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ABSTRACT

In this paper we provide a comprehensive Bayesian posterior analysis of trend determin-
ation in general autoregressive models. Multiple lag autoregressive models with fitted drifts and
time trends as well as models that allow for certain types of structural change in the deterministic
components are considered. We utilize a modified information matrix-based prior that accommo-
dates stochastic nonstationarity, takes into account the interactions between long-run and short-run
dynamics and controls the degree of stochastic nonstationarity permitted. We derive analytic
posterior densities for all of the trend determining parameters via the Laplace approximation to
multivariate integrals. We also address the sampling properties of our posteriors under alternative
data generating processes by simulation methods. We apply our Bayesian techniques to the
Nelson-Plosser macroeconomic data and various stock price and dividend data. Contrary to
DeJong and Whiteman (1989a,b,c), we do not find that the data overwhelmingly favor the
existence of deterministic trends over stochastic trends. In addition, we find evidence supporting
Perron’s (1989) view that some of the Nelson and Plosser data are best construed as trend station-
ary with a change in the trend function occurring at 1929.
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1. INTRODUCTION

Most macroeconomic and financial time series appear to exhibit some form of trend
behavior and cannot be regarded as stationary in any conventional sense. The correct statistical
interpretation and treatment of this important characteristic of economic time series, however, is
not obvious and has been the focus of much research in the past few years. Moreover, assumed
trend behavior can have profound implications for economic theories purporting to explain
observed economic eveats, for econometric modeling strategies and for forecasting accuracy.

Traditionally, empirical researchers have treated observed trends as deterministic func-
tions of time, which allowed standard statistical techniques to be used for econometric analysis.
Further, in statistical theory nonstationary components have most frequently been assumed to be
harmonizable (i.e. subject to frequency decomposition, at least asymptotically, rather like a sta-
tionary time series) upon suitable-normalization, as in the use of Grenander-type conditions (e.g.
Hannan (1970) p. 215). Such approaches to the phenomenon of nonstationarity are called trend-
stationary and under these views, current stochastic shocks have only a temporary effect on the
long-run movement of a series. Consequently, long-run forecasts from such a model may be
expected to be fairly precise as long as the trend is consistently estimated. Led in part by the
popularity and success of Box and Jenkins’ ARIMA modeling methodology, many researchers
have challenged this traditional view of trend bebavior and argued instead that observed trends are
better modeled as stochastic functions of time. According to the simplest version of this theory,
stochastic shocks accumulate over time and observed series require differencing in order to ensure
stationarity. In this case, current shocks have an enduring effect on the evolution of the series;
hence, long-run forecasts are expected to be quite poor. This latter interpretation of trend
behavior has set off an explosion of research into the econometric analysis of models with
stochastic trends.

Many of the developments in this area have arisen in response to the need fc:)r reliable
statistical techniques for discriminating between deterministic and stochastic trends in observed
economic time series. Many classical statistical procedures have been developed explicitly for this
purpose. Most notable are the unit root tests of Dickey and Fuller (1979,1981), Sargan and
Bbargava (1983), Said and Dickey (1984), Phillips (1987) and Phillips and Perron (1988). These
tests have been applied to a wide variety of economic time series as in the empirical studies of
Nelson and Plosser (1982), Schwert (1987) and Perron (1988), and often the null hypothesis of
4 unit root cannot be rejected at conventional levels of significance. These empirical results have
led many to accept the notion that a wide variety of economic time series contain unit roots and,
therefore, stochastic trends. '

While there has been a great deal of research on the development of classical methods
for determining trend bebavior, much less work has been done on the use of Bayesian methods.
Recently, however, Sims (1988) and Sims and Uhlig (1989) have touted the superiority of
Bayesian flat prior methods over classical methods for the purpose of determining trend behavior
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in observed economic series. In particular, Sims (1988) states that flat prior Bayesian procedures
are simpler, more reasonable, and provide a logically sounder starting place for inference than
classical hypothesis testing procedures. Sims uses Bayesian arguments to critique classical unit
root testing methodology in the abstract. By contrast, DeJong and Whiteman (1989a,b,c) conduct
empirical research with flat prior Bayesian techniques and directly challenge classical unit root
findings in a wide array of cases, including the Nelson and Plosser macroeconomic series, various
stock price and dividend data, and postwar quarterly real GNP for the U.S.A. Their main con-
clusions are that the classical unit root inferences for most of these series are the result of
assigning zero prior probability to the alternative hypothesis that the series are trend-stationary
and when this "excessively sharp” prior is relaxed, the data tend to support the trend-stationary
alternative. In related work, Schotman and van Dijk (1990) use a flat prior Bayesian analysis to
investigate the unit root hypothesis for real exchange rate data. They construct a Bayesian unit
root test based on the posterior odds ratio of the unit root model without drift against a constant
mean stationary model. Using this test, they find more evidence in favor of the stationary model
than is suggested by the outcomes of classical unit root tests.

Most receatly, Phillips (1991a) has offered an alternative Bayesian approach, confronting
the skepticism embodied in the abstract critique by Sims on classical methods and challenging at
least some of the empirical findings of DeJong and Whiteman. Phillips shows that the mechanical
use of flat priors in autoregressive models that allow for unit and explosive roots ignores important
generic information embodied in time series models, such as the way autoregressive coefficients
affect the shape of the autocorrelogram and influence the amount of information that is carried in
the data and its sample moments. In this context, flat priors are shown to downweight non-
stationary models in favor of stationary ones and they do not represent ignorance (or lack of
information) in any meaningful sense in time series models, in contrast to the linear regression
model with fixed regressors. As an alternative to ﬂat'priors, Phillips lays the groundwork for the
development of a class of information matrix-based priors that accommodate stochastic nonsta-
tionarity and utilize the prior information that is available in autoregressive models about the way
the coefficients influence the sample moments and the information they carry about the param-
eters. Using these model-based priors, Phillips shows that Bayesian inferences have many of the
same characteristics as classical inferences in these types of models, particularly that Bayesian
analysis often manifests as much uncertainty about the data generating mechanism and thé presence
or absence of stochastic trends as classical significance testing. Phillips applies this Bayesian
methodology to the Nelson and Plosser data and finds, contrary to DeJong and Whiteman (1989a),
that the data do not overwhelmingly favor trend-stationary models over difference stationary
models. For some of the Nelson-Plosser Sexies, like stock prices, the posterior distributions are
very different from those of DeJong and Whiteman.

Phillips’ framework for analyzing trend behavior in multiple lag autoregressions with
fitted time trends is not complete. The approximate information matrix priors that he employs in
his empirical work ignore important interactions between long-run and short-run dypamics that
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may be expected to have a substantial influence on posteriors inferences. In addition, Phillips only
derives posterior densities for the long-run autoregressive component. For analyzing trend
behavior, the posterior densities for the coefficients on the deterministic componeats should also
be a focus of interest, as indeed they were in the aforementioned DeJong and Whiteman studies.
Moreover, Phillips restricts his atteation to autoregressive models with fitted drifts and time
trends. Given the recent analysis by Perron (1989), models that allow for broken trends are also
clearly of interest. Lastly, Phillips only applies his methodology to the Nelson and Plosser data.
A broader range of economic time series needs to be analyzed to determine the robustness of the
methodology for empirical purposes.

