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1. Introduction

Model choice, model simplification, and the determination of good models for
prediction are all important elements in practical empirical research. When time
series are nonstationary, an aspect of model choice that becomes especially
relevant is how to model the nonstationarity in the data. Moreover, in practical
research we are sometimes faced with the need to model or to predict quite
a large number of series simultaneously, as in the case of exchange rates and
financial prices. In such contexts it is valuable to have automated procedures of
model selection and adaptation that can take into account critical facets of
a series such as its nonstationarity.

The main point of ‘Bayesian Model Selection and Prediction with Empirical
Applications’ (hereafter, simply ‘Bayesian Prediction’) was to show that model
selection methods that include adapting for the form of nonstationarity can be
automated in a rather simple way. The methods given can also be used to form
forecasting models which can be evaluated by a criterion that is scientifically
related to the decision criterion used in the formation of the model (rather than
by unrelated criteria like RMSE measures), thereby making model simplifica-
tion and forecast evaluation coherent inference procedures.

The discussants have offered some thoughts on this automated process and
the criteria that I have used. [ thank them for their comments.

My thanks go to Luc Bauwens and Michel Lubrano for comments that helped improve the
presentation of this reply, to the NSF for research support under Grant No. SES 9122142, and to
Glen Ames for her skill and effort in keyboarding the manuscript.
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2. PIC, other forms of PIC, and posterior odds

Phillips and Ploberger (1994) report a Monte Carlo study that evaluates PIC,
BIC, and AIC in AR(k) + trend(p) models. They found that PIC outperformed
BIC as a model selection criterion for all but one of the parameter constellations
they considered and that study included many stationary as well as nonstation-
ary cases. Alternative treatments of initial conditions and the disturbance
variance do lead to modified PIC criteria and among these is the criterion PICF,
which is used in ‘Bayesian Prediction’ for forecast evaluation purposes. I have
tried several alternative forms of PIC in the last three years and have not found
any that are generally preferable. The discussants, particularly Jean-Frangois
Richard, point to some alternatives largely on the ideological grounds of
a ‘proper’ Bayesian treatment of variances. Quantitative evaluations are much
more likely than ideological posturing to be pervasive on this point; and,
ultimately, the proof should be in the pudding (i.e., the performance) when it
comes to criteria of this sort, especially when the criteria are asymptotically
equivalent. A brief numerical exercise is therefore called for.

To wit, consider the following alternative forms of PIC, the first of which
corresponds to PIC as it is used in ‘Bayesian Prediction”:

PIC, = dQy/dQ4(67) = c1xl Aw/6%] P exp { — (1/26%) Bi AuBi ),
PIC,(poc) = In(6%) + In(| Ax/GE])/n,

PIC,.(fic) = ss, + 62 In|A,/6¢| = FIC,

PIC(jfr) = caxl A/ 671 exp { — (1/263) Bi Ai By}

PIC,(com) = c3g| A4/671 * exp { — (1/26%) Bi AL By},

PIC,(ref) = cax| A2/ 67ep|" P exp{ — (1/267.5) Bi AL B}

In each of these expressions c;x is a constant that depends on K (the maximum
AR order) but is independent of k. Hence, this constant does not affect model
choice that is based on the minimization of the criterion. 4, = X (k) X (k) is the
regressor sample information matrix computed from all the available data for
a model with k regressors, while A7 = X (k) X (k)* is the same matrix computed
with the same sized sample for k = 0, 1, ... , K. The distinction between A, and
Ay 1s important because Ay effectively alters the point of initialization so that it is
the same for each estimated model, thereby harmonizing the information sets to
make them comparable for different values of k. The present exercise is an
opportunity for me to present some findings based on criteria that are har-
monized in this way.

