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Abstract

This paper builds on some recent work by thc author and Werner Ploberger
(1991,1994) on the development of ‘Bayes models’ for time series and on the authors’
model selection criterion ‘PIC". The PIC criterion is used in this paper to determine the
lag order, the trend degree, and the presence or absence of a unit root in an autoregres-
sion with deterministic trend. A new forecast-encompassing test for Bayes models is
developed which allows one Bayes model to be compared with another on the basis
of their respective forecasting performance. The paper reports an extended empirical
application of the methodology to the Nelson- Plosser (1982) and Schotman -van Dijk
(1991) data. It is shown that parsimonious evolving-format Baycs models forecast-
encompass fixed Bayes models of the ‘AR(3) + linear trend’ variety for most of these
series. In some cases, the forecast performance of the parsimonious Bayes models is
substantially superior. The results cast some doubts on the value of working with fixed-
format time series models in empirical research and demonstrate the practical advantages
of evolving-format models. The paper makes a new suggestion for modelling interest
rates in terms of reciprocals of levels rather than levels (which display more volatility) and
shows that the best data-determined model for this transformed series is a martingale.
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1. Introduction

A feature of the Bayesian approach to inference that is especially important in
time series applications is that the analysis is conducted conditional on the
realized history of the series. In two earlier papers (1991, 1994) the author and
Werner Ploberger have studied the implications of this data conditioning and
have shown that its mathematical effect is to translate the underlying reference
model to a ‘Bayes model’ whose parameters are time-varying and data-depen-
dent and whose error process is conditionally heterogeneous. This Bayes model
is in fact just a location model, where the systematic part of the model is
time-varying and give the current best estimate (using prior information and the
available data) of the location of the dependent variable in the next period.
Associated with this Bayes mode] is a o-finite measure. The Phillips—Ploberger
(1994) paper shows how to use this measure to construct a likelihood ratio
posterior odds criterion for evaluating one model against another. The resulting
statistic is a new model selection criterion, ‘PIC’ (posterior information cri-
terion). which can be used to compare models and to test hypotheses (like the
presence of a unit root).

The purpose of the present paper is to show that the PIC criterion can also be
used to compare models on the basis of their respective forecasting performance.
We give a version of the PIC criterion, PICF, that is a forecast-encompassing
test of one Bayes model against another. This test determines whether one
model dominates another in terms of the respective likelihood ratio over the
forecast period conditional on the sample trajectory. We interpret this domi-
nance as a form of ‘encompassing’ wherein a more parsimonious model can
explain or improve on the forecast performance of a less restricted model. In this
sense, the test is a Bayesian alternative to classical forecast encompassing tests
- see Chong and Hendry (1986) in particular. There is a corresponding concept
of sample-data-encompassing when there is likelihood ratio dominance of one
model over another in terms of their respective sample data densities.

Our methodology, however, is rather different from the usual Bayesian and
classical approaches. We use the PIC criterion to select what the data support as
the best Bayes model period by period, and this automated decision involves
selecting the form of nonstationarity in the model. As new data arrive, we allow
the model itself to evolve. Not only are the parameters updated as the new data
arrive, but also the form of the model itself may change within a given class of
models with the learning process. For instance, whereas a model with a unit root
and no deterministic trend may be selected in one period, in future periods we
may find a model with a linear trend or a mildly explosive autoregressive
coefficient favored over the unit root specification. In our methodology, there-
fore, the Bayes mode] itself is part of the learning process, and our forecast
encompassing test allows us to compare such a sequence of Bayes models
against corresponding models of fixed format in which the parameters are
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updated but the model format is not. The test enables us to determine empiric-
ally whether parsimonious models of possibly evolving format can outperform
fixed format models. The advantage of our criterion is that in making such
model comparisons there is a built-in penalty for employing more parameters in
making a forecast.

