matrix of {w,}, @ = Z7% E(w,;w;), is p.d.

Note that Assumption EC(b) can be replaced with more specific conditions
in terms of mixing processes or linear processes (see, e.g., Phillips, 1991, and
the papers cited therein). In fact, the invariance principle holds under very
general conditions that cover many realistic cases that are encountered in
practice. In sum, parts (b) and (¢) of Assumption EC and equations (2.1.1)-
(2.3.2) allow for the potential of cointegration among the regressors, among
the instruments, and between the regressors and the instruments. We empha-
size, however, that information about the number and location of the unit
roots in the system is not required in the implementation of our FM-1V pro-
cedures. Thus, the investigator is assumed to have no knowledge about, for
example, the matrices / and G that appear in equations (2.2) and (2.3). In
fact, the fairly modest assumption of part (a) about w;, is used to show the
rather convenient property of our FM-IV procedures that it is not necessary
for the theory nor the practical implementation of the estimators that the pre-
cise breakdown or dimension of this vector’s components be known a priori.

For later use, we decompose the long-run covariance matrix Q as follows:

Q=L +A+A,

where L = E(w,w/) and A = >0 E(w,;w)) = 22, (i), say. Using this
notation, we define the “one-sided long-run covariance matrix” A = X +
A=2700E(w,,w) =27,T(). Also, we partition @ conformably with
w, = (o> (U1,,21,,01,),03,)" = (Uos Wy, 03,)" 8S

woo  ox vaz
Q= Q*O Q** Q*uz
Qoo Qo O

vV

The following assumptions are imposed on the score process ¢, = o, 21,
and on the instrumental variables to validate the asymptotics.
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Assumption IV (Instrument Validity Conditions and the Central Limit
Theorem). '

(a) E[¢z,,] = E[ug,z;,] = 0 for all 1 [orthogonality condition).

(b) Elx,,z/] = K, is of full row rank (rank m,) [relevance condition].

(¢) Elz,z/] = M_ is nonsingular [nonsingular second moment].

(d 772§ ¢, = N(0,S;), where S, = XIZR. (i) and R, (j) =
E(ug o421 %144,) [Central Limit Theorem].

(e) my < g, [order condition on I(l) instruments].

In many respects, these conditions are rather standard, as signified by the
labeling we have provided for them in brackets. The reader is referred to
Kitamura and Phillips (1992) for further discussion of these conditions in the
present context.

The reason instrumental variables are introduced into our setup is to deal
explicitly with the potential of endogenous regressors, especially those that
are stationary. When the regressors are endogenous, two problems may arise.
To see this point, rewrite equation (2.1.1) as

Ye=Bixy, + Bixy, + U, 2.9

where 3, = H{B and 3, = H5(3. (Recall that this partition of the regressors
is not known to the investigator.) As shown in Park and Phillips (1989), the
application of OLS yields inconsistent estimators for the stationary coeffi-
cients &, with conventional 7?2 asymptotics. On the other hand, the OLS
estimator for the nonstationary coefficients 38, is shown to be superconsis-
tent with the convergence rate 7, though its asymptotic distribution is not
median unbiased and depends on nuisance parameters. Of course, we can
solve the first problem concerning the stationary components by the use of
valid instruments, though it does not solve the second (see Phillips and Han-
sen, 1990). In the literature, there are several estimators available that over-
come the second problem, but all of these rely on prior information (possibly
from pretests) about the number and the location of unit roots (i.e., infor-
mation about H, and H,).

Kitamura and Phillips (1992) showed that the FM-1V procedure has the
very nice asymptotic property that it is well behaved when the regressors and
instruments are possibly nonstationary, that is, when the number and the
location of unit roots are uncertain. FM versions of the GMM and the GIVE
estimators were introduced to provide efficiency gains over FM-1V., Recall
that in the original GIVE procedure (e.g., Sargan, 1988), we employ GLS-
type transformations of both the regressors and the instruments using a
matrix Wy (= {W;}), say, such that (W;W;)™" = Var(u,) = Vyr.

The following is a catalog of the FM estimators with which we shall be
concerned in the rest of the paper:

The FM-IV estimator
B=(X'P,X)'X'Z(ZZ) ' [Z9" — Als.] 2.5.1)
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The FM-GMM estimator

Bomm = (X' ZSF Z'X) ' X' ZSHZ')* — Aga:l (2.5.2)
The FM-GIVE estimator
Bove = (X ¥ Pps X*) '\ XM ZXZVZ*) 727 p** — AEM*], (2.5.3)

Wher? )7+ =y N QOa Qa;llaua ’AAJAAZ = AOAz - QO(IQ(;JI AaAza )7*+ :y* - QOa Q;al Ug,s
and Ay, = Agazr — Qoo iz’ Agaz. The affix * indicates premultiplication by
the matrix W,, which is a consistent estimator of W,, and the subscript @ sig-
nifies that elements corresponding to Ax, and Az, are taken together.

To construct estimators of the long-run covariance matrices A and Q, we
employ kernel estimators of the general form

T—1 -1
Qab = 2 W(J/K)Pab(.]) and Aab = 2 W(.]/K)Fab(./)s (2-6)
J=—T+1 J=0

where T, (/) = T7' S 4, 85,, w(-) is a kernel function, and X is a trun-
cation or bandwidth parameter. Accordingly, the notation Aom* implies the
use of transformed residual estimates in the calculation of the kernel smooth-
ing estimators.