The criterion PIC is constructed from the likelihood ratio of the respective
Bayes measures @F and QF conditional on the error variance estimate 6. An
obvious alternative is to use the two different estimates 6% and 67 in the
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likelihood ratio, i.e., by forming [dQ¥/dP,(62)]/[dQ%/dP,(6%)]. This has the
undesirable feature of disrupting the ‘likelihood ratio’ property of dQF/dQk =
[dQ¥/dP,]/[dQ%/dP,], which underlies the Phillips—Ploberger approach.
PIC,(jf¥) is an intermediate form between these two, using &7 in the penalty
factor |A,/6%|Y? and 6% in standardizing the exponent. It corresponds to
Richard’s PIC* in his comments.

It needs to be pointed out that Richard is wrong in his assertion that his
PIC“ < PIC. In ‘Bayesian Prediction’ ; and 67 are adjusted for degrees of
freedom so we do not necessarily have 67 = 6% when k < K. [For the same
reason, Richard is also wrong in assuming that 62(k,_,) = 62(F) later in his
comments.] The simulations reported below show that PIC( jf#) (i.e., Richard’s
PIC?) has a tendency to underestimate order in AR models slightly more than
PIC, so that if there is an effect, then PIC( jfr) tends to favor more parsimonious
models. Richard’s assertion that PIC is not transitive is also incorrect. PIC is
based on the Radon Nikodym (RN) ratio (dQ¥/dP,)/(dQ%/dP,) evaluated at
0% = 6%. We can compare models M,, and M,, using PIC by multiplying the
respective RN derivatives to give dQ% /dQ% = [(dQk:/dP,)/(dQ¥/dP,)]/[(dQk/
dP,)/(dQ%/dP,)] = [1/PIC*]/[1/PIC*] = PIC*/PIC*. Thus, if we prefer
M, to M, and M, to M, then dQk/dQk > 1, dQk/dQk > 1, and so
dQk/dQ% > 1,i.e., we prefer M, to M,,. This argument continues to hold when
we condition on ¢? = 6% (or any other value of o2 for that matter). In fact, the
transitivity that is achieved by retaining the capacity to multiply the RN
derivatives together is one of the advantages of PIC. The above argument also
explains why the results are invariant to the choice of reference measure (P,, in
the above), contrary to Richard’s conjecture in Section 5 of his comments.

Further standardization in the criteria can be achieved by using Ay, in place of
A, as suggested earlier in this section. This standardization gives us PIC(com)
and PIC(ref) which both use a common data set in the sample information
matrix. In PIC(ref) the reference measure used for constructing the error
variance estimate 2%, is based on the model chosen by PIC. Thus, PIC(ref ) is
the outcome of a two stage model selection procedure in which the first stage
(from PIC) is used to construct a common reference measure for evaluating the
alternatives in the second stage.

PIC( fic) was suggested by Wei (1992) as a ‘Fisher’ information criterion to
replace the usual BIC criterion. Its relation to PIC and the asymptotc equiva-
lence of the two procedures was discussed in Phillips and Ploberger (1994,
Remark 3.2(iii)).

PIC(poc) can be obtained from the traditional posterior odds ratio by taking
limits so that the prior densities are diffuse and by transforming to ensure scale
invariance. The limiting form of the posterior odds is

(AR (s, \M?
d OC‘<|AW(1<)1) (E) ’
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as shown in Leamer (1978, p. 111). If we transform the penalty terms in POC so
that they are scale-invariant, i.e., to | 4,(k)/é7| and | 4,(K)/é%|, then (2/n) times
the logarithm of POC is equivalent to PIC(poc). Zellner (1978) explored the
relation between posterior odds ratios and the AIC criterion. The expression
obtained by Zellner [his Eq. (12)] is equivalent to PIC(poc) as given above but
uses 6% in place of 67 to standardize A4,(k), i.e., it is closer to our PIC in that
respect.

Richard favors the posterior odds criterion POC. Interestingly, POC is not
favored by Leamer in his own discussion. POC has the problem already
mentioned that it is not scale-invariant. Also, POC is not invariant to linear
transformations of the regressors (a problem which is shared by PIC, but which
is overcome by PICF). In fact, Leamer (1978, Eq. (4.16), pp. 112-113) favors
a large sample approximation to POC that is valid for stationary systems, viz.