These ideas and our model selection methodology are implemented empiric-
ally with the historical time series for the USA used by Nelson and Plosser
(1982) and Schotman and van Dijk (1991). Bayes models are constructed and
estimated with the data up to 1969. These models are then allowed to evolve as
data over the period 1970-1988 accumulate. The form of the evolving model is
monitored and its forecasting performance is tracked against that of a model of
fixed format. Encompassing tests are then constructed to determine whether the
evolving model outperforms the fixed model in terms of its forecasting perfor-
mance. The empirical results are striking. For all but four of the series (industrial
production, employment, consumer prices, and stock prices) it is possible to
encompass the forecasts of a fixed format ‘AR(3) + linear trend’ model using
a highly parsimonious, evolving model that often has only one fitted parameter.

2. Model selection by PIC

The model framework of this paper is the same as that in Phillips and
Ploberger (1994). The set-up is the linear regression

yt=ﬁ,xl+b‘t: t=1:27"'9 (1)

whose dependent variable y, and error &, are real-valued stochastic processes
on a probability space (Q,#,P). Accompanying y, is a filtration
F,cF (=012, ..)to which both y, and ¢, are adapted. The regressors
X, (kx1) in (1) are defined on the same space and are assumed to have the
property that x, is #,_; measurable. The errors & satisfy E(g|#,-,) =0, so
that the conditional mean function in (1) is correctly specified.

A general example of (1) is the ‘ARMA(p, q) + trend(r} model, which is
convenient to write in difference format as

i=

p-1 q r
Ay, = hy, 1 + Z 04y —; + Zl//jgt—j+ Z Opt™ + &, (2)
i=1 j=1 m=0
Here, there are k =p 4+ g+ r + 1 parameters. In this case some of the re-
gressors, viz. the ¢,_;, are not directly observable. The difficulty can be accom-
modated by means of recursive techniques, such as the Hannan—Rissanen (1982)
algorithm, which permit the use of estimates of the ¢, ; from a preliminary long
autoregression. This method was implemented in the present context in the
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Phillips-Ploberger (1994) paper, to which the reader is referred for a full
description of the algorithm.

When g = 0 in (2), the model is an AR(p) + trend (r) . When h = 0, the model
has one autoregressive unit root. When r = — 1, there is no intercept in the
model; when r = 0, there is an intercept; and when r = 1, there is a linear trend.
These are the main specializations of (2) that are of interest in empirical
applications.

The theory of Phillips and Ploberger (1994) is developed for the model (1) with
Gaussian errors & = iid N(0, ¢?). The treatment of the nuisance parameter a* is
classical. In particular, our model selection criterion PIC is developed condi-
tional on o2, and then for practical implementation ¢ is replaced by its least
squares (or maximum likelihood) estimate from the most complex model in the
class under considerations. We recognize that not all Bayesians are comfortable
with this approach. A traditional approach would require the specification of
a prior for a* and subsequent integration over its domain of definition. Min and
Zellner (1992) employ such an approach and demonstrate its usefulness in
forecasting international growth rates. We employ a classical treatment of
nuisance parameters like ¢ % because it frees us from the need to specify priors on
nuisance parameter spaces (where little, if anything, is known a priori), because it
can be formally justified by asymptotic theory, and because it leads to a resulting
test criterion that has both classical and Bayesian justifications.

Phillips and Ploberger show that there is a ‘Bayes model’ corresponding to
the ‘classical’ parametric model (1). [Here we use the term ‘classical’ to signify
that in (1) there is a ‘true value’ of the parameter f under which ¢ has the
properties ascribed to it.] We use the regression notation y, = [y, ..., Yul,
X,=1[xy ..., x,], and set 4, = X,X,. Then, the Bayes model corresponding
to (1) has the form

= B;—lxr + v where W | ‘g/'—t—l = N(Oafz): (3)
with

ﬁ=62{1 +X;At_~lixr}s (4)
and where f,_, = (X, X,_:) 'X,_,Y,_; is the least squares estimate of

f based on information in & ,—,.