In practice, we need residuals estimates &, to calculate the sample auto-
covariances I that appear in (2.6), and we may use, for example, the “crude
IV estimator” 8 = (X'P, X)~' X'P,Y to obtain them. The metric matrix S.r
in the FM-GMM estimator can be estimated, for example, by the use of a
kernel estimator or a smoothed periodgram estimator.

To allow for possibly nonstationary processes, we need to make the fol-
lowing additional assumptions. '

Assumption LR (Long-Run Covariance Matrix Estimation).

(a) Any of the Parzen, quadratic spectral (QS), or Tukey-Hanning kernels! are
used in the estimation of Q and A.

(b) The truncation/bandwidth parameter K grows at the rate of 7% for some
k€ (3,3).

(¢) The covariance functions [,,,,(-) and T, ,,(-) satisfy

ov2
2T < .
Assumption NF (No Feedback).
E(ug,;2y,) =0 forallj= 1.
Assumption NF* (NF for Transformed Processes).

a T
E(ug,;zi) =0 forallj=1, whereug, = >, W,uy, and zj, = 2, W, z4,.
r=1

7=1

In Assumption LR, only part (¢) is a condition concerning the property of
the data, and it is, in fact, fairly modest. For instance, this summability con-
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dition allows for general finite order stationary vector ARMA as the DGP
of {w,i7.
The limit theory for these three estimators is as follows.

THEOREM. Suppose Assumptions EC, 1V, and LR hold. Also, Assump-
tion NF holds for 8 and Bomm and Assumption NF* holds for Bgve. Then,
(@ TY2H{(B —B)(=T'"*(B, — B1) = N0,/ S, J;)),
(b) T'2H{(Borm = BY(= TV (Bramm — B1)) = N(0,[K,,S,' K 171,
© TYV2H{(Bave — B)(= T (Bigive = B1) = N(O, (K MIK]1™"), and
(d) TH3(B—B), TH>(Bomm —8)> THy (Beive —8) (= T(B; ~62), T(Bramm — B2),
T(Bocive — B2)) = MN(0,wq., [3 B2 B3).

See Kitamura and Phillips (1992) for the proof of this theorem.

Remarks.

(a) Inthe preceding theorem, J;, = (K, M7 'K VK, M, K] =plim(T~' X" Z{),
M} =pim(T ' Z{' Z}), woo.s, = woo = Qou, by Yuos B2=Jo B2B: ([ B,B;)™'B,,
and B, and B, signify Brownian motions that are defined by the limits
T2 5wy = By(r) and T2 5 Az, = B, (1),

(b) Under fairly general conditions, we have the inequality
(K, MK < (K, S5 K17 <0, S, T4,

as noted by Kitamura and Phillips (1992).

We shall investigate the relative efficiency among these estimators in finite
samples by simulation in the next section.

3. SIMULATION RESULTS

This section provides simulation results concerning the various FM-IV pro-
cedures. Sections 3.1 and 3.2 contain a description of the experimental design
and estimation methods. In Section 3.3, we present the simulation results and
summarize the findings from them.

3.1. Experimental Design

We are interested in the estimation of the coefficients b = (b,,b,) in the
equation

Yo = b X, o+ U, 3G.D
1x1 I1x2 2xl1 1x1

where b = (0.2,0.5)". Both the regressors and the error terms are linear com-
binations of the two processes shown next:

X = Xy + (1 — a)xp, 3.2)

Uo, = g + (1 = ) uy,, 3.3)
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with 0 < o =1 and

A 0 1
X, = ( Ol }\2'))(,,,_, + (l) Uy, 3.4)

where u,, and u,, are not cross-correlated and are specified later in (3.11).
Nevertheless, because the term u,, (and, thus, x,,) causes feedback from uy,
to x, through the parameter «, instrumental variables are necessary for con-
sistent estimation when x, has some stationary components. The instruments
z, are generated by

AN 00
Iy = 0 >\1 0 Z,—) + Uy, (3-5)
0 0 X,

where the innovation u,, is given by
0.6 —06 0.0

u,=¢,+le,, withl'=]-06 -06 04]. 3.0)
0.4 04 04

The regressors and the instruments were related by

om0 5 03]
Zp =Bz, + (1 = B)yw, 0=p=l, (3.8)
where the DGP of u,, is
A0 0
w,=10 N 0 |w_,+ U, =¢e, +Te,_,. 3.9)
0 0 X

Of course, 3 is the parameter that controls the relevance of the instruments.
Formulations (3.7)-(3.9) have two advantages. First, in view of (3.7), x,,
has the same VAR(1) form as x,, in (3.4), so that x, is also a VAR(1) process
and follows

A O
X = ( 01 )\2>XH + U, (3.10)

where

Uy = (i) satdy, + (1 — a) [Buy, + (1 — B)uy,].
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Second, not only are the instruments valid, but also it is easy to see that
X, has a “reduced form” in terms of z, with the reduced form coefficients
(1 — «)BI1;. Using this fact, we can show by conventional arguments that
FM-GIVE for the I(0) coefficients is asymptotically efficient over FM-GMM
(and FM-1V) (see, e.g., White, 1984). To explore the effect of both feed-
back and relevance, we shall report simulation results for various values
for o and B.
Finally, the regression errors uy, in equation (3.3) are driven by

Uy = Eq + 0841, (3.11.1)
Up = &y + 08y, 3.11.2)
with 8 = 0.9. Consequently, uy, is also MA(1):

Uy, = &y, + 0eg,_,, 3.12)

with gy, = ag,, + (1 — «)e,,. The roots of the AR processes were parameter-
ized as follows:

(0.8,0.8) the “I1(0)/1(0) model,”
(A A2) =4 (0.8,1.0) the “I(0)/1(1) model,”
(1.0,1.0) the “I(1)/1(1) model.”