POC ~ cnt* ®i2(s5, [ss)2,

which is clearly equivalent to BIC. Interestingly, this derivation of BIC ap-
peared independently around the same time as Schwarz’s (1978) paper in the
Annals of Statistics and does not seem to have been remarked upon before, at
least as far as I can tell.

If, as Richard insists, the error variance (¢2) is treated in the same way as the
regression coefficients (f3), then it is easy to proceed by using the general theory
in Phillips and Ploberger (1991, 1994b). If § = (8, %) is the full parameter
vector, and [,(6) is the log-likelihood ratio In(dP%/dP?), then PIC can be
obtained from the asymptotic form

dQn/dPr(t) = exp{ln(én)}/anll/z,

(see Phillips and Ploberger, 1994, (38)) where 0, is the MLE and B, is the
conditional quadratic variation matrix of the score process /,,(0°) evaluated at
8,. For the regression model considered in ‘Bayesian Prediction’ we find

W(0) = — (1/2){In(6%) + 1 + In(2m)},
|B| = |4,/ 1(n/26%).
Then
(—2/m)In(dQ,/dQy) = In(6%) + (1/n)In| A/ 67| — In(6%)
— (I/n)In|Ag/é%] + O,(1/n),

and this leads directly to the criterion PIC,(poc) given above. Thus PIC,(poc) is
indeed the form of PIC that corresponds to a joint Bayesian treatment of the
regression coefficients and the error variance ¢*. This form has the advantage
that it is asymptotically valid even in non-Gaussian models.
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Table 1
Model selection by alternative forms of PIC in an AR(k)

% Rank in terms
AR roots correct of most
AR correct
2 /sy A3 n Method order M SD choices
BIC 26.5 235 0.597 S
PIC 314 2.42 0.630 |
PIC(poc) 25.5 2.3t 0.541 7
50 FIC 26.1 2.34 0.592 6
PIC(jfr) 30.2 2.39 0.611 3
PIC(ref) 29.9 2.38 0.593 4
PIC(com) 304 2.39 0.603 2
1 12 1/2
BIC 67.4 2.73 0.520 5
PIC 74.9 2.80 0.471 1
PIC{poc) 66.6 273 0.523 7
150 FIC 67.0 2.74 0.528 6
PIC(jfr) 74.4 2.79 0.474 2=
PIC(ref) 74.2 2,79 0475 4
PIC{com) 74.4 2.79 0.474 2=
BIC 12.4 2.163 0.461 6=
PIC 13.4 2.168 0.458 |
PIC(poc) 12.5 2.144 0.404 5
50 FIC 12.6 2.160 0.457 4
PIC{jfr) 13.0 2.162 0.451 2=
PIC(ref) 124 2,151 0.427 6=
PIC(com) 13.0 2.160 0.441 2=
1 —-172 1/4
BIC 17.3 2.192 0.421 5
PIC 22.6 2.241 0.448 1
PIC(poc) 16.8 2.183 0.409 7
150 FIC 16.9 2.189 0.423 6
PIC(jfr) 22.2 2.235 0.442 3
PIC(ref) 22.1 2.234 0.442 4
PIC{com) 223 2.236 0.443 2
BIC 81.2 1.94 0.503 5
PIC 83.6 1.95 0.477 4
PIC{poc) 81.0 1.93 0.490 6=
50 FIC 81.0 1.96 0.522 6=
PIC(jfr) 83.8 1.95 0.463 3
PiC(ref) 84.0 1.94 0.447 2
PIC(zom) 84.1 1.95 0.460 1
1 1,2 [\]
BIC 96.7 2.04 0.220 2=
PIC 96.7 2.04 0.239 2=
PIC(poc) 96.7 2.04 0.209 2=
150 FIC 96.5 2.04 0.213 7
PIC(jfr) 96.9 2.04 0.229 1=
PIC(ref) 96.9 2.04 0.229 1=
PIC(com) 96.9 2.04 0.229 1=
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Table 1 (continued)