The Phillips—Ploberger analysis shows that under a uniform prior on § and
a Gaussian likelihood for Y, the passage via Bayes rule to the posterior density
of f implies the replacement of the model (1) by the time-varying or data-
dependent parameter model (3). That is, the appropriate reference frame for
a Bayesian analysis under a uniform prior on f is the model (3), thereby
justifying the terminology Bayes model. In the earlier paper we interpreted (3) as
a Jocation model where y,,_ 1= E(n|#,_,) = B',_ x, is the best estimate of the
location of y, given information in #,_,. This location estimate is identical to
the maximum likelihood estimate of the best predictor of the next-period
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observation, i.e., it is precisely the predictor we would use in classical inference.
From this perspective and as far as the model that is actually used to make
predictions is concerned, there is no practical difference between the Bayesian
and classical approaches.

The probability measure associated with the Bayes model (3) is a forward-
looking measure that can be described by the conditional density of y, given
F._,. This density is given by

dQ,/dQ,_, = pdf(y,|# ;)
= Q2nf))” "2 exp{ — (1/2f;)v?}
=N@O,f), t=k+1,k+2 .., (5)

and it is defined as soon as there are enough observations in a trajectory to
estimate the k-vector 5. Thus, (3) and (5) are defined for t = k + 1. The measure
Q, that appears in (5) is the Bayes model measure, i.e., the measure correspond-
ing to the Bayes model (3). This measure is o-finite and, as shown in
Phillips—Ploberger (1994), can also be defined in terms of the following
Radon Nikodym (RN) derivative

dQ/dP, = [(1/0*) Al exp {(1/26%) B A, .}, (6)

which is taken with respect to the reference measure P, for the model (1) in which
B = 0 (i.e., the probability measure of the N(0, ¢°1,) distribution). If the prior on
 were proper, then Q, would be a proper probability measure. However, there is
an advantage in automated model selection to use the present framework of an
improper prior on f. The use of proper priors requires discretionary interven-
tion and leads to results which, unlike ours, are not directly justified by the
classical (as well as the Bayesian) forecasting paradigm.

Once the measure Q, is defined, either directly as in (6) or recursively as in (5),
the measure can be used to compare models and test hypotheses. The mecha-
nism is simply the likelihood ratio of the respective measures of the two
competing models. Thus, if Q% is the measure of a Bayes model such as (3) with
k parameters and n observations and Q) is the corresponding measure of
a model in the same class but with K parameters, then we compare the models
using the RN derivative

dQ:/dQy = (dQ}/dP,)/(dQx /dP,)
= (1/o) A, (k)72 |(1/0%) A4 (K)| V2

x exp {(1/20%) [Ba(k) Au(k) B(K) — Bu(KY A(K)B.(K)T}. (7)
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This likelihood ratio measures the support in the data for the more restrictive
model (with k parameters):

H(er;) Ynt1 = ﬁn(k),xnle(k) + Vn+1(k),
against the more complex model (with K parameters):
H(Qr[x() Yne1 = BH(K)/thLi(K) + vn+1(K)ﬂ

When we assign equal prior odds to the two competing models, our decision
criterion is to accept H(Q¥) in favor of H(Q¥) when dQ%/dQF > 1. For different
prior odds (or asymmetric loss functions for incorrect choices) the PIC ratio
would incorporate a factor that differs from unity. Since our approach involves
improper priors and automated decision making on model form, we work with
a criterion that is based on equal prior odds. The test based on dQ¥/dQ¥ > 1 is,
in fact, a Bayesian likelihood ratio test and is discussed in Phillips and Ploberger
(1994) where it was derived for a simpler class of model. As we will see from the
alternative form (10) given below, the criterion is, in fact, a method of order
selection that compares the posterior predictive densities of the two competing
models.