In each simulation, €, = (g,,¢€,,¢,,¢e.) were i.i.d., N(0,1;), and the initial
values v, = (0,0,0), e,0 = 0, £,0 = 0, X0 = (0,0), zp0 = (0,0,0), &, =
(0,0,0), and €,9 = (0,0,0)" were used. All the results are based on 2,000 sim-
ulations of sample size 100. The pseudonormal random number generator
in GAUSS was used to generate the samples.

3.2. Estimation Methods

The simulation results reported in the next section are concerned with the
performance of the following five estimators: the OLS, crude 1V, FM-IV,
FM-GMM, and FM-GIVE estimators. The long-run covariances A and  and
the metric matrix S, were estimated by the use of the Parzen kernel

1 —6x?+6|x|* for0=|x] <3,
w(x) =1 2(1 — |x|)? for ; = |x| =1,
0 otherwise.

Results with other kernels, such as the Tukey-Hanning and QS kernels are
not reported, because no essential differences were found in the general qual-
itative features. The lag lengths of the kernels used in A and €, which we des-
ignate KLR, were chosen to be 4 in all but the last set of simulations, where
various values for KLR were used. Although issues of optimal choice of the
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truncation parameter for kernel estimators of long-run covariances are dis-
cussed in the literature (e.g., Andrews, 1991), little guidance is currently
available for choosing KLR in a setup as complex as ours, because the intro-
duction of possibly nonstationary processes substantially complicates the
problem. Moreover, there is no reason why “optimal” choices of KLR as far
as the estimation of A and Q should apply or even be relevant in the estima-
tion of the regression parameter 3.2 This is a problem of some importance
that we leave for future research. The kernel lag length used in S,, which
we designate KSZ, is set to be 3 throughout all the simulations reported here
(results with other values of KSZ varied very little and are not reported here).
In the construction of the FM-GIVE estimators, we calculated the GLS-
transformation matrix Wy by fitting AR(3) models to the residual processes.
Note that the true error process of (3.12) is MA(1) and, thus, this transfor-
mation is misspecified. The effect of this misspecification is discussed later.
To implement the FM-IV method, we need to estimate  and A, and the
following two-step procedure was used: (i) obtain initial estimates &, using
the crude IV estimator, and (ii) use i, to calculate the long-run covariances
and construct the FM-IV estimator b. The calculation of the FM-GMM esti-
mators requires a few more complicated steps: (i) obtain initial estimates
i1y, as before, (ii) use &, in the calculation of the metric matrix S,r in the
(unmodified) GMM estimator boym = (X'ZS7 Z'X) "' X' ZS7 Z'y and get
the GMM residuals Zgna,, and (iil) use dgmm, to calculate S, again and
the long-run covariances and then form the FM-GMM estimator gy -
Similarly, the FM-GIVE procedure was implemented using the following
steps: (i) obtain the initial residual #,, by crude IV, (ii) fit an AR(3) model
to the estimated process &g,; use the estimated AR coefficients to transform
the data matrices to form bgvg = (X*'Pz+ X*)"' X*'P,«y* and calculate
the GIVE residuals i#g;vg,, and (iil) fit an AR(3) model to ég;ve, again to
perform the GLS transformations as in step (ii); also, use i vg, to form the
long-run covariance matrix estimates and construct the FM-GIVE b yg. All
calculations were performed by using programs written in GAUSS.

3.3. Findings from the Simulations

Inthis section, we present a summary of our simulation results and discuss their
implications. The five estimation techniques were applied to the 1(0)/1(0),
L0)/1(1), and I(1)/1(1) models for each parameterization of (e, 3,KLR).
Recall that « is the feedback parameter, 3 is the relevance parameter, and
KLR is the truncation parameter used in {!and A. First we focus on the sim-
ulation results for the “baseline” case, and then we turn to the analysis of
the estimators’ sensitivity to each of these three parameters in turn. In what
follows, sometimes we use the terminology “I(0) coefficients,” referring to
(b,,b;) in the 1(0)/1(0) models and b, in the I(0)/1(1) models, and “I(1)
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coefficients,” referring to b, in the I1(0)/I(1) models and (&, 5,) in the
1(1)/1(1) models.

As indicated by the results in Tables 1, 4, and 7, sometimes the mean abso-
lute deviation (MAD), the average bias (BIAS,..), and the root mean square
error (RMSE) of the FM estimators are exceptionally high due to the very
occasional occurrence of extremely large estimation errors. Thus, Table 1 also
includes the bias and RMSE based on the results excluding 1% in both tails,
to see the performance of the estimators without the effect of the occasional
outliers. We will sometimes call these statistics BIAS g3 and RMSE 3. Ta-
bles 3 and 6 contain quantiles that are robust to outliers.