Yo Rank in terms
AR roots correct of most
AR correct
Ay s A3 n Method order M SD choices
BIC 309 1.39 0.603 5
PIC 36.0 1.47 0.664 1
PIC(poc) 30.6 1.38 0.591 6=
50 FIC 30.6 1.40 0.621 6=
PIC(jfr) 349 1.45 0.648 4
PIC(ref) 35.8 1.45 0.645 2
PiC(com) 356 1.46 0.651 3
12 1.2 0
BIC 1.7 1.77 0.509 5
PiC 77.8 1.82 0.445 1=
PIC(poc) 71.5 1.77 0.509 6=
150 FIC 71.5 1.77 0511 6=
PIC(jfr) 717 1.81 0.444 3=
PiC(ref) 717 1.81 0.443 3=
PIC{com) 71.8 1.81 0.444 1=
BIC 5.3 1.07 0.299 6
PIC 6.0 1.08 0.315 3
PIC(poc) 5.2 1.06 0.298 7
50 FIC 5.9 1.09 0.401 4
PIC(jfr) 5.5 1.08 0.320 5
PIC(ref) 6.6 1.09 0.339 2
PIC(com) 6.7 1.09 0.362 1
1,2 —1/4 0
BIC 13.8 1.16 0.407 6=
PIC 17.3 1.20 0.434 3
PiC(poc) 13.8 1.16 0.407 6=
150 FIC 14.2 1.17 0.410 5
PIC( jfr) 17.2 1.20 0.433 4
PIC(ref) 17.7 1.20 0437 2
PiC{com) 17.9 1.20 0.438 1
BIC 93.9 1.09 0.389 6
PIC 94.0 1.08 0.363 4=
PIC(poc) 94.5 1.08 0.370 1
50 FIC 93.3 1.10 0.439 7
PIC( jfr) 94.2 1.08 0.361 3
Pi1C(ref) 94.3 1.08 0.341 2
Pi1C{com) 94.0 1.08 0.363 4=
1 0 0
BIC 95.3 1.06 0.275 6
PIC 96.2 1.05 0.305 4
PIC(poc) 95.6 1.05 0.244 5
150 FIC 95.0 1.07 0.328 7
PIC(jfr) 96.3 1.05 0.299 1=
PIC(ref) 96.3 1.05 0.285 1=
PI1C(com) 96.3 1.05 0.299 1=
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Let us now see how well all these criteria fare in simple autoregressive order
selection. A small-scale Monte Carlo experiment was run to compare these
criteria for a variety of parameter constellations in an AR (k°), where the true lag
is in the range 1 < k® < 3. The experiment involved 1000 replications, two
sample sizes (n = 50, 150), and seventeen different parameter settings. The
parameters chosen (here the autoregressive roots) covered a wide range of
stationary and nonstationary (unit root) cases. Table 1 reports a selection of the
results obtained. (A detailed set of results for all the parameter settings was
reported in the original version of this reply and is available on request.)

For almost all of the experiments the two criteria PIC and PIC(com) are al or
close to the top rank in terms of the highest number of correct model choices.
PIC(ref) also performs well, followed closely by PIC( jfr). BIC and FIC are next
in overall accuracy. The posterior odds form PIC(poc) is certainly the worst
performer in terms of correct model choices. For the smaller sample size n = 50,
all of the criteria tend to favor parsimonious models (as is to be expected).

One disadvantage of PIC that comes out of these experiments is that it tends
to have a slightly higher variance (see the column headed SD in Table 1) than the
other criteria, i.e., PIC tends to lead to a greater spread of model choices across
replications. Note that PIC(poc) tends to have the smallest variation and is
therefore more concentrated in terms of model choices. PIC(com) is generally
more concentrated than PIC and also has the highest number of correct model
choices more often than PIC.

Table 2 gives the overall ranking of the procedures in terms of the highest
number of correct choices across all the experiments. The ordering is the same
by median or by mean: PIC(com) first, PIC second, followed by PIC(ref),
PIC(jf¥), BIC, and FIC in that order, with PIC(poc) last.