The model selection criterion suggested in Phillips and Ploberger (1994) is
based on (7) and uses the more complex model with K regressors to estimate g2,
Let 6% be the maximum likelihood estimate of o2 from this model. Then the
order estimator satisfies

k = argmin PIC,, (8)
k
where
PIC, = (dQ}/dQ5) (6%). 9

Observe that k maximizes 1/PIC, = dQ%/dQ¥(6%) and thereby selects the model
most favored over H(QX) according to the predictive density. It is shown in
Phillips and Ploberger (1994) that in stationary AR models PIC is asymp-
totically equivalent to the Schwarz (1978) BIC criterion. In nonstationary
models PIC involves a heavier penalty term than BIC as n — co.

An alternative way of writing the PIC criterion (9) that is equivalent up to
mitialization is to use the predictive densities implied directly by the competing
Bayes models, i.e, H(Q%) and H(QX). If we compare the densities for these
models over the same subsample of data, say n > K, we have

PICF, = dQ;/dQy (50) F x

= [T (7o exp{ > DK 2f —~ x'z(k)2/2f§‘]}, (10)
K+1

K+1
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where

FE= 6000+ x (kY A, 1 (k)™ xi (),
f"‘ = 6%(1 + x,(K)' A, (K)” 'x,(K)),
~B\,A1 kY x,(k),

vi(K) =y, — B (K)x,(K),

and of is the least squares estimate of the error variance in the more complex
model H(Q}). This predictive form PICF of the PIC criterion will be especially
useful in the development of the forecast-encompassing test in the next section.

As it stands, (9) may already be interpreted as a form of encompassing test
statistic. For, if dQ%/dQ¥(6%) > 1, the evidence in the sample suggests that the
density for the model with k parameters exceeds the density of the model with
K parameters when both are evaluated at the sample data. This is equivalent to
saying that the model with k parameters dominates the model with K param-
eters in terms of their respective probability densities. This can be interpreted as
probability-density-encompassing of one model by another.

An alternative Bayesian approach to the encompassing principle has recently
been developed in a series of works by Florens (1990), Florens and Mouchart
(1989), Florens, Mouchart, and Rolin (1990), and Florens, Mouchart, and
Larribeau-Nori (1992). In this work the distance between the respective poste-
rior or predictive distributions of interest in two competing models is measured
by the Kullback—Leibler divergence of the two densities. Critical values of the
divergence statistic are computed by simulation and parameter- or predictive-
encompassing is supported by the data when the observed divergence is smaller
than the critical value. This procedure may be regarded as an encompassing test,
whereby the posterior or predictive distribution under one model is ‘explained’
or ‘encompassed’ by that of another model if the Kullback—Leibler divergence is
small. (The posterior-encompassing test procedure is complicated in practice by
the fact that the parameter of interest may not occur naturally in one of the
models and must then be replaced by a Bayesian pseudo-true value) This
alternative Bayesian approach to the concept of encompassing is obviously of
interest. Like our approach it keeps sample space considerations alive beyond
the computation of the likelihood. Beyond this, our approaches are quite
different in terms of the measures employed (viz., the Kullback-Leibler diver-
gence as compared with our RN derivative of the respective Bayes measures)
and in the use of data conditioning (which in our case frees us from the need to
work with proper prior distributions). As emphasized above, our own approach
is justified as a likelihood ratio of the data densities for two competing models.
We get likelihood ratio dominance of H(Q%) over H(Q¥) when dQ%/dQX > 1 and
we call this data density (or sample data) encompassing of H(Q¥) over H(QX).
This principle extends easily to forecast evaluation.
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3. A Bayes model forecast-encompassing test

An important element in evaluating any econometric model’s performance is
its forecasting capability. Many procedures are now available, and the literature
on the subject is diverse. An approach to this subject that is closest conceptually,
at least, to our own is due to Chong and Hendry (1986). These authors critiqued
some of the more traditional methods of evaluation, such as those based on
a model’s dynamic simulation tracking performance and its historical record of
forecast accuracy. In place of these measures, Chong and Hendry suggested the
use of a simple t-test of forecast-encompassing to determine whether one
model’s forecasts can encompass those of rival model. The test is mounted as
a regression (-test on the coeflicient in the regression of the forecast errors from
a base model on the forecasts of the rival model. When the test is insignificant,
the base model’s forecasts are said to encompass those of the rival model. The
test is justified asymptotically and requires only the forecasts from the compet-
ing models together with the ex post sample data. One aspect of this test that is
important in nonstationary data applications and that has not been noticed is
that the regression t-test is susceptible to spurious regression behavior of the
form characterized in Phillips (1986) and Durlauf and Phillips (1988), viz. the
t-statistic can diverge (giving statistical significance with probability that ap-
proaches one asymptotically) even though there is encompassing. Thus, the
regression t-test can fail to detect encompassing even when it is present for
nonstationary data — see Phillips (1994) for further details on this point.