Figures la and b display nonparametric estimates of the probability
density functions (p.d.f.’s) of estimators for the 1(0) and I(1) coefficients
in the I1(0)/I(1) model for the “baseline™ case, where o = 0.5, 8 = 0.8, and

36 " T —

28

2.4f
220t
16|
12
08t
0.4

002

dens

o n B 2] w

0.3

(b)

FiGURE 1. I{0)/1(1) model. (a) Coefficient b,, regressor I{0}, « = 0.5, 8 = 0.8. (b)
Coefficient b,, regressor 1(1), « = 0.5, 3 = 0.8.
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KLR = 4. The figure shows the basic characteristics of the OLS, crude IV,
and FM-IV estimators quite clearly.

The p.d.f.’s of the estimators of the I(0) coefficients displayed in Figure la
show that OLS is evidently biased due to the feedback. On the other hand,
given the valid instruments, the estimated densities of crude IV and FM-IV
are well centered. These results are in accordance with what theory predicts.
Figure 1b graphs the sampling densities of the three estimators applied to
the I(1) coefficient. Even in this case, OLS is considerably biased, although
the bias is generally smaller than the I(0) cases due to the superconsistency.
Note the dispersion/bias trade-off between OLS and crude I'V. Asymptotic
theory tells us that in the estimation of the I(1) coefficients, both OLS and
IV are superconsistent but both also suffer from second-order bias (Phillips
and Hansen, 1990). According to the sampling results displayed in Figure 1b,
the introduction of instruments for the nonstationary regressor seems to
reduce bias. However, that is not enough—the crude IV estimator seems defi-
cient compared with the FM-IV estimator. These results seem to imply the
desirability of FM-IV: its sampling distributions are centered and reasonably
concentrated.

As seen from the theorem in Section 2, FM-IV and crude IV are asymp-
totically equivalent with respect to the 1(0) coefficients. This means that the
advantage of FM-IV with respect to the I(1) coefficients can be obtained at
no cost asymptotically. Therefore, it is naturally interesting to ask how the
additional correction terms in FM-IV affect the finite sample performance
of the I(0) coefficient estimators. In fact, the estimated densities in Figure la
seem very interesting: the distribution of FM-IV is close to that of crude IV,
suggesting that the price we have to pay in order to obtain the efficiency gain
in the estimation of the I(1) coefficients seems reasonable.

At the same time, Table 1 shows some summary statistics calculated for
the baseline case. As expected, for the 1(0) coefficients, the OLS estimators
are substantially biased compared to other estimators. On the other hand,
the results concerning crude IV and FM-IV (or FM-GMM, FM-GIVE) seem
somewhat less clear. First, there is nothing to choose between crude IV and
FM-IV in terms of median and BIAS ¢z, as both theory and Figure 1(a)
imply, and this is also true for other parameterizations discussed later. How-
ever, BIAS,,. and MAD of FM-IV are generally higher than those of crude
IV. Also, we see a similar situation among the dispersion measures. In terms
of Q,s, Q55, and RMSE o the dispersion of FM-IV applied to the I1(0)
coefficients tends to be larger than that of crude IV; however, the difference
is not large. On the other hand, in terms of RMSE,,., the difference be-
comes larger. These conflicts are, of course, due to the aforementioned occa-
sional extremely large errors.

Table 1 also shows the results on the estimation of the I(1) coefficients.
The relatively good performance of the FM-IV procedure observed in Fig-
ure 1b can be seen here. The bias of OLS is substantial, and FM-1V outper-
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forms crude IV in terms of quantiles and RMSE g5. On the other hand, the
effect of outliers results in the higher RMSE,,. of FM-IV.

Table 2 displays the concentration probabilities of the various estimators
for the 1(0)/1(1) model in the baseline case. The disadvantage of OLS in the
estimation of the I1(0) coefficients is evident, whereas OLS for the I(1) coef-
ficients seems to work reasonably well. By comparing crude IV and FM-1V,
we see that crude IV is only marginally better for b, (the 1(0) coefficient),
whereas FM-IV beats crude IV in the estimation of b, (the I(1) coefficient).
(Check the final line in each panel below the concentration probabilities of
b, and b, to see the relative difference between the concentration probabil-
ities of crude IV and FM-IV.)

The preceding results can be summarized as follows: the estimated densi-
ties and quantiles seem to imply that FM-IV outperforms OLS and crude IV
in the estimation of the I(1) coefficients, whereas OLS is severely biased and
the performance of FM-IV and crude IV are very close in the estimation of
the I1(0) coefficients. Thus, in view of these results, FM-IV seems to be a
desirable choice. However, also note that FM-IV has a higher RMSE than
crude IV due to occasional extreme values, in fact in every case.