Figs. 1(a) to 1(g) show the distribution of ranks (determined by the highest
number of correct model choices for a particular parameterization) across the
34 different parameter configurations. These figures show that PIC(com) not
only has the highest number of first ranks, but also has the least rank dispersion
of all of the procedures.

Table 2
Overall rank across all experiments

Median rank Mean rank SD rank
BIC 5.0 5.06 1413
PIC 20 2.44 1.501
PIC(poc) 6.5 5.79 1.838
FiC 6.0 5.47 1.186
PIC(ifr) 3.0 3.05 1.099
PIC(ref) 2.0 2.64 1.276

PI1C(com) 1.0 1.76 1.046
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In sum, this experiment in AR order selection suggests that PIC and
PIC(com) perform very well relative to the other criteria and seem to be the
preferred methods overall. In particular, both these criteria dominate those put
forward on ideological grounds by Richard, whose preferred POC-based version
of PIC is probably the worst performer overall. One interesting finding is that
harmonizing the information sets through the use of Aj; as in the criterion
PIC(com) leads to improvements in the performance of PIC, giving greater
concentration and more correct model choices in many of the experiments.

It would be worthwhile to extend these experiments to non-Gaussian and
nonlinear models, where PIC(poc) may be expected to fare better, for the reason
indicated earlier. It would also be useful to perform experiments to evaluate
forecast performance under various automated modeling methods that include
the PIC procedures considered here. Such a study would necessarily be exten-
sive but it would help to address the important question raised by Franz Palm
about rating model selection methods in forecasting.

3. Prior distributions and ‘nonsense’ Bayes factors

Selecting priors for the parameters is.especially complex in time series models
and raises many issues that have recently been discussed elsewhere (see Phillips,
1991, and the themed issue of the Journal of Applied Econometrics, Octo-
ber—December 1991). One feature of the uniform prior that is attractive in the
present context (i.e., from the perspective of Bayesian prediction) is that the
resulting Bayes model is identical to the classical prediction model and can
therefore be justified by classical as well as Bayesian arguments. Moreover, and
again from this perspective, the Bayes model has no influential prior information
embodied in it, as it would for example under a proper prior on the parameters.
The focus here and in ‘Bayesian Prediction’ is on the data density and prediction
not the posterior distribution of . (The latter inherits the sampling character-
istics of the maximum likelihood estimate f and any of the undesirable features
it may possess in time series regression in finite samples.) This is not to say that
alternative priors for f should not be used, but these inevitably involve sub-
jective elements and are much more difficult to set up and justify in large-scale
automated prediction exercises of the type with which ‘Bayesian Prediction’ is
concerned. When there is a choice, my preference is to work with procedures
that can be justified by both Bayesian and classical arguments, and the auto-
mated procedures of ‘Bayesian Prediction’ are just of this type.