Our own approach is to assess the forecasting capability of rival models in
terms of the model selection criterion PIC. In such an exercise the predictive
form of the criterion, PICF, given in (10} is ideally suited. Let us suppose that we
wish to compare the models H(Q¥) and H(QX) in terms of their respective
performance in one-period-ahead forecasts over the period t=n+1, ..., N.
Our Bayes model forecast-encompassing test statistic would be

N

dh/dORE(K)Y) = ] <gf(/gi‘>”2e><p{—(1/2&3(K)gf)vz(k)2

t=n+1

+ (1/263(1()95()%(102}, (11)

where the notation follows that in (10) except that g* =1 + x,(k) A, (k) !
xx,(k) and 02(K) = (Y, = X(K)B,—1(K)(Y, — X,(K)B,—1(K))/(t — K) is the
least squares estimate of the error variance ¢ in the model H(QF).

More generally, we want the Bayes model to evolve as we accumulate more
observations. Thus, over the forecast horizont =n + 1, ..., N we want to allow
the new data to assist in selecting the most appropriate model. This can be
achieved quite simply by using the PIC criterion to select the best Bayes model
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period by period. Let
PIC(2) = dQ /dQ1(37 (K)),

and for each period r = n, ..., N — 1 choose the model according to the rule
k, = argmin PIC,(t), (12)

and use the PIC criterion to determine whether or not the mode] has a unit root.
The model H(Q{ ') is then based on lag length selection and unit root deter-
mination. The model can subsequently be used to generate the forecast for the
next time period. )

Suppose we wish to compare the evolving model sequence H(QF ') with
a sequence of models H(QF) with a fixed number of parameters (F). We can
make the comparison on the basis of the respective one-period-ahead forecast-
ing performance of the two models over the period t =n + 1, ..., N. The test
statistic that compares the forecast performance of the models is

N R 172 R R
doR/doy@E* k) = [] <gf/gf") eXP{—<1/26f(kt—1)gi" )

t=n+1
vk 1)? + (1/26,2([51_1)9.”‘)\',(F)2}, (13)

where we use QF in place of Q’,f for ease of notation. On the basis of their
one-period-ahead forecasting performance over t =n+1, ..., N, we would
favor the sequence of Bayes models {H(Q¥-)}X,, over the sequence of fixed
format models {H(Q!)}Y,, if

dQy/d k(5> (k) > 1. (14)
We call this test a Bayes model forecast encompassing test. If (14) holds, we
conclude that the sequence H(Q; ') generates forecasts over t =n+1, ..., N

that encompass the forecasts of the fixed format sequence of models H(Q!) in the
sense that the data density of H(Q?) dominates that of H(QF) over the forecast
horizont=n+1, ..., N.

Note that in (13) and (14) we use 32(k,_ ;) to estimate the error variance. This
is because k, _ , is consistent for k, and hence o2 (k,_, ) is consistent for 62 in both
models when (1) is the actual generating mechanism. This choice of variance
estimate allows for the possibility that the number of lags or the trend degree in
the fixed model may be too small, whereas this will not be the case in the Bayes
model, at least when the sample size is large enough, because k is consistent.