This paper will complete this research program on the objective Bayesian analysis of
trends in economic time series. We provide an exhaustive Bayesian posterior analysis of trend
determination in general autoregressive models. We utilize an information matrix-based prior that
explicitly takes into account the interaction between long-run and short-run dynamics. In doing
50, we uncover an important relationship between the number of transient dynamics terms and the
behavior of the implied prior for the long-run autoregressive parameter. Using the Laplace
approximation to multivariate integrals and properties of the confluent hypergeometric function
of the second kind with muitiple arguments, we derive analytic posterior densities for all of the
trend determining parameters. The resulting posteriors are shown to be improper due to the dom-
inating behavior of the prior for large values of the long-run autoregressive parameter when there
are many lags in the autoregression. To achieve integrable posteriors we modify the information
matrix prior by attaching an exponential factor that attenuates extreme values in the unstable
region of the long-run autoregressive parameter. We construct the exponential factor so that the
degree of ponstationarity permitted is parameterized by a user-specified scalar quantity.

We also expand the class of models considered to include models that allow for certain
kinds of structural change in the deterministic componehts where the point of structural change
may or may not be known. Using a uniform prior for the break point to express ignorance about
the point of structural change, we derive unconditional posterior densities for all of the trend
determining parameters. These are shown to be mixtures of densities of the type derived for the
no structural change model where the mixture variate is the marginal posterior mass function of
the break point. This extension provides a Bayesian alternative to the classical methodologies used
by Christiano (1988), Perron (1989,1990), Banerjee et al. (1990) and Zivot and Andrews (1990)
to test for a unit root in the presence of possible structural change at 2 known or unknown point
in time.

Our Bayesian techniques are illustrated and evaluated through simulation experiments and
applications to several sets of widely analyzed economic data series including Nelson and Plosser’s
(1982) macroeconomic data and various stock price and dividend data. Contrary to DeJong and
Whiteman (1989a,b,c), we do not find that the data overwhelmingly favor the existence of deter-
‘ministic trends over stochastic trends. More importantly, our analysis demonstrates that unit root
inference are not, as DeJong and Whiteman assert, contingent on the use of zero prior probability
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on trend stationary alternatives. They are so only within a flat prior framework, which we argue
is inappropriate for investigating stochastic trend bebavior. We also find evidence supporting
Perron’s view that some of the Nelson and Plosser data are best construed as trend stationary with
a change in the trend function occurring at 1929,

The outline of the paper is as follows. Section 2 develops the theory for models that do
not allow structural change in the deterministic componeats. Section 2.1 presents the models to
be considered and sections 2.2-2.3 detail the derivations of the priors and posteriors. In section
2.4, we examine the bebavior of our posteriors with simulated data and compare our posteriors
with the posteriors derived in Phillips (1991a) and those derived from a flat prior. Posterior anal-
ysis of trend determination in certain types of structural change models is taken up in section 3.
Empirical applications of the no-structural change model to the Nelson-Plosser data and the stock
price and dividend data are given in sections 4.1 and 4.2. In section 4.3, we re-examine Perron’s
(1989) unit root results that are conditional on structural change occurring at 1929 for some of the
Nelson-Plosser data from a Bayesian perspective. Section 5 contains some concluding remarks.

2. TREND DETERMINATION IN TIME SERIES MODELS

2.1. Models with fitted drifts and transient dynamics
We consider the following dynamic model for an observed time series {y,}]:
Yo=p+Bt+ L)y, +u : 0]
where Y(L) = IX y,L}, Ly, = y,_, and u, = iid N(0, ¢?). It will be convenient to employ the
following reparameterization of (1) to focus attention on the dominant autoregressive component
of Y{(L): o

=g t+Bt+oy., + oAy +y 1"
where p = I} ¢y, ¢; = ~L{*! y; and Ay,_; = y,—; — ¥;-j—;. We may facilitate the transfor-
mation from (1) to (1°) via the nonsingular matrix H. To see this, let ' = (Y1, .. ., ¥, ¥i_;
=W c e Ve @ =@ - s ) Y = (@) and X{_y = (=1, AVi—gs - - -

Ayl—'k+])' Then
Ve=p+Bt+ EVH !y +u=p+ft+yy +u
so that y = H'Y, x,_; = H™ly,_, and

10 0 o7 . 10 0 « 0
1 -10 « 0f°" 1-10 - 0
H=|1-1-1 0, H!'=]0 1 -1 - ©
1 -1 =1 = -1 00 0 « -1

We are interested in two types of trend behavior that result from placing certain restric-
tions on the parameters of (1) (hence, (1")). If the equation 1—y{L) = O has all of its roots
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outside the unit circle and 8 # O then the series {y,} exhibits stationary fluctuations about a deter-
ministic time trend and, accordingly, we call the series {y,} tread stationary (TS). In this case,
p < 1in(1"). If 1—y(L) = O has a single root of unity and 8 = O then the series of differenced
observations {Ay,} exhibits stationary fluctuations and we call {y,} difference statiopary (DS). In
this case, p = 1 and the ¢'s are the parameters of the autoregressive representation for {Ay,}.
The parameterization (1) was used by DeJong and Whiteman (1989a,b) in their Bayesian
analysis of trend determination. Their attention focused on the time trend parameter § and the
modulus of the largest root of the equation 1—y{L) = 0. This setup is awkward for analysis
because the roots of 1 —y{L)) = 0 are nonlinear functions of the ¥'s, and, as argued in Phillips
(1991b), inappropriate because no single root like A determines long-run behavior by itself in gen-
eral. The alternative parameterization (1’) was used by Phillips (1991a) in his Bayesian analysis
and also corresponds to the regression formulation used in augmented Dickey-Fuller (ADF) unit
root tests. The ADF setup is more convenient to use and it isolates the critical parameter p that
determines long-run behavior of y,. Of course, several other parameterizations are possible and
these may have certain other advantages (see Schotman and van Dijk (1990) and Zivot (1992)).
Let6 = (1, B,p, ¢, 0) ER*ZX R,y =(y,, ...,y denote the T X 1 vector
of sample observations, 1y = (¥g, - - « » Y_g+1) the k X 1 vector of fixed initial values, and
f(y]8, 1) the joint probability density function (pdf) of the sample given the parameter vector §
and the initial values . Treated as & function of §, f is the likelihood function and is denoted by
L(8|y, ). Prior views concerning # are represented by the pdf x(§) (which may be proper or
improper). Given the sample observations y and the initial values i, these prior views about £ are
updated via Bayes’ rule to give the posterior pdf p(8|y, ig), where p(8]y, i) = X(OLE|y, 1p)-
The focus of our analysis is p and 8 since their values determine the trend behavior of
{y). To derive marginal posterior pdf’s for p and §, we must extract the following integrals:
Pily, ) & [ = [plOly, 1dudBdeda = [ - [L(6]y, w)m(B)dudBdeda
PBlY, 1) o [ [pi6]y, i)dudpdeds = [ - [LiBly, @x(B)dudpdeda
Some of the priors that we employ do not have the convenience of flat or conjugate priors
and, as a result, the above integrals cannot be evaluated exactly for these priors. However, very
good analytic approximations may be obtained using Laplace’s method for approximating multivar-
iate integrals. The method is applicable to integrals of the form
IV = [pexp((O)g)8, & = @y, .. ., 6)
where D is a simply connected domain in p-dimensional space. If ¢(§) and g(6) are continuously
differentiable to second order, if ¢ obtains an interior absolute maximum at #* in D, and if the
Hessian 32¢(§)/3636’ is negative definite, then it can be shown that
I0) ~ @x/\P2exp(Ap(6%)}3(6%)| —a2¢(6*)/a6a6’ | ~1
in the sense that A ~ B if A/B = 1 as A =» . The error on the approximation is of
Olexp{AH(BHA~P+D/2}] a5 A > oo,
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For many problems, the Laplace approximation is a convenient and efficient alternative
to simulation-based numerical methods, such as Monte Carlo integration (see Kloek and van Dijk
(1978) and Geweke (1989)), for evaluating multivariate integrals. It is particularly useful for
models with Gaussian likelihoods. The technique is quite general because a numerical optimiza-
tion procedure may be used to compute the maximizing value of ¢ and then this value may be
utilized in the approximation formula. Phillips (1983) originally suggested this technique as a
means of obtaining marginal posterior densities in models with many parameters. Tierney and
Kadane (1986) employ it for various Bayesian marginalization problems. In the present context,
the analytic approximations to the marginal posteriors provide considerable information conceming
the nature of the posteriors that would be difficult to ascertain if simulation-based numerical
methods were used to evaluate the integrals. In addition, the marginal posteriors are very cheap
to compute and this in turn facilitates extensive posterior analysis under an eatire class of priors
thereby encouraging an investigator to examine whether inferences are robust of fragile within that
class. As argued by Leamer (1978,1984), testing the sensitivity of posterior inferences to vari-