Some years ago Lindley (1957) and Jeffreys (1961) drew attention to the
arbitrariness of the concept of Bayes factors under noninformative prior distri-
butions. Some subsequent authors, such DeGroot (1982), have used this argument
to dismiss the use of improper priors in Bayesian hypothesis testing. The latter
point of view now seems to be an orthodoxy amongst Bayesian econometricians
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many of whom, like Richard, regard the use of improper priors in Bayesian tests
as leading inevitably to ‘nonsensical results’. In my view, this orthodoxy
is needlessly dismissive. Moreover, it fails to take account of recent research
that seeks to validate Bayesian testing under these (or related) conditions.
For example, Robert (1993) and Aitkin (1990) have reexamined the so-called
‘Lindley paradox’ and proposed alternative techniques for removing the arbi-
trariness of Bayes factors under improper priors. In particular, Robert shows
that there is a noninformative Bayesian answer that is equivalent to that of the
classical p-value in the Lindley (1957) example. Further, in my joint research
with Werner Ploberger (1991, 1994b) we have shown that our PIC criterion
applies for all continuous priors asymptotically (in fact, both proper and
improper priors lead to the same answer). Moreover, il one wants to be
completely independent of the prior in hypothesis testing, then that too is
possible: one can give up some sample data and use the corresponding condi-
tional value of PIC that I called PICF in ‘Bayesian Prediction’. In large samples,
PICF has no arbitrary components. 1t applies for all continuous prior distribu-
tions and yet is independent of them. From this perspective PICF resolves the
problems associated with the ‘Lindley paradox’ and ‘nonsense’ Bayes factors
under improper priors. Furthermore, the formula for PIC given in Phillips and
Ploberger (1994b) makes it easy to construct PICF for quite general likelihood
functions and priors and, incidently, to treat regression parameters and nuisance
parameters in the same ‘Bayesian’ way if that is deemed desirable. Thus, the
prescription for PICF that is favored by Richard in the paragraph following his
Eq. (2) is already available from our existing work and in a much more general
setting than he seems to realize. But there is a price to pay for this generality and
the nice invariance properties of PICF: the theory is asymptotic and one must
give up some sample data to use PICF. If one wants to use all of the data in the
sample, then one has to be prepared to set down a value for the prior density
under the null hypothesis. The criterion PIC uses the setting (0°) = (2r) %2
when 0 € R¥, corresponding to the ‘canonical’ prior 7(8) = N(0, I ) — see Phillips
and Ploberger (1994b) for further discussion. As the simulations of the preceding
section indicate, with this choice the criterion PIC seems to work well in practice
in the context of problems for which it was designed.

4. Integrating out o?

Setting priors for nuisance parameters is generally more difficult than it is for
regression coefficients and the difficulty becomes more severe as the dimension
of the nuisance parameter space increases. In some time series regression models
we even wish to treat the nuisance parameter space as infinite-dimensional.
Bayesian hyperparameter/hierarchical models can be used to deal with these
problems. An alternative is to proceed conditional on the nuisance parameters
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and then employ consistent estiamtes of them that are obtained by classical
methods. That, at least, is the rationale behind the methods used in ‘Bayesian
Prediction”. Note that this ‘classical plug in’ method produces PIC and
PIC(com) and these procedures do seem to work well in comparison with more
conventional posterior odds criteria that rely on averaging up over o2 (cf. the
poor performance of of PIC(poc) in the experiments of Section 2). The proof
here is again in the pudding.

If we insist on averaging over o2, the resulting Bayes models are not all that
different. Take the case where we set a Jeffreys prior ( oc 1/g) for a. Then we get
the model (cf. Zellner, 1971, Sec. 3.2.4):

yt'_‘g;flxr'i'vn [>ks
where

Vv

y—2

Ev|#.-1) =0, E("'rzlyrl)z( )52{1 + x;. 1Ar711xr}a

=t —1—k,
ST =M (Y,oy = X BoV (Yo — X2y By,

and Y,_,, X, ., are observation matrices of the data to time period t — 1. The
distribution of the error v, in this model is t, conditional on &,_;. Thus, this
Bayes model is asymptotically equivalent to the one used in ‘Bayesian Predic-
tion’. It can be used in the same way for forecast evaluations as PICF, with some
obvious changes to the formula. Perhaps the most important difference is that
the error variance estimate 52 becomes model dependent (rather like the cri-
terion PIC(K/k) = [dQ¥/dP,(6%)]/[dQ%/dP,(62)], mentioned in Section 2,
which loses the nice multiplicative feature of RN derivatives). My experience is
that such criteria do not work as well as other forms of PIC. [For instance,
although the results were not reported above, PIC(K/k) performed worse than
PIC(poc) in the experiments of Section 2, and has a greater tendency to
overestimate the order of a model than the other forms of PIC.]