The properties of the forecast encompassing test (14) follow from Theorem 3.3
of Phillips and Ploberger (1994). If the fixed format model sequence H(Q[) is
overparameterized in the sense that F > k,_, for infinitely many ¢ as N — oo, then
dQk/dQI(5%(F)) diverges to co. Thus, we will always choose H(QF ') over H(QF)
as N — oo if there is a true model of the data with fewer parameters than F.
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However, the most important advantage of H(Q’f**‘) is that the sequence of
models adapt to the data. If for some periods a model with fewer parameters
than F is supported by the data, then criterion (12) will choose that model.
(Equally, if in other periods a more complex model is required, then the criterion
will choose a model with more parameters than F.) The forecast-encompassing
test (14) then determines whether we pay a price in forecasting performance for
choosing the more parsimonious model. This may be so if in some periods the
model reverts to a model with more parameters. Note, however, that the price
paid for parsimony is generally small even in this case. For if the generating
mechanism does revert to a mode] with more parameters, the learning mecha-
nism in the period-by-period choice of model using (12) is rapid, so that if the
change is an important one, the Bayes model sequence H(Q; ') should quickly
accommodate it.

4. Empirical application

The methods of the last two sections were applied to the fourteen historical
time series of the USA economy studied originally by Nelson and Plosser (1982)
and extended recently by Schotman and van Dijk (1991). We took advantage of
the 18 years’ extension of these series to examine Bayes model one-period-ahead
forecasts over this period and to implement our Bayes model forecast-
encompassing test. .

In performing this forecasting exercise we evaluate our best Bayes model
sequence {H(Q; ')}/, + against a fixed format Bayes model sequence. The best
Bayes model is chosen from the ‘AR(p) + trend(r) class (with p < 6, 7 < 1) using
the PIC procedure described in Section 2. The parameterization chosen for the
fixed format model is the ‘AR(3) + linear trend’ model that has been a common
choice in recent empirical work with traditional Bayesian methods (e.g., DeJong
and Whiteman, 1991). This model is also updated period by period in the sense
that the latest data are used to revise parameter estimates as we move through
the forecast period. Hence, the difference between the fixed format model and
our best model sequence is that in the latter the model orders of both the
deterministic trend and the lag order are chosen (by PIC) period by period and
in each period the best Bayes model incorporates the outcome of a unit root test
(again by PIC). Thus, H(Q% ') is an evolving sequence of best Bayes models
whose form is entirely data-based, being determined by our model selection
criterion PIC.

Figs. 1-14 show the one-period-ahead forecasting performance of these two
model sequences over the period 1970-1988 inclusive. In each case Fig. (a)
displays the data and the relevant forecast period, and Fig. (b) shows the
period-by-period forecast errors from the two models. Fig. (¢) gives details of the
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evolving form of the best Bayes model: the lines on the graph show the
autoregressive lag order selected (06 lags), the trend degree ( — 1 = no inter-
cept, 0 = fitted intercept, 1 = fitted linear trend), and whether or not a unit
autoregressive root 1s selected ( — 1 = yes, 0 = no). Fig. (d) recursively plots the
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encompassing test statistic dQ%/dQF over the forecast period. Table 1 tabulates
these details, gives the root mean squared error (RMSE) of forecasts for the two
models over the forecast period, and records the evolving format of the best

Bayes model.
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Fig. 3(d). Bayes model forecast-encompassing test statistic: dQ®/dQF.

The main items of interest to emerge from this empirical forecasting exercise
are as follows:

(i) For only one series (industrial production)is an ‘AR(p) + T (1)’ model (i.e.,
an autoregression with a linear trend) accepted as the best Bayes model over the
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Fig. 4(d). Bayes model forecast-encompassing test statistic: d@®/dQ*.

whole forecasting period. For four series (real GNP, real p.c. GNP, employment,
and money stock) an ‘AR(p) + T(1)’ model is chosen for certain subperiods of
the sample as the best model.

(ii) Bayes models with a unit root are selected for twelve of the series, four of
these in subperiods (real GNP, real p.c. GNP, employment, and money stock).
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(ii)) Only two series are chosen to be stationary about a level or linear trend
(unemployment and industrial production).