ations in the prior is an essential part of careful Bayesian analysis.

2.2 Prior and posterior analysis

Bayesian analysis begins with the specification of prior beliefs concerning the parameters
of interest. In many situations, researchers do not have strong beliefs or much prior knowledge
about the parameters of the given model to be analyzed and, consequently, wish to use a prior that
reflects this lack of knowledge or ignorance. There is no universally accepted way of expressing
ignorance about the parameters of a given model and a number of suggestions for generating
priors to represent "knowing little” or ignorance have been put forth. Excellent summaries of the
various methods for determining noninformative priors can be found in Zellner (1971) and Berger
(1985). Two widely used methods are particularly relevant to our situation. .

The first method to express ignorance about the parameters of interest is to use a uniform
or flat prior for the parameters or certain transformations of the parameters. In model (1) (or
(17)), if we use flat priors for the regression coefficients and a flat prior for the natural logarithm
of the scale parameter then x(6) & o~ !. The use of flat priors is very convenient because they
often lead to posterior inferences that agree with inferences drawn from classical procedures. In
econometric analysis, Zellner (1971) and Judge et al. (1985) advocate using flat priors for the
analysis of the linear regression model with fixed regressors and its various extensions, and for
the analysis of certain types of time series models. Flatand truncated flat prior have been utilized
in unit root models by Sims (1988), DeJong and Whiteman (1989a,b,c), Schotman and van Dijk
(1990) and Sims and Uhlig (1989).

Although giving each point in the parameter space equal treatment is an intuitively appeal-
ing way of expressing ignorance, this view of ignorance has been harshly criticized because it
lacks certain invariance properties (see Berger (1985) ch. 3 and the references therein). For
example, suppose We express our ignorance about a parameter § € (— o, ) by adopting the
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uniform prior x(f) o« c, where c is some arbitrary constant. Now instead of considering 8, sup-
pose the problem is re-parameterized in terms of n = exp(f). This is a 1-1 transformation and
ideally should not affect inference. By the change of variables formula, the corresponding prior
for u is given by x(5) = 1~ lx(in(n)). So, if the noninformative prior for # is chosen to be
constant, we should choose the noninformative prior for 4 to be proportional to 7~! to maintain
consistency in inference. Thus we cannot maintain consistency and choose both the noninforma-
tive prior for 6 and that for % to be constant.

In addition, Phillips (1991a) argues that flat priors in autoregressive models cannot repre-
sent ignorance in a objective sense because they ignore generically available information such as
the way the autoregressive coefficients affect the correlation structure of the data and the expected
amount of information carried by the data. To illustrate this point, consider the following example
taken from Phillips (1991a). Let

i=0+y t=1,...,T)

with u, = iid N(0, ¢2) and consider two intervals for p: [0.5, 0.6] and [0.95, 1.05). A flat prior
over p indicates that p values in the two intervals are equally likely. The flat prior, however,
ignores information from the AR(1) model] that we always have about the way p values in these
two intervals affect sample behavior. Sample behavior is expected to be very different for o
values in these two intervals and this represents prior knowledge based on the postulated AR(1)
mode]. Phillips maintains that an objective ignorance prior for p in a model that allows for
stochastic nonstationarity must incorporate such model-based information.

These criticisms of the flat prior have led to the search for noninformative priors which
are appropriately invariant under transformations and which incorporate model-based information.
The most widely used method for generating such priors is Jeffreys’ rule

() o |Iy|'? = J®) @
where Iyy = —E[3 fn f(y|8, ,)/3038'] denotes the Fisher information matrix. In addition to flat
priors, such information matrix-based priors are an essential feature of our analysis.

We proceed to derive the Jeffreys prior for models (1) and (1°). The log-likelihood func-
tion of @ based on the sample y with fixed initial values y is

18]y, 1) o= — T £n(o) — %o~ 2L](y, — p — Bt — v'x)? 3)

and the information matrix is given by

-~ -

T
o T oIT(T+1)/2 oY Elx’] 0O
1
' T
OAT(T+1)/2 o 2T(T+1)2T+1)/6 o7 tE[x ;] O @)
1

T T T
a")x:slx‘-,l a'Z;tE{x,-a o")l:Ela-xaill 0

0 0 0 a7

L -
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Phillips uses an approximation to the determinant of (4) that ignores the time series effects

of the parameters ¢ and is given by
76) = 0~ Hagl) + ay(o, 1, B}, ®)

where

aolp) = T1-p?H — 1=pH2(1-p™), (6)

oo, 1 B) = T w1-p)"N1=p) + B{U-P) 7N = p(1-p)XA=PD} . (D)
The prior (5) may be interpreted as an approximation to the square root of the product of the
diagonal elements of (4) when ¢ = 0. It may therefore be regarded as an approximate Jeffreys
prior for a general nonstationary model. However, when ¢ 0 the simple approximation (5) is
expected to "bias® inferences since it is based on a model in which ¢ = 0. Clearly, a model-
based reference prior that allows ¢ # 0 is desirable since most empirical models can be expected
‘to have non-trivial transient dynamics with ¢ # 0. Adding this extra level of generality is
‘important because as more lags are added to the fitted model they explain a larger portion of the
variability in the data and the role of the long-run autoregressive parameter is diminisbed.
Various methods of explicitly accounting for the effects of the transient dynamics on the prior are
-possible. One simple method is as follows.