5. Evolving format models, asymptotics, and estimation of ¢*

The evolving format models in ‘Bayesian Prediction’ are models ‘PIC’d by
the data on a period-by-period basis as we evolve through the sample. There are
certainly many alternatives. For instance, we can formulate explicit models of
change that have regime shifts or parametric mechanisms of evolution. These
could be treated in a similar way to the evolving format models of ‘Bayesian
Prediction’. Indeed, model selection criteria like BIC have been successfully used
to detect structural change.
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However, the modelling paradigm and the nature of the asymptotics are
different in an important way. In regime shift asymptotics, one looks at the given
sample with the shift in regime as a sample of an infinite trajectory with one
fraction before the shift and one fraction after. That is, the given sample with one
regime shift is nothing other than a bird’s eye view of the infinite trajectory with
one regime shift. This is a convenient piece of asymptotic fiction.

Our evolving format models do not rely on this type of asymptotics. Instead
they proceed conditional on given data up to a certain point in the trajectory
and use this fraction of the given sample to produce the best estimate of the
location of the data to come. In other words the Bayes model that is implied by
the conditioning is a location model determined from the given trajectory (just
like y, = u + &,, where all of the dynamics are built into the location y and the
conditional error variance of ¢, ie, u and and the error variance o7 are
data-determined). Furthermore, the asymptotic theory for evolving ‘location
models’ is different because the probability space (2, #, P) say, is effectively
replicated NV times, once for each location model conditional on the given
data to that point in the trajectory, ie, &#,. With this framework it is quite
sensible to condition on ¢ and a maximum likelithood estimate of ¢* that can
be justified within a fully replicated but suitably conditioned sequence of
probability spaces.

6. Model complexity and nonnested cases

The methods used in ‘Bayesian Prediction’ were developed for nested sc-
quence of AR (k) + trend(p) models. Much recent discussion of unit roots versus
deterministic trends has been conducted within the framework of this model
class and ‘fixed models’ like the ‘AR(3) + trend(1)’ model have been a popular
choice in empirical work. It was therefore of some interest to consider auto-
mated model choice and forecast comparisons in this context. Vector models
and nonnested models do raise additional issues of model complexity. In vector
ARMA models a theory of minimal dimension involving the Kronecker indices
and the MacMillan degree is now quite well developed. But model simplification
searches are much more difficult and computer-intensive in vector ARMA
models. Some preliminary multivariate investigations of this type are reported
in an empirical paper by the author (1992) that considers VAR models with
co-motion and reduced rank.

The evaluation of nonnested models is also more difficult, as indeed it is in the
classical setting. One way of proceeding that opens up nonnested models to
comparisons using PIC is to employ the artificial augmented regression
to estimate the error variance and then set up the Bayes measures for each
model conditional on this estimate of ¢2. Model comparisons can then be
conducted just as with nested models using PIC. The generality of PIC is simply
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a consequence of its being the RN derivative of the probability measures
(specifically the Bayesian data measure) of the two models — the fact that the
models are nonnested does not make a differennce here.

7. Encompassing

When an evolving-format model is favored over a fixed-format model by
PICF computed for a certain forecast period, then the probability density of the
evolving-format model dominates that of the fixed-format model over this
forecast period. We can interpret this as a Bayes likelihood ratio test. The two
models are compared in terms of their respective Bayes densities using the
realized values of the data, and the Bayes model with the higher density (greater
likelihood) over the forecast period is favored by the test. This outcome can
occur even though the forecasts of the favored model are not actually superior,
provided they are good enough relative to those of the rival model, because the
rival model may be penalized (in terms of its forecast error conditional variance)
for having a greater number of variables and parameters. In this context,
selecting a model with a unit root in some periods may turn out to be
advantageous because it economizes on parameters and the conditional vari-
ance of the forecast error is adjusted accordingly. Thus, an evolving format
model may ‘explain’ the location of the dependent variable on a period-by-
period basis over the forecast horizon almost as well or even better than a fixed
model but may do so with less conditional variation about its location and is
therefore preferred (or, if you like, seen ‘to improve upon’) to the fixed model in
terms of its forecasting capability over the given horizon.