A closer reading of the estimation results shows that these outliers are due
to poor initial estimates obtained by the use of crude IV regressions in the

TasLe 2. Concentration probabilities: (1(0)/1(1) model,
a=10.5,8=0.8,KLR =4)

P(jb—~b| <0)
(b)) c=01 c=03 ¢=0.5 c=07 c=0.9
Estimator (bs) ¢c=001 ¢=003 ¢c=005 ¢=007 c=0.09

b, OLS 0.0000 0.0280 0.4375 0.9270 0.9980
v 0.2855 0.7290 0.9135 0.9650 0.9810
FM-I1V 0.2825 0.7175 0.9020 0.9590 0.9805
FM-GMM 0.2945 0.7265 0.9025 0.9590 0.9760
FM-GIVE 0.3495 0.8105 0.9500 0.9835 0.9925
P(lbyy — bl =¢)/ 1.0106 1.0160 1.0127 1.0063 1.0005

P(|beprav — b = ¢)

b, OLS 0.2880 0.6675 0.8445 0.9230 0.9620
v 0.2320 0.5340 0.7000 0.7965 0.8590
FM-1V 0.2835 0.6080 0.7570 0.8415 0.8840
FM-GMM 0.2730 0.6070 0.7605 0.8360 0.8825
FM-GIVE 0.2690 0.5845 0.7255 0.8150 0.8645

P(|bpsy — 0 =)/ 1.2220 1.1386 1.0814 1.0565 1.0291
P(lb[v - bl <)
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first stage. That is, because the long-run covariance estimators used in the
FM estimators are weighted sums of sample covariances, estimation errors
cumulate. Thus, when the initial IV estimates are exceptionally poor due to,
for example, poor instruments, in the second stage the FM procedure can
amplify the effect of poor preliminary estimates.

Next we investigate the effect of the feedback from the residuals to the
regressors. Table 3 displays the quantiles of each estimator with « = 0.1, 0.3,
0.7, 8 = 0.8, and KLR = 4. In each case, the qualitative nature is basically
unchanged from the baseline case. As expected, the bias of OLS increases
as the feedback becomes higher, even in the estimation of the I(1) coefficient,
and the same characterization applies to crude IV (see also Figures 2a and b
and 3a and b). At the same time, in terms of quantiles, FM-IV still performs

o M &~ OO ©

0.3

Figure 2. 1(0)/1(1) model. {a) Coefficient b,, regressor 1(0), & = 0.7, 8 = 0.8. (b)
Coefficient b,, regressor I{(1), « = 0.7, 8 = 0.8.
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40
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0st

0'90.6

Ficure 3. I(1)/I(1) model. (a) Coefficient b,, regressor I{1), « = 0.7, B = 0.8. (b)
Coefficient b,, regressor I(1), « = 0.7, 8 = 0.8.

well and is relatively stable throughout all the values for «. As seen in Fig-
ures 2b and 3a and b, which display the sampling distributions of the esti-
mators for the I(1) coefficients when « =0.7, FM-1V is evidently more
concentrated than the others and unbiased. Interestingly, by comparing Fig-
ures 1b and 2b, we note that the shape of the estimated p.d.f. of FM-IV
changes very little compared with OLS and crude IV. The concentration
probabilities in these cases are reported in Table 5. When the feedback is as
high as 0.7, FM-1V almost dominates crude IV even for the stationary com-
ponents of the model. The preceding results suggest that, when the feedback
is rather high, the use of FM-IV seems desirable. Note, however, as implied
by the summary statistics displayed in Table 3, FM-IV yields occasional
extreme deviations, as in the baseline case, so FM-IV tends to have a higher
RMSE than crude IV.
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TasLe 5. Concentration probabilities: (I(0)/1(1) model,
8 =0.8,KLR =4)

P(b-b| =c)

(b)) c=01 ¢=03 ¢=05 ¢=07 ¢c=09
« Estimator (by) c=0.01 ¢=0.03 ¢=0.05 ¢=0.07 ¢=0.09
0.1 b, OLS 0.4035 0.8875 0.9895 0.9990 1.0000
v 0.3935 0.8615 0.9860 0.9980 0.9995

M-IV 0.3265 0.7795 0.9565 0.9940 0.9985
FM-GMM 0.3425 0.8005 0.9635 0.9950 0.9990
FM-GIVE 0.4890 0.9370 0.9970 1.0000 1.0000

P(|byy — bl =)/ 1.2052 1.1052 1.0308 1.0040 1.0010

P(|bpaay — b =€) ‘

b, OLS 0.3005 0.6845 0.8565 0.9350 0.9695

Iv 0.2895 0.6595 0.8290 0.9175 0.9650

FM-IV 0.2825  0.6480 0.8240 0.9020 0.9435
FM-GMM 0.2840 0.6370 0.8190 0.9010 0.9410
FM-GIVE 0.2920 0.6630 0.8300 0.9140 0.9555

P(|bpmay — bl =)/ 0.9758 0.9826 0.9940 0.9831 0.9869
P(lbyy — b| sc)

0.3 b; OLS 0.1660 0.6210 0.9440 0.9965 1.0000
v 0.3510 0.8385 0.9710 0.9925 0.9975
FM-IV 0.3080 0.7750 0.9420 0.9855 0.9920
FM-GMM 0.3165 0.7895 0.9475 0.9865 0.9935
FM-GIVE 0.4555 0.9120 0.9915 0.9985 0.9995
P(lbyy —b| =c)/ 1.1396 1.0819 1.0308 1.0071 1.0055

P(|bpmy — bl = 0)

b, QLS 0.2940 0.6760 0.8515 0.9395 0.9730
v 0.2730 0.6220 0.7900 0.8780 0.9230
FM-IV 0.2750 0.6215 0.8010 0.8805 0.9210
FM-GMM 0.2655 0.6140 0.7935 0.8745 0.9210
FM-GIVE 0.2890 0.6355 0.7975 0.8845 0.9230

P(|bpmay — b = ¢)/ 1.0073 0.9992 1.0139 1.0028 0.9978
P(|b1v - b| = C)