The domipating term of (4) is LTE[x,_x{_,], and if we ignore the off block diagonnl
elements of (4), the Jeffreys prior would be

x(6) = o~3|072LT E[x,_,x{_,]]'2. (8)
An explicit representation for (8) can be found by semng up (1) in companion form as
Y, =RY  +pg+ 8+ 1 )
with
% il u 8 v
1 0 e 0
Y, - | 7 0 0 0 (10)

v R=10 1« O], e=] |, 8= {, U=

Yi-k+1 6 0 - 1 6

We use (9) to evaluate the required information matrix as follows. Back substitution leads to
Y, = IR U, + & + B(t—s)] + RY,
and then )

E[Y,Y{] = E5~'RIRY + (Z§~ 'Rk + B(t—5)] + RY HES 'Rk + Bt—9)] + R'Y}’
where L = E[U,U!] = ¢?E,,, where Elrl has unity in the (1,1) position and zeros elsewhere. We
may express the above matrix representation of E[Y,Y]] as

PAx¥) + Ay, B, ¥) an

where
Aa(¥) = Iy IR'E,RY ,
Apls, B, ¥) = {E§7'RMu + B(t—9)] + RYHEFIRYw + B(t—s)] + R'Y,} .
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Since Y = H’~!y we may recast (11) using the alternative parameterization, viz.

E[Y,Y;] = PAq(H'"!y) + Ay (s, B, H'" 1)

= A0, @) + A} (1 B, 0y 0) . (12)
We now deduce the required "information matrix” component for model (1) as

o 2LTElY, Yi4] = ¢ 2L]IEQY,Y(] = LT HAn(¥) + 07 %A, B, ¥)]
and the corresponding matrix for model (1°) is

o~ 2TEX,_;x{ ;1 = o~ 2L~ 'HE[Y, Y H' !

= H™IEJ A} (0, @) + 067 2A% (. B, p, @)JH'™!

= Aj(w) + 0T2A @, B. pr @) (13)
where
A}, ) = HTIETTIAS (o, 9)H'™,
Al B.p, ) = HTIZTTIAT G, B, p, o)H' ™!
Using (13) we have an explicit representation for the approximate Jeffreys prior given
by (8):

x(f) = 0 3|AG (o, @) + 072AT (w, B, p, 9)| 12 ,
= 073|AG (0, @[T + 072\ () B, 0, @), © (19
where AJ (4, B, 9, ¥), j = 1, . . ., k are the eigenvalues of Aj(p, @) "'AT (. B, 0, ¢).

The general behavior of the prior (14) as a function of p is very similar to the simple
approximation (5) used earlier by Phillips (see Zivot and Phillips (1991) for a full graphical
examination of the prior (14)). Unlike (5), however, (14) is affected by the nature and number
of the transient dynamics terms, ¢. For example, when k = 2 large positive values of ¢ resuit
in proportionally more weight being given to stationary values of p and large negative values of
@ result in proportionally more weight being given to nonstationary values of p. In this case,
p = ¥y + ¥y and ¢ = —y; s0, given ¥, large positive values of ¢ reduce p and large negative
values of ¢ increase p. In addition, as the lag length, k, increases the prior places proportionally
more weight on nonstationary value of p. In this respect, the information matrix prior works to
counteract the increasing downward QLS bias in p as k increases that occurs when the true value
of p is unity.

Two additional comments on the prior (14) are in order: ‘

(i) A computational problem occurs in the evaluation of |Aj | for valuesof p > 1. In
particular, numerical estimates of |Ag| for p values just above unity are unstable even in the
k = 2o0ork = 3 case for T = 50. Thus, in order to use the more general Jeffreys prior in prac-
tical applications, a stable numerical approximation to | A j | is required. One such possibility that
works well is given by the product of the diagonal entries of Aj.

(ii) Since the approximate Jeffreys priors (5) and (14) are defined for all p € R and
place rapidly increasing weight on values of p greater than unity, they may not serve as appro-
priate reference priors for all researchers, In practical applications researchers are often only
interested in a restricted range for p and with most economic time series researchers would give
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very little, if any, subjective prior weight to values of p much greater than unity. In particular,
if interest focusses on evaluating the unit root hypothesis given the data, many researchers only
want to consider values of p in the range (gy, 1+¢) for some 0 < py < 1 and & small. Such
researchers may be skeptical of results that are generated from priors that place heavy weight on
a priori extreme and unlikely values. To accommodate such subjective prior views on p we can
easily modify the Jeffreys prior by limiting the effective range of p and, hence, the degree of non-
stationarity allowed a priori.

These issues will be addressed in detail below. But first it is informative to derive the
marginal posterior densities for g and § as well as the joint posterior density for o’ = (p, ). let
=B e)x =Wor et =@e)andusey_, 7, U, V, Z and W to represent the
observation matrices of (Y1), ) (im1s 0 (I, &, AV g5« v o 5 AYpgp )y O1s 1, AV g
<o oy AY_gsp)and (1, Ay,_q, - . . 5 AYy—p4), respectively. In addition, for any matrix R of
full rank and conformable matrix y define Qg = I — RR’R)"!R’ and mg(y) = y'Qgy. To
facilitate the determination of the posterior deasities for p, 8 and « via the Laplace approximation,
we employ the following decompositions of the sum of squares E'f(y‘ -u =Bt — yx_

m(t) + (p—p)’my(y_p) + (& — 3()'V'VE - ¥p) , (15)
m(0) + B-B)my(r) + (x — #B)'Z'Lx ~ %(B) (16)
m(0) + (a—&)'my(UNa—&) + (1 ~ H))'W'W(n — o)), a7

where m(0) = ET0Z, 0, = y, — p — Bt — §'x,_, are the OLS residuals and

o) =38+ VNIV, 0-0),

) =%+ 2ZD'23-P),

Ha) = § + (WW) 'WU@E-a) .
The following proposition gives the approximate posterior densities for p, § and o under the prior
(14).

PROPOSITION 1

®  ploly, ) & |A5 G, 2N |m®) + (p—p) myly. )]~ T k+D2

® P8Iy, ) = [AFG®), #B)|Am() + (B—BYmg(n]~T kD72

©  plely ) = |A§GEE), #e)| MmO + (a~-&) my(U)(a-&)]~ Tk+272

Remarks (i) The derivation of the approximate posterior densities for p, § and a follows the
same lines as the derivation of the posterior density for p outlined in Phillips (1991a). Note that
this derivation, which is given in the appendix, makes use of two approximations. First, the
reduction of the multivariate integrals to & single integral in o is performed by means of the
Laplace approximation. Next, the integral in ¢ involves a confluent hypergeometric function of
the second kind with multiple arguments (see Phillips (1988) for details about this function). The
second level of approximation applies when this function is itself approximated (for large argu-
ments) to facilitate computation. The mathematical details of these derivations are presented in
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the Appendix. For our purposes here it is most important to note that the integration over ¢ elim-
inates the effect of the second matrix component A (i, 8, p, ¢) in (14) on the posteriors, as
given in (a),(b) and (c) above. The matrix component from the prior that is retained in the
posteriors, A §(p, ¢), is & function of p and ¢ only. The prior effects of the deterministic com-
ponents (u, ) on the behavior of the posteriors are asymptotically dominated by the prior effects
of (o, ¢).