Note that in such exercises, it may well transpire that the evolving format
‘PIC’ed model does not do as well in forecasting as a rival model in the ex post
PICF forecast evolution, even though the model itself was chosen by the related
criterion PIC. This is because PIC is evaluated over the full sample trajectory
(Le, 1,2, ...,t) in choosing the evolving-format model (one can, but I will not
here, discuss data discarding strategies also), whereas the forecast capability
evaluation by PICF is conducted over the forecast horizon (viz., t 2 n + 1). This
was clearly stated in ‘Bayesian Prediction’ and emphasized in the notation — see
Eq. (13) of the paper in particular. Thus, the ‘paradox’ construed by Richard
about PIC and PICF (his FET ) is a ‘windmill’ that seems to have arisen from
a misreading of the criteria.

Furthermore, and this bears directly on the interpretation of the nomencla-
ture ‘encompassing’ that is used by Richard, it is indeed possible that one model
(like an evolving-format model) and a rival (like a fixed model) can be seen to
fail. Take the empirical case of stock prices (series 14) studied in ‘Bayesian
Prediction’”. PIC selects an evolving format AR (k) model with k=1 or 2 and
a unit root with no intercept or trend, thereby ‘rejecting’ the fixed format
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AR(3) + trend(1) model. However, the forecast evaluation by PICF gives
PICF < 1 uniformly over the forecast horizon, thereby ‘rejecting’ the chosen
evolving-format model. Thus, both models may be interpreted to fail by the
criteria given, just as in traditional nonnested tests. In the present case, the
empirical analysis gives insight into periods where a linear trend works better
than a unit root in forecasting even though a model with a unit root is selected as
the preferrred model.

By using the word ‘encompassing’ I appear to have trodden on a sacred turf
which its apostles like to guard with vigilance. A full discussion would be
desirable, but space limitations constrain me to the following brief remarks.
Encompassing tests of the type described by Richard are based on the old idea
(presented in the Cox, 1961, nonnested testing procedures) of analyzing the
behavior of a sample statistic for one model under the hypothesis that another
model is valid and vice versa. Note the operative use of ‘valid’ model here — the
process is based on the presupposition that there is a holy grail to be found, i.e.,
a model to be validated. When followers of this approach are pushed on this
point, we see repeated qualifiers of the type evident in Richard’s text, e.g., ‘decent
approximation’, for the time being’, etc. These qualifiers are important, of
course, but are left imprecise in Richard’s remarks and in the ‘encompassing
approach’ in general. However, they turn out to be vital judgmental elements in
the practical implementation of this approach to modeling and are inevitably
a barrier to its adoption by others. (Contrast VAR modeling approaches which
involve fewer judgemental elements, and little difficulty over specification
searches, but which are now in widespread use.) Judgmental qualifiers of the
type just mentioned actually lend support to the alternative approach of
‘Bayesian Prediction’, because the probability space underpinnings are more
flexible and the approach has automated search procedures which produce
‘decent approximations’ in the given model class precisely ‘for the time being’!

As argued earlier, the model (3) and (4) is a location model that is implied by
the Bayes procedure and Bayes’ use of the likelihood principle. These location
models write history in different ways. They are defined on a sequence of
probability spaces in which the realized sample trajectory and the accompany-
ing filtration play key roles — the mean location function is a function of the past
history which changes as we evolve through the sample. One model’s Bayes
mean locator is going to be different from another even for the same data set.
These models explain the past and predict the future differently and by their
nature constitute different approximations to what has passed and what is to
come. Because the sample space is replicated N times, there need not be a true
DGP of the type that the ‘encompassers’ search for, only recorded data and
different ways of representing and using it to model the future. To wit, there
is a new probability space with each new observation and only the recorded
past remains sacred. ‘PICed modeling fits in with this framework and is
formalized probabilistically with forward looking Bayes measures on sequences
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of replicated spaces with appropriate event algebras that preserve the past
history. This process has the realism that it accepts the data as given as we move
through the sample and that the probability space and the chosen models evolve
with it to encompass (if I may use this holy vocabulary in its original meaning)
the new outcomes.
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