0.7 b, OLS 0.0000 0.0000 0.0265 0.6565 0.9830
v 0.1450 0.4640 0.7310 0.8690 0.9260
FM-1V 0.1845 0.5250 0.7550 0.8680 0.9215
FM-GMM 0.1940 0.5240 0.7575 0.8700 0.9185
FM-GIVE 0.2640 0.5745 0.7105 0.7810 0.8305
P(|by — b| sc)/ 0.7859 0.8838 0.9682 1.0012 1.0049

P(|bpmav — b] = ¢)

b, QLS 0.1880 0.5535 0.7550 0.8645 0.9230
v 0.2215 0.4980 0.6530 0.7540 0.8105
FM-1V 0.3195 0.6440 0.7860 0.8505 0.8850
FM-GMM 0.3135 0.6410 0.7840 0.8470 0.8870
FM-GIVE 0.2640 0.5745 0.7105 0.7810 0.8305

Pllbesay — ] <)/ 1.4424 12932 1.2037 1.1280 1.0919
P(lby — b| =0¢)
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Table 6 reports the quantiles of the estimators when the relevance of
the instruments is low, or the instruments are “poor.” We set « = 0.5 and
KLR = 4 as in the baseline case, whereas the values for the relevance param-
eter 8 were chosen from the range [0.0,0.6]. Notice that even if 8 = 1, that
does not mean that the instruments are perfectly correlated with the regres-
sors when « > 1, and the correlation goes down as « goes up. On the other
hand, when 8 = 0, the I(0) instruments are not valid, while the I(1) instru-
ments are still valid due to the spurious correlation between nonstationary
processes (Phillips and Hansen, 1990). Therefore, for 8 = 0, only the results
for the 1(1)/1(1) models are reported. As 8 becomes smaller, the sampling
distributions of crude IV and FM-IV for the I(0) coefficients become more
dispersed but considerably less biased than OLS. Also note that the desirabil-
ity of FM-IV in the estimation of the I(1) coefficients remains even when
is low. In Figures 4b and 5a and b, again FM-IV outperforms crude IV when

3.6
32
2.8
2.4 — FM-IV
20
16T
12
0.8
0.4}

U‘92.0 -1.6 -2 =08 =-04 -00 0.4 0.8 A 1.2 1.6

density

o4}

1o n B [s)]

o
=~

0.4

Ficure 4. [(0)/I(1) model. (a) Coefficient b,, regressor 1(0), « = 0.5, 8 = 0.4. (b)
Coefficient b,, regressor I{1), o = 0.5, 8 = 0.4,
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FiGure 5. 1(1)/1(1) model. (a) Coefficient b, regressor I{1), « = 0.5, 8 = 0.4. (b)
Coefficient b,, regressor I(1), « = 0.5, 8 = 0.4.

the relevance is low and OLS beats FM-IV only occasionally. Taking the
extreme case 8 = 0, where spurious I(1) instruments are used, we find that
the interquantile range (Q 55-Q »5) of FM-IV is evidently smaller than crude
IV. However, not surprisingly, the dispersion of FM-IV (in terms of inter-
quantile ranges, MAD and RMSE) is substantially higher than that of OLS
when the instruments are spurious.

Next we turn to the efficiency issue among FM-IV, FM-GMM, and FM-
GIVE in finite samples. According to our theory, the three FM estimators
are asymptotically equivalent when applied to the I(1) coefficients. Also,
under certain conditions, FM-GIVE, FM-GMM, and FM-IV are asymptot-
ically efficient in that descending order for the I(0) coefficients, and this
efficiency ordering applies under our DGP.
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FiGure 6. 1(0)/1(1) model. (a) Coefficient b,, regressor 1(0), @ = 0.5, 8 = 0.8. (b)
Coefficient b,, regressor I(1), @ = 0.5, 3 = 0.8.

First, in returning to Table 1, we see little efficiency gain of FM-GMM
over FM-IV with respect to the 1(0) coefficients. Although sometimes we find
evidence of a slight efficiency gain (e.g., as seen in Figure 7a), generally we
do not observe any clear evidence of an efficiency gain throughout all the
simulation results reported in Tables 1-8. This observation is confirmed in
part (a) of Figures 6-10. One may suspect that this is due to the estimation
error in the metric matrix S,,. For instance, the poor initial estimates of the
residuals that are used to form the matrix might cause such a problem. To
check whether this explains the preceding result, the “pure” FM-GMM pro-
cedure, in which the true metric matrix S, was used in place of the esti-
mate S,, was applied to the 1(0)/1(0) models. Although the results are not
reported here, even in this case no clear evidence of a substantial efficiency
gain was found.
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FiGgure 7. [(0)/I(1) model. (a) Coefficient b,, regressor 1(0), « = 0.1, 3 = 0.8. (b)
Coefficient b,, regressor I(1), & = 0.1, 3 = 0.8.