(ii) As a result of the Laplace approximation, the posterior densities for p, § and « are
of the same general form and, therefore, we expect these densities to have similar shape charac-
teristics. In the density formula for p, the matrix component A§ is a function of p since the
Laplace approximation produces the term @{(p). Similarly, in the posterior for g, ;‘5 is a function
of B and in the density for « it is a function of «.

(iii) The posteriors for p, § and o given in Proposition 1 are improper densities over R;
i.e. they are not integrable over the whole real line. To see this, note that the diagonal elements
of A§ are of the order diag(e® ~4, p?T—5, . .., p*T~2k"3 45 |p| = o and so

[AS]12 ~ (p2T—4 ... JAT-2k=112 - [Tk—(+ DE+D2+1 | (18)

which clearly dominates the tail behavior of the posteriors. Thus, the determinantal prior leads
to improper posteriors for p, 8 and a. There is, in effect, too much information in the Jeffreys
prior (14) relative to the actual information contained in the data.

(iv) Phillips (1991a) derived the approximate marginal posterior for p based on (5) and
it is given by

ploly, 1) & ag@)?[m(®) + (o~pYmy(y- )]~ T7. (19
It is a straightforward exercise to derive the corrwpondi_ng posteriors for § and . These are

PBIY, 1) = agB@B) A m(®) + B~B)my(»1"T?, 20

plaly, 1) = agle) Pm() + (x—8) myU)e—&]~T+H72, @1

which are of a similar form to the posteriors given in the proposition. However, since ()}
is of the order O(pT %) for p > 1 the marginal posteriors have Pareto tails of order 0(|p|“2)
as p — oo and thus are proper densities upon standardization. The main difference between these
posteriors and those based on (14) is that the posteriors based on (14) are influenced by the prior
effects of ¢ and the lag length of the autoregression whereas the posteriors based on (5) are not.

(v) It is interesting to note that the posteriors derived from the prior (14) are almost
identical to the posteriors which are derived directly from the prior

x(6) = =, B, O)xlo,e) = 0! AG(, )] 172 22)
The only differences between these posteriors and the posteriors given in the proposition are the
degrees of freedom in the exponents of the Student-t kernels, the effect of which is small due to
the dominating behavior of |AJ |12, The prior (22) results from assuming that z, § and fn(0)
are a priori independent of p and ¢ and are independently uniformly distributed over the real line
and that the prior for (p, ¢) is determined by Jeffreys rule applied to the model

=¥ Ly, +w t=1...,T)
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with u, = iid N(O, ?). Given that the posterior deasities for p and § using the priors (14) and
(22) are pearly the same, it is much easier both conceptually and computationally to use the
approximate invariant prior (22) than the approximation (14). The joint prior (22) is built up from
individual priors in a straightforward way and the prior relationships between the parameters are
clearly spelled out. In addition, the independence assumption between (i, 8, ¢) and (p, ¢) means
that we get a quick route to the posteriors via the Laplace approximation.

(vi) A similar result holds for the posteriors based on (5). The approximate densities
givea in (19)-(21) also result from the prior

*(6) = o  ag(p)'? @23)
which employs, conditional on o, flat priors for u, § and ¢ and a Jeffreys prior for p based on
the model

V=M vm t=1...,T
with u, = iid N(0, ¢®). The prior (23) is a more convenieat form than the prior (5).

The fact that the approximate posteriors for p and 8 are not integrable and the numerical
evaluations of | Aj | are unstable greatly hinders the applicability of the information matrix-based
prior (22) for general autoregressive models. In the next section, therefore, we shall introduce
some modifications to the prior (22) that effectively restricts the relevant range of p (hence, the
degree of nonstationarity) and that result in numerically stable, fully integrable posteriors.

2.3. Modified priors and posterior analysis

To avoid the numerical instability encountered in evaluating | A | we may approximate
this determinant by taking the product of the diagonal elements of Ag. Using this approximation
gives the prior

70, ¢) = 0" @agy'?, , 24)

where a;; denotes the i’th diagonal element of Aj. This product approximation of the determ-
inant of the information matrix was successfully used in Phillips (1991a) for the case where the
transient dynamics were ignored. The product approximation (24) as a function of p is graphed
in Figure 2(a) for the case ¢y = 0, 0 = 1, T = 100, k = 2 for various values of ¢. Comparing
this figure with Figure 1(a) shows that (24) bebaves much like (22) and suggests that little infor-
mation will be lost if the product approximation is used. Note that the diagonal elements a g ;; that
enter (24) are still, of course, functionally dependent on the transient dynamics parameters ¢.

We now consider the objection to the Jeffreys prior that it places increasing weight on
extreme and unlikely values of p as far as economic time series are concerned. By dealing with
this objection we also produce fully integrableposteriors. The obvious way to restrict the relevant
range of p and at the same time make the posteriors integrable is to eliminate values of p in the
extreme unstable regions by truncation of the prior. When we implement truncation methods,
however, we still find that as k increases the posterior probability of a unit root or greater

geaerally increases rapidly because the form of (18) still causes the prior to dominate for values
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of p in the region just beyond unity. Simulation experiments show that the posterior density for
p is bimodal and that the second mode (for p > 1) is the dominant one in typical cases such as
that in which the true generating process is a unit root with drift or an autoregression with a large
stable root. This outcome also occurs empirically with many of the series in the Nelson and
Plosser data set. Thus, arbitrary truncation does not appear to be a sensible and practical solution
to the integrability problem.

An alternative and rather appealing way of effectively restricting the range of p and
dealing with the improper posteriors is to introduce an exponeatial factor into the prior that
attenuates values of the prior for p > 1. The particular modification we have in mind also allows
a researcher to control the degree of nonstationarity desired in the prior. We shall consider
product priors for (p, ¢) that are based on (24) but are modified with exponential factors. They
take the general form

7. ) = @ag!expl»" , @5)
where ¢, is some function (to be specified) of the number of lags in the autoregression and the
sample size. The selection of ¢, determines the shape of the prior in the unstable region p > 1
and hence affects the degree of nonstationarity allowed. Itcan have a large influence on posterior
inferences. The choice of ¢, could be left entirely arbitrary with its value depending on the appli-
cation and on the prior views of the researcher. However, we propose a method for determining
¢y that generates a family of priors parameterized by a scalar quantity (¢). This leads to an
e-family of posteriors for any given application. Thus empirical researchers have the option of
reporting a range of posterior inferences so that issues of fragility can be more easily addressed
in practice.

Our suggestion for determining ¢, is as follows. Recall, from (18) that

@[kag )12 ~ pTE-E+DE+D2+] o ka-dx,
where d, = (k+1)(k+2)/2 + 1. Hence the prior (25) behaves like

T exp{—p>%} (26)
for |p| > 1. We may induce a convenient family of priors by specifying a modal value for (26).
This will occur for a value of p, say

p=1l+¢
for which (26) attains its maximum and beyond which the prior falls away rapidly. Thus when
we set p = 1+¢ as the modal value we anticipate low prior probability from (26) for values of
p much greater than 1+¢. This gives an investigator a convenient means of attaching low prior
weight to extreme unstable values of p.