(iv) The best Bayes model encompasses the forecasts of the fixed model for
ten of the series over the full period, and in some of these cases by a very wide
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Fig. 6(d). Bayes model forecast-encompassing test statistic: dQ%/dQF.

margin (e.g., real wages, GNP deflator, and velocity). The case of the real wage
series is especially interesting. Here it is apparent from Fig. 10(b) that the fixed
model produces systematically biased forecasts of real wages. Clearly, there is
a substantial cost in terms of forecast capability to including a linear trend in
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Fig. 7(d). Bayes model forecast-encompassing test statistic: dQ%/dQF.

a model for this series. Thus, although the best Bayes model, which is an AR(2)
with a unit root (i.e., a one-parameter model), is nested within the fixed model
(the five-parameter ‘AR(3) + T(1) * model), the more parsimonious model has
substantially superior forecasting performance. This is explained by the fact that
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the larger model adapts slowly to the effects of new observations, whereas the
smaller model is more flexible. The data graph in Fig. 10(a) shows clearly that
a linear trend is less realistic over the full data set 1900-1988 than it is over the
sample period 1900-1968. Thus, even though the trend coefficient in the fixed
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model is revised period by period, the presence of the trend in this model is
a form of misspecification and is thereby responsible for the systematic bias in
the model’s forecasts. Fig. 10(c) shows that our model selection criterion elimin-
ates the trend in the best Bayes model. In effect, our criterion detects the fact that
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the penalty from including the trend 1s too great. The outcome is a parsimonious
and flexible Bayes model (with only one fitted parameter) whose forecasting
performance almost uniformly dominates that of the fixed model. The forecast-
encompassing statistic for this series is dQ% /dQF = 53.7792. Thus, on the basis of
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their respective forecast performance the odds in favor of the onc-parameter
Bayes model over the ‘AR(3) + T'(1)’ model are around 53:1.

(v) Forecast accuracy i1s measured directly by the root mean squared error
(RMSE) of forecasts over the period 1970-1988. In terms of this measure, the
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best Bayes models are superior for seven of the series (unemployment, GNP
deflator, real wages, nominal wages, money stock, velocity, and bond yields).
For some series the reduction in the RMSE of forecast is substantial, as
in the case of real wages where the forecast accuracy improves by 25%. This
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improvement in forecast performance is dramatic when the parameter ratio
(1:5) of the two models is taken into account. Another series where a par-
simonious one-parameter Bayes model does especially well is the GNP deflator
series where the value of the forecast encompassing test statistic dQZ/dQ} is
3.2322. For two of the series, velocity and bond yields, the best model is
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a random walk. This model, with no fitted parameter, outperforms the fitted
model for both series in actual forecast performance (ie., they have smaller
forecast RMSE’s) and the odds in favor of the random walk model over the fixed
model are 2.89:1 and 2.2:1, respectively. From the recursive plots of the
dQP /dQF statisticshown in Fig. 12(d) it is apparent that the simple random walk
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mode! uniformly dominates the fixed model over the forecast period for the
velocity series. The dominance is close to uniform for the bond yield series.

{(vi) The bond yield series deserves extra attention. The graph of this data
series for the full period 1900-1988 is shown in Fig. 13'(a). Clearly this series
shows much more volatility over the latter part of the sample. We therefore
employed the variance stabilizing transformation x — 1/x. The resulting series in
(levels)™* is shown in Fig. 13(a), which displays more homogeneous variance
over the full sample. Interestingly, the best Bayes model for this series is
a martingale, whether the series is taken in levels or in reciprocals of levels, i.e.,
(levels)” '. Since our test criterion dQZ/dQ} is based on a Gaussian model with
homogeneous variance we used the two models for this series taken in (levels) ™'
form and computed the recursive values of dQF/dQf shown in Fig. 13(d) from
these models’ forecasts. The models for the series in (levels) ™' form were then
used to compute forecasts of the series in levels, and the resulting forecast
performance of the two models is shown in Fig. 13'(b). In both cases (i.e., in both
levels and (levels) ' form), the best Bayes model (which is herc a martingale in
(levels)™ ') outperforms the fixed model.