On the other hand, Tables 1 and 2 also indicate that FM-GIVE clearly out-
performs FM-GMM and FM-IV with respect to the estimation of the I(0)
coefficients. The results with various « reported in Tables 3-5 provide fur-
ther evidence in favor of FM-GIVE. The reader should recall that the DGP
for the regression errors is MA(1); therefore, the parameterization of our
simulation is not directly amenable to the FM-GIVE procedure, in which AR
models are utilized. Interestingly, Figures 7a, 8a, and 9a show that the rel-
ative performance of FM-GIVE is better when feedback is lower, although
in all cases FM-GIVE outperforms FM-GMM and FM-IV. This is not sur-
prising, because the efficiency gain of FM-GIVE depends on the initial stage
estimation residuals, which are more accurate when the feedback is lower.
On the other hand, in Figures 7b and 8b, the p.d.f.’s are quite close for the
I(1) coefficients, as theory predicts.
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Figure 8. 1(0)/1(1) model. (a) Coefficient b, regressor 1(0), & = 0.3, 8 = 0.8. (b)
Coefficient by, regressor I(1), & = 0.3, 3 = 0.8.

Turning to Table 6, the good performance of FM-GIVE with respect to
the I(0) coefficients seems to remain for various 8. In fact, as Figure 10a
shows, the relative efficiency of FM-GIVE continues when the relevance of
instruments is rather low. The efficiency gain becomes a little smaller as 3
1s reduced, though, and again this is caused by the poor residual estimates ob-
tained by the initial IV regression with poor (i.e., low-relevance) instruments.

The very limited efficiency gain obtained by the use of FM-GMM might
be partly due to the fact that “nearly” nonstationary processes were used in
the experiments. Consider the 1(0)/1(0) model, where the two roots used to
generate the instrumental variables are 0.8. Given the exogeneity of {z,], S;is
the sum of E(u,u,,;)-E(z,z/y;) over —M to M, say. Because the roots in the
instruments are not unity but still rather large, the autocovariance £(z,z;, ;)
is quite smooth in /. In consequence, S, is close to E(z,z,) (times a scale fac-



1124 YUICHI KITAMURA AND PETER C.B. PHILLIPS

12

1.0 — FN=IV

-~ FM-GMM

0.8 — FM-GIVE
2 gp
@
T

0.4

0.2t

T : ===
16 -12 -08 -D4 -00 04 08 12 16 20

(a)

g

gl

51
>l
C
D 47
T

5|

ob

1»

90.4 0.4

(b)

Ficure 9. 1(0)/1(1) model. (a) Coefficient by, regressor 1(0), o = 0.7, 3 = 0.8. (b)
Coefficient b,, regressor 1(1), o = 0.7, 8 = 0.8.

tor) and, thus, FM-IV and FM-GMM are numerically close. Note that when
we have unit roots, the preceding argument shows the asymptotic equivalence
of FM-IV, FM-GMM, and FM-GIVE. This is a direct consequence of the
asymptotic OLS/GLS equivalence in nonstationary models that was shown
by Phillips and Park (1988).

In fact, as our limit theory predicts, FM-IV, FM-GMM, and FM-GIVE are
numerically very close when applied to the I(1) coefficients. This is gener-
ally true for almost all the results reported in Tables 1-8, though FM-GIVE
seems relatively sensitive to the change of parameterizations; namely, it tends
to work better for lower o and higher 3. With strong feedback or when rel-
evance is weak, FM-GIVE shows more dispersion than the other two FM
estimators for the I(1) coefficient (see Figures 9b and 10b). As in the I(0)
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(b)

FiGgure 10. 1(0)/1(1) model. (a) Coefficient b,, regressor 1(0), & = 0.5, 3 = 0.4. (b)
Coefficient b,, regressor I(1), @ = 0.5, 3 = 0.4.

case, the latter characteristics can be attributed to the fact that the perfor-
mance of the initial IV estimation is rather sensitive to the parameters («, 3).
Therefore, it may be useful to add more iterative steps to the FM-GIVE pro-
cedure described in Section 3.2; this option, however, was not pursued in the
present paper.

Finally, Table 8 gives the results with various values for KLR and («, 8) =
(0.5,0.8). In fact, the results for each estimator varied little for KLR = 2, 4,
6, 8, and 10. Thus, it seems difficult to find some decision rule for the choice
of KLR based on the Monte Carlo results reported here. In other words, the
estimation results seem rather robust to the choice of KLR, at least when the
sample size is around 100. Thus, it seems that any moderate KLR may be used
in practice.
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TaBLE 8. Concentration probabilities: (I(0)/1(1) model,
a=0.5, KLR =4)

P(lb—b| =c)

(b)) c=01 ¢=03 ¢=05 ¢=07 ¢=09
B Estimator (b,) ¢=001 ¢=003 ¢=0.05 ¢c=0.07 ¢=0.09
04 b, OLS 0.0000 0.0185 0.3345 0.8740 0.9935
v 0.1600 0.4550 0.6795 0.8055 0.8860

FM-1V 0.1575 0.4380  0.6595 0.7810  0.8560
FM-GMM 0.1605 0.4445 0.6580 0.7865  0.8580
FM-GIVE 0.1840 0.5125 0.7255 0.8485 0.9070

P(lby — bl =¢)/ 1.0159 1.0388 1.0462 1.0314 1.0350

P(lbppay — Dl = ¢)

b, OLS 0.2590  0.6375 0.8275  0.9080  0.9530

v 0.1720 0.4380 0.5975 0.7000 0.7690

FM-1V 0.1955  0.4710 0.6410 0.7325  0.7920
FM-GMM 0.1955 - 0.4750 0.6320 0.7330 0.7885
FM-GIVE 0.1955  0.4540 0.5970 0.7000 0.7570

P(lbpmay — B =¢)/ 1.1366 1.0753 1.0728 1.0464 1.0299
P(lbiy~b| =¢)