To determine the maximizing value of ¢, when p = 1+¢ is the modal value, we optimize
(26) with respect to p, set p = 1+¢ in the first order conditions, and then solve for ¢;,. Straight-
forward calculations reveal that an approximate solution to the optimization problem is

o = —(4)7" + (471 + 4e(Tk — 41?2 = (o) . @n
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The modified Jeffreys prior for (p, ¢) is then
(0, ¢16) & (g erp(—p"+®} . @8)

Notice that this prior is conditioned on the value of &. We now have a family of modified
ignorance priors for 6, indexed by &, which are built up from individual priors for (4, 8, 0) and
(o, )

x(0) = 7w, B, ¥, ¢]&) = o~ @Wa g ) Pexpf —p ) . @9)
Conditional on &, the above prior results from assuming independent flat priors for &, § and £n(0)
and the modified Jeffreys prior for (p, ¢). A family of priors, for example, on a grid such as
{e = 0.001, 0.0025, 0.075, 0.01} are easily generated giving a maximum for the priors in the
range (1.001, 1.01). The modified priors inherit the general characteristics of the previously dis-
cussed priors for p values less than 1+¢. Beyond p = 1+¢, however, the exponential factor
draws the density rapidly towards zero. Illustrations of these e-priors are given in Zivot and
Phillips (1991) and Phillips (199b).

The following theorem gives the approximate posterior densities of p, 8 and o under the
modified Jeffreys prior (29). The proof follows from an application of Laplace’s method for
approximating multivariate integrals along the line we have earlier discussed and is therefore
omitted.

THEOREM 1
®  pole v, ) = @50, #o) 2exp{—p K m(®) + (p—p)Pmy(y_p]~T-k-D2
®  PBlEY ) o« @ag B0, 280 expl ~pB O Hm® + B-Bmy(r] TR

©  pale y i) o ([ gk, H)Zexp{—p() )
X [m(0) + (o —&) my(U)(a—&)] ~T-k-272

Remarks (i) The above posteriors are fully integrable due to the addition of the exponential
weighting factors. They are conditional on the value of ¢, which must be specified by the user.
The analytic nature of the posteriors, however, makes it easy to generate a family of posteriors
for a given range of £-values. In this manner, the sensitivity of posterior inferences to the amount
of nonstationarity allowed a priori can easily be addressed. It is important to note that other types
of damping factors could be used to restrict the range of p. The flexibility of the Laplace approx-
imation permits easy determination of the posteriors.

(ii) The densities of p, § and « are asymmetric. For a given ¢ value, the modes of the
p-posteriors are generally skewed towards unity and the modes of the §-posteriors are skewed
towards the origin. This asymmetry works to counteract the downward OLS bias in 5 and upward
bias in § that occurs when the true values of p and § are one and zero, respectively. As the lag
length, k, of the fitted model increases the prior has a larger influence on the shapes of the
posteriors due to the dominating behavior of (18) for p values less than 1+¢. In addition, for
large € the posteriors for p and 8 are often bimodal, like the densities derived from (5), and
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display considerable uncertainty about the true values of p and 8. For more information on the
typical shapes of these densities, the reader is referred to Zivot and Phillips (1991).

(iii) Phillips (1991a) investigated the sampling behavior of the p-posteriors based on a
flat prior and the approximate Jeffreys prior (5) when the true data generating process (DGP) con-
tains a unit root with drift. He showed that, on average, posterior inferences drawn from a flat
prior are severely biased away from the unit root model and that inferences from (5) are much
more consonant with the true DGP. We have performed similar sampling experiments to illustrate
the expected behavior of the posterior densities of p computed from a flat prior (F-posterior),
Phillips” approximate Jefferys prior (J-posterior) and the modified Jeffreys prior (29)
(MJ-posterior). We briefly summarize here the main results from these experiments. A full
account is given in Zivot and Phillips (1991).

First we investigate the sampling behavior of the posteriors based on the simple random
walk with drift model with iid N0, ¢®) errors. For a fixed value of k, the expected posterior
probabilities of the event {p = 1} based on the MJ-posteriors varies with the value of &. They
are similar to those computed under a flat prior for ¢ = .001 and but become larger as ¢ is
increased. The magnitude of these expected probabilities for values of € near .001 are somewhat
misleading by themselves because the upper range of p is restricted to a small neighborhood
beyond unity and they cannot illustrate the rightward skewness of the MJ-posteriors. As k
increases in the fitted model two things tend to happen. First, the extra regressors tend to soak
up variation in the data and this increases the downward bias in 4. In addition, the introduction
of extra regressors tends to add more noise to the fitted model and this increases the estimated
variance of 5. The simulation results indicate that this latter effect dominates the behavior of the
posteriors. For all posteriors, the expected probabilities of {p = 1} increase monotonically in k.
The MlJ-posteriors produce the largest increases, which is what we expect since the prior gives
proportionally more weight to nonstationary models as k increases. g

Next we consider the random walk with drift model with moving average errors. Phillips
(1991a) found that the J-posterior was quite seasitive to the value of the moving average param-
eter, 6. In particular, for values of § near —1 he found that E[Pj(p = 1)] = 1. This large
expected probability is misleading since as § approaches —1 the true DGP approaches a deter-
ministically trending process with iid errors. As pointed out in Phillips, this outcome is the result
of the bias that stems from the fact that (5) is not an ignorance prior when ¢ # 0.° The
MJ-posteriors explicitly account for the effects of the transient dynamics terms on p and thus we
expect posterior inferences to be more objective than inferences based on the J-posterior when the
transient dynamics terms play a large role in explaining the data. The results of the simulations
support this assertion. For large negative values of 8, the MJ-expected posterior probabilities are
small, although they increase as € or k is increased. These results indicate that one would need
a fitted model with a long lag length in order to find evidence for the unit root model. Inter-
estingly, the MJ-expected probabilities increase as 6 nears unity. It appears that the MJ-posteriors
pick up the added persistence in the data whereas the F and J-posteriors do not.
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3. TREND DETERMINATION IN STRUCTURAL CHANGE MODELS

3.1 Introduction

Recently, the appropriateness of the unit root model for a number of macroeconomic and
financial time series has been questioned by Perron (1988, 1989, 1990). For example, using the
Nelson and Plosser data and a U.S. postwar quarterly real GNP series, Perron (1989) argues that
if the observations corresponding to the years of the Great Depression and the 1973 oil price shock
are treated as exogenous events (points of structural change) then a flexible trend stationary repre-
sentation is favored over a flexible difference sﬁdomry representation. Contrary to the unit root
hypothesis, these results imply that the only observations that have had a permanent effect on the
long-run level of most macroeconomic aggregates are those associated with the Great Depression
and the first oil price crisis.

Perron’s unit root testing methodology, which is conditional on structural change at a
known point in time, has been criticized by Christiano (1988), Banerjee et al. (1990) and Zivot
and Andrews (1990). These authors argue that Perron’s unit root tests are biased against the unit
root null because his choices of break points are correlated with the data and, hence, problems
associated with pre-testing are applicable to his methodology. They suggest ways for correcting
his tests for this bias based on procedures to estimate the structural change points. After these
corrections are made, the overall evidence against the unit root hypothesis for the aforementioned
series is not nearly as strong as Perron suggests.