5. Conclusion

This paper utilizes a new Baycsian encompassing test to evaluate models on
the basis of their one-period-ahead forecasting performance. The models com-
pared are Bayes models whose estimated coefficients are updated period by
period as new data become available. One of the models has a fixed parametric
form, which for the empirical exercises conducted here is the ‘AR(3) + linear
trend’” model that has frequently been used in empirical work with macroeco-
nomic time series. The other model is the best Bayes model whose parametric
form is determined period by period using the model selection criterion PIC.
This model is ‘best’ in the sense that, on the basis of the sample period data, the
model chosen has the highest likelihood ratio posterior odds in relation to
a general model in the ‘AR(p) + trend(ry class. The best Bayes model is allowed
to cvolve in form (and, hence, also in terms of its number of fitted parameters)
period upon period during the forecast interval as the new data accumulates.
The evolution accommodates lag length and trend degree specifics as well as the
presence or absence of a unit root.

These modelling methods are applied to the Nelson~Plosser and Schot-
man-van Dijk historical macroeconomic time series for the USA economy. The
best Bayes models are found to be parsimonious (often with as few as one or no
parameters) and to do well in actual forecasts over the 1970-1988 period. For
ten of the fourteen series, the best Bayes models encompass the fixed format
models on the basis of their respective forecasting capability over 1970-1988.
For some series (like the real wage, GNP deflator, and bond yields) the
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improvement in actual forecasting performance is substantial, especially when the
parsimony of these models (which have only one fitted parameter in these cases
against the five fitted parameters of the fixed model) is taken into account. The bond
yield series is particularly interesting. In contrast to previous empirical investiga-
tion, which work with levels of this series, we find that reciprocals of levels rather
than levels is the form more suited to empirical implementation. The series is, in fact,
well modelled by a martingale in both forms but, in levels, has a much more volatile
conditional error variance. Forecasts from the best Bayes model (an AR(1) with
a unit root) outperform those of the fixed model in both cases.

Overall, these results seem promising for the use of Bayesian model selection
principles and data-based evolving Bayes models in empirical applications.
Further applications of these methods and extensions of the methodology to
a wider class of base models are now under way. These results and those of the
present paper are sufficiently encouraging for us to put forward a suggestion for
empirical econometric modelling. Formally stated, the principle that we suggest
cautions against the use of fixed format models that are not data-determined.
Inspired by the recent oil tanker disaster in Alaska, we state the principle as
follows:

The Exxon Valdez Principle. Fixed format time series models do not adapt fast
enough to new data, just as big tankers cannot stop or turn corners in a hurry.

In contrast, parsimonious Bayes models of the type employed in this paper
adapt to new data by evolving in form as well as by updating parameters. When
changes occur, these models adapt more rapidly than fixed-format time series
models. As a tool of modelling data they are more flexible, and as a tool of
prediction they seem to be less prone to serious error. In the latter connection we
observe that evolving models are reluctant (according to our data-based choice
criterion PIC) to include a deterministic trend in an empirical model. Thus, for
the Nelson—Plosser data a trend 1s included in the evolving mode! only for the
industrial production series over the entire period 1970-1988. Deterministic
trends are regressors with more leverage than conventional stationary re-
gressors. As a result, they have the potential for being very powerful predictors.
On the other hand, when a trend is inappropriate, the potential for seriously
biased forecasts is substantial (as evidenced by the case of the real wage series).
Our results therefore indicate that there are some serious costs to the mechanical
inclusion of deterministic trends in time series models. For most (specifically, 13
out of 14) of the Nelson—Plosser and Schotman—van Dijk series the data do not
support the inclusion of deterministic trends. When they are included, the result
is generally inferior forecasting capability, at least in the one-step-ahead predic-
tion exercises considered here. We add a word of qualification to these results by
remarking that longer forecast horizons may well lead to different model
choices, even with the automatic selection techniques considered here.
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