0.6 b, OLS 0.0000 0.0180 0.3410 0.8710 0.9945
v 0.1980 0.5895  0.8125 0.9135  0.9475
FM-Iv 0.2095 0.5760 0.7915  0.8930 0.9320
FM-GMM 0.1980 0.5825 0.7910 0.8990 0.9350
FM-GIVE 0.2700  0.6755  0.8820 0.9505  0.9820
P(lbyy — bl <=¢)/ 0.9451 1.0234  1.0265 1.0230 1.0166

P(|bppav — 8] = ¢)

b, OLS 0.2525  0.6320 0.8140 0.9040 0.9530
v 0.1920  0.4765 0.6320 0.7340  0.8005
FM-1v 0.2250 0.5215 0.6860 0.7745  0.8325
FM-GMM 0.2265  0.5255 0.6830 0.7790  0.8365
FM-GIVE 0.2135  0.5220 0.6590 0.7360 0.8010

P(lbpay — bl <c¢)/ 11719 1.0944  1.0854  1.0552  1.0400
P(lby — b| =)

4. CONCLUSIONS

The purpose of this paper was to investigate the practical implication of the
theory of FM-IV estimation with possibly nonstationary processes as devel-
oped by Kitamura and Phillips (1992). Although the DGP was rather sim-
ple, it still has some realistic features such as feedback from the regression
errors to the regressors and serial dependence in the regression errors. The
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two AR roots in the regressors and the instruments were set to unity or 0.8
or both, and that knowledge (about the number and location of the unit
roots) was not used in the implementation of each estimation procedure. In
addition to the preceding three FM estimators, the performance of OLS and
crude IV was also examined for comparison. The main tasks in the simula-
tion exercise were the assessment of the effectiveness of the FM procedures
and the efficiency comparison among FM-IV, FM-GMM, and FM-GIVE.

First, the quantiles, the concentration probabilities, and the p.d.f. graph-
ics seem to imply that among the OLS, crude 1V, and FM-IV estimators,
FM-1V is the most desirable choice: when applied to the I(0) coefficients,
OLS is substantially biased due to the feedback; when applied to the I(1)
coefficients, OLS is still biased and crude IV is much more dispersed than
FM-IV. For higher feedback, the relative advantage of the FM-IV over OLS
and crude IV becomes more evident. On the other hand, with poor (low-
relevance) instruments, crude IV and FM-1V applied to the I(0) coefficients
tend to have dispersed sampling distributions, although for the I(1) coeffi-
cients FM-IV shows very small bias and beats at least the crude I'V estima-
tors. Also, it should be noted that the effect of occasional outliers in the
first-stage IV regression of the feasible FM-IV can be exaggerated in the sec-
ond-stage outcome. For example, when the quality of the instruments is
extremely poor, care should be taken in the use of the FM-IV procedures.
As a result of these occasional extreme estimation errors, FM-IV has a higher
RMSE than crude IV consistently. Thus, it seems to be important to inves-
tigate some modifications of FM-IV to adjust for this tail behavior. This
could be achieved by a form of pretest estimator or decision rule, as in some
reduced form estimators in simultaneous equation models. This problem is
left to future research.

Second, some direct comparisons among the FM-IV, FM-GMM, and
FM-GIVE were made in the simulations. When applied to the I(0) coeffi-
cients, the relative efficiency of the FM-GIVE procedure over FM-IV and
FM-GMM was found to be substantial under various parameterizations. The
dominance of FM-GIVE over FM-GMM is particularly important and seems
likely to be relevant in many applications. At the same time, the performance
of the first-stage regression in the feasible procedures also seems to be impor-
tant in the performance of FM-GIVE. This suggests that iterative procedures
may be useful. Also, with respect to the estimation of 1(0) coefficients, the
efficiency gain of FM-GMM over FM-IV observed in our Monte Carlo sim-
ulations is very limited. This characteristic is persistent for almost all the
simulations. Although it would be unwise to make strong claims from the
results based on the rather simple DGP used here, the use of FM-GMM may
not yield as much of an efficiency gain as one might expect, especially when
the DGP has stationary but rather large AR roots. When applied to the I(1)
coefficients, the three estimators are generally very close even for the rather
small sample size of 100.
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Because we focused on estimation, the finite sample performance of sta-
tistical tests based on FM procedures was not analyzed in the paper. In fact,
in Kitamura and Phillips (1992), “fully modified” instrumental validity tests
were developed, and they are shown to be chi-square-distributed asymptot-
ically. Although we need to conduct more simulation studies (e.g., on the
choice of the kernels and bandwidth/truncation parameter used in the test
statistics), at the present point our preliminary simulation results suggest that
these statistics are biased toward rejection of the overidentifying restrictions.
Therefore, in addition to more extensive sampling experiments, further theo-
retical research seems to be necessary on this issue and is currently being
investigated by the authors.

NOTES

1. For the definition of these kernels, see, for example, Priestley (1981), Andrews (1991),
or Kitamura and Phillips (1992). Note that all these kernels have the same characteristic expo-
nent (Parzen, 1957). The Tukey-Hanning kernel estimator of a two-sided long-run variance
matrix may not be positive semidefinite and, thus, is less desirable in this aspect.

2. In fact, Assumption LR(b) rules out the optimal rate 7'”° in Andrews (1991).
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