The suggestions for correcting Perron’s unit root tests made by the above authors, how-
ever, are problematic in two respects and only asymptotic results are available. The first prbblem
arises from the fact that when the point of structural change is unknown some procedure, usually
ad hoc, must be adopted for estimating it. This break point estimation procedure produces a "pre-
testing” bias in any subsequent inference and the bias depends explicitly on the procedure
employed. The second problem involves the nonstandard asymptotic distribution theory that
results from models with integrated regressors and with estimated structural breaks. As shown
in Banerjee et al. (1990), Hansen (1990) and Zivot and Andrews (1990), the resulting limit theory
is quite complicated in these types of models. In addition, Zivot and Andrews (1990) and Perron
(1990) demonstrate that the finite sample distributions of the unit root test statistics can be very
different from their asymptotic counterparts. :

An attractive alternative to the classical approach to remedy the "pre-testing” bias caused
by the unknown location of the possible break point is to adopt a strictly Bayesian methodology.
The Bayesian approach for handling structural change at an unknown point in time is straight-
forward and the distribution theory is valid in finite samples. Conditional inferences concerning
the parameters of the model are avoided by placing a prior distribution over the location of the
structural change point and the mechanics of Bayes’ rule then produces posterior distributions from
which unconditional inferences can be made.
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Structural change in the linear model with fixed regressors from a Bayesian point of view
bas been investigated by several authors including Ferreira (1977), Chin Choy and Broemeling
(1980), Smith (1980), Booth and Smith (1982), Holbert (1982) and Broemeling and Tsurumi
(1987). Time series models have been addressed but the analysis has been limited to determinis-
tically trending models with stable autoregressive errors. Stochastically trending processes have
not, so far, been considered. Also, the primary focus of much of the previous work has been on
the detection of structural change. Here, we are more interested in making inferences concerning
the trend determining parameters of the model when we allow for the possibility of structural
change.

Essentially, there are two problems associated with comparing the tread stationary struc-
tural change model under unknown change point with the unit root model. The first problem
involves testing the two hypotheses. If itis determined that the data favor the unit root mode} then
we are done. If, on the other hand, the data favor the trend stationary structural change model,
then we encounter the second problem of estimating the change point as well as the other param-
eters of the model. Throughout this discussion we focus on the first of these two problems.

3.2. Prior and posterior analysis

‘We now expand the model considered in the previous sections to allow for certain forms
of structural change. Specifically, we use as our underlying model

i =4 + Bt +dDU(r) + dgDT(r), + ¥L)y, + w1 =2,...,T-2 30)
where d, = p; — p and DU(r), = 1ift > r, 0 otherwise; dg = 8, — § and DT(r), = t—rif
t > r, 0 otherwise. The inclusion of the dummy variables DU(r), and DT(r), allow for models
with broken trends. The dummy variable DU(r), allows for a one time change in the level of the
series occurring at time r, while DT(r), permits a one time change in the slope. If2 s r 5 T-2
and either d, O or dg O then there is exactly one change in the deterministic trend occurring
at some uoknown point r and we call (30) a structural change (SC) model. If r = T then no
change has occurred and (30) collapses to the no structural change (NSC) model (1) considered
earlier. As with the NSC model, we employ the following reparameterization of (30) to focus
attention on the dominant autoregressive component of y{(L):
Vo= # + Bt + d, DU, + dDT(), + py,—; + ¥ Moy + w1 =2, ..., T-2. (30"

For the SC model the parameter vector of interest is 8’ = (u, 8, dp, dB’ p ¥, 0,10
€ R¥*4 x R, X N2 7-2), Where N 1_ denotes the set of integers {2, 3, ..., T-2}. As
before, prior views about @ are given by x(f). Since r is restricted to integer values, this prior
will be a mixture of continuous and discrete parté. Concerning the point of structural change, we
make the assumption that we have no information where it occurs. In addition, we assume that
the break point, r, is independent of the other parameters in the model. These assumptions result

in a uniform prior over r:

M) =T-3)"Lr=2...,T-2. Gn.
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As an ignorance prior for the break point r, the uniform prior is intuitively appealing and has been
wused by Ferreira (1977), Chin Choy and Broemeling (1980), Holbert (1982), Broemeling (1985)
and Broemeling and Tsurumi (1987). For the remaining parameters, we use the three sets of
priors discussed earlier.

' With the addition of the dummy variables, the focus of our analysis expands to include
‘parameters d“, dg, the possible structural change date r as well as p and 8. We obtain the uncon-
ditional marginal posterior pdf’s (pmf for r) for these parameters under the SC model in three
steps. First we determine the marginal posterior mass function (pmf) for the break point r. This
is obtained by integrating the joint posterior with respect to u, 8, d,, dg, p, ¢ and o for
r=2,..., T~2 (we exclude the endpoints r = 1 and r = T—1 to avoid singularities in the
data matrix). Next, we derive the marginal posterior pdf’s for 8, p, d, and dg conditional on the
break date r being equal to some value. Lastly, we obtain the unconditional marginal densities
simply by averaging the conditional marginal pdf’s with respect to the marginal pmf of r. For
example, the unconditional marginal posterior pdf for p is given by

P01y ) = ZI72p(rly, wiplelr, ¥, 1) (32)
The unconditional marginal posterior densities are mixtures of univariate densities where
the mixing variate is the posterior mass function of r, p(r|y, o). If the change point r is known,
then the conditional deasities, p(o|r, ¥, &), . - - , P(dg|t, ¥, &), are the appropriate ones to use
for making inferences. When the break point is unknown, the Bayesian analysis averages the
T—3 conditional densities with respect to the marginal posterior pmf of r.
Let & = (i, B, dyy dg, @), 7 = (o, 4 Ay dg, @), V' = (o, i, B dp ),
7" = (o, 4 B, dy, ©), & = (p, &) and use du(r), dr(r), V(1), Z(r), U(r), W(r) and X(r) to
represent the observation matrices of (DU(r)), (DT(r)), (1, t, DU(),, DT(r}, AY,—1» -« - »
AYi—g+1)» 01, 1, DUG), DT, AY,_1s - - - 5 AVygs 1) Oieys 1, &, DT, Ay g, . . .,
AYgeth Geets L & DU@y &Yy« -+ - 5 Yieget) & Gioy 1, t, DUGY, DT, Ay, g,
« « «» AY,_y4+1), respectively. In addition, we have the following decompositions of the sum of
squares E'{(yt - f'xt)zz

m@®) + (p — MO myy-y) + ¢ = ¥ VE'VEOG - ¥1) , 33)
m(a() + B — BE)myy) + (x — 7621 Zr)(x — 7)) , (34)
m(@(m) + @, = 3,0 2myEEpe) + (v = HD)'UE) UDE - %) ,- (35)
m(a() + (dg — dg() mw(dr() + (n — W) W)W — ) , (36)
m(0() + (¢ = EO) X' X0E ~ §0r)), 37

where m((r)) = E'{ﬁ(r)%, 4(r), are the OLS residuals for a fixed r and
o = y — Xk,
&) = &(r,0) = &(r) + (VO'VE)TIVE®'y_ 1) - p) ,
1) = #(r.8) = &() + (ZO'Z0)~'Z'~BO - B),
Hr) = #(r,d) = H) + UEUE)Y'UE) dun@, 0 - d) ,
Wn) = Wrdg) = ) + (W(r)'W(D) ™' W(ry dr(ds(r) — dg) .
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The following theorem gives, for the SC model, the marginal posterior pmf of r and the

unconditional marginal posterior pdf’s of the trend determining parameters p, g, d“ and dg based
on the priors (29) and (31).

THEOREM 2
@  prle ys i) = exp{—p® " EONPag(3(n), H))?|X()X(0)| ™ m(d(r))~T-k-412
®)  pole Y, 1) = I 2p(rly, olexp{—p~ X O} Hag;(p, &(r. o))"

X [m(0() + (p — A myg(y_pI~ TE-372
© pBley. ) = EI72p(r]y, wlexp{-5(r, £~ X O} MagG(r, £, #(r, B

X [m(() + B — BE) my(n]~T-k-372
@ pW,le, ¥, ) = ET-p(rly, exp{—Alr, d,)" XO}MKagG(r, d,), (s, d,))'?

C X [mO@) + @, — 4,0 mye@u@)]"TE-D2

@ pdgle, v, 1) = ET72p(r]y, wlexp{—p(r, dp) "X} (Moxs(B(r, dg), #(r, dp))!’?

X [m(0(n) + (dg — dg()) myydr(r)]~T~E-72

Remarks (i) Under a flat prior, the posterior pmf of r is

Py, 1) & |X@)'X()] 2 ma(e) =T -k=972,
and the unconditional posterior pdf’s of the trend parameters are mixtures of conditional Student-t
densities. These results are analogous to those obtained by Ferreira (1977) and Chin Choy and
Broemeling (1980) for the switching regression model with fixed regressors (see Holbert (1982),
Broemeling (1985) and Broemeling and Tsurumi (1987) for a summary and some extensions).
Under the approximate Jeffreys prior (23), the posterior pmf of r is

Prly. 1) & agB®)?| X)X~ miar) =T -k-47,
and the posteriors of the trend parameters are mixtures of conditional densities of the form derived
earlier.

(ii) If we define the Bayes estimator of r to be the break point with the largest posterior
mass, then we see that the Bayes estimator is very close to the classical estimator of the break
point which minimizes the sum of squared residuals.

To evaluate the evidence for the unit root model given by the data when we allow for the
possibility of structural change, we need to combine the SC and NSC posteriors of the u:end deter-
mining parameters. To do this, let q € [0,1] denote the prior probability of no structural change.
Then the posterior densities of the trend parameters become a weighted average of the NSC and
SC posteriors.

4. EMPIRICAL APPLICATIONS

4.1. The Nelson-Plosser data set
The first data set we analyze is that used by Nelson and Plosser (1982). The data set

includes the following fourteen annual macroeconomic series: real GNP, nominal GNP, real per
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capita GNP, industrial production, employment, unemployment rate, GNP deflator, consumer
prices, nominal wages, real wages, money stock, velocity, common stock prices and bond yields.
The start dates for the series vary from 1860 for industnial production and consumer prices to
1909 for the GNP series. All series terminate in 1970. We analyze the natural logarithms of all
of the series except bond yields which we analyze in levels form.

Nelson and Plosser used the model formulation (1’), with k determined from the data,
to conduct ADF unit root tests on the series. They could not reject the unit root hypothesis at the
5% level of significance for all of the series except the unemployment rate. Perron (1988) arrived
at similar conclusions using the Phillips-Perron unit root tests. In contrast, DeJong and Whiteman
(1989a) employed a flat prior Bayesian analysis based on the model (1) withk = 3 and found that
the data favored a TS representation over a DS representation for all of the series except consumer
prices, velocity and bond yields. In the spirit of Geweke (1988), their analysis focused on the
modulus of the dominant root, A, of the equation 1 —y{L) = 0 and the time trend parameter g
and they derived posterior densities for these parameters based on flat priors for the coefficients
.of (1) by Monte Carlo integration methods (see Phillips (1991b) for more discussion on the impli-
cations of this parameterization). Their inferences concerning trend behavior are based on the
posterior probabilities of the events {A = .975|A} and {8 < .001]|A}, where A is the eveat
{0 < B < .016, .55 < A < 1.055}. They found appreciable probabilities for these events for
a majority of the series only when they restricted § to be equal to zero. Phillips (1991a) also
conducted a Bayesian analysis of the Nelson-Plosser data using a flat prior and his approximate
Jeffreys prior () for the model (1') withk = 1 and k = 3. Using a flat prior, Phillips, in agree-
ment with DeJong and Whiteman, found insufficient evidence in favor of the unit root model for
most of the series. Using the Jeffreys prior, however, he found substantially more support for
the unit root model for some series (notably, stock prices, industrial production and nominal
GNP).

We expand on the analysis given in Phillips (1991a) by considering different model
specifications and by including posterior inferences for the deterministic trend parameter. We
utilize model (1) and compute posterior deasities for the long-run autoregressive parameter p and
the time trend parameter § based on the modified Jeffreys prior (29) (MJ-posteriors), Phillips’
approximate Jeffreys prior (5) (J-posteriors) and the flat prior x(f) & o~ (F-posteriors). For
each series, we compute the posteriors for the case where k is specified as in Nelson and Plosser
(1982) and for the case where k = 3 (as in DeJong and Whiteman (1989a)) to assess the sensitiv-
ity of the results to the specification of the model. In order to use the modified prior (29), we
must specify the mode of the implied prior for p by selecting a value for e. This choice
determines the degree of nonstatioﬁuity allowed & priori and may have a large impact on posterior
inferences. Instead of confining ourselves to a single value of ¢ for each series, we exploit the
convenience of the analytic representation of our posteriors and report inferences based on a broad
range of ¢ values. In this manner, we can address the robustpess or fragility of our inferences

to the specification of the prior.
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Figures 1 and 2 give the marginal posterior densities of p and 8 based on the three sets
of priors for some of the Nelson-Plosser series computed using k = 3 (see Zivot and Phillips
(1991) for a complete set of results). Each panel displays the MJ-posteriors computed for £ equal
to .001, .025 and .050. These values of £ were chosen to illustrate the sensitivity or lack of sen-
sitivity of the posteriors to the a priori degree of nonstationarity allowed. To retain comparability
with DeJong and Whiteman, we restrict € to be less than .055. Table 1 reports the posterior prob-
abilities of the events {p = 1} and {§ < 0} computed from the three sets of posteriors for each
series for Nelson and Plosser’s choice of k and k = 3. We infer that the unit root hypothesis is
not implausible if P(p = 1) = .05.

Visual inspection of the posteriors reveals that there can be considerable differences in
the shapes for the three sets of priors for some of the series. The F-posteriors are centered about
the OLS estimates and, except for consumer prices, velocity and bond yields, they give virtually
no evidence for the unit root model. For most of the series, the J-posteriors are quite similar in
shape to the F-posteriors, although the modes of the J-posteriors for p are always to the right of
the corresponding F-posterior modes and the J-posterior modes for § are always to the left of the
respective F-posterior modes. From Figure 1, we see that the p-posteriors for industrial produc-
tion and the unemployment rate are bimodal about unity and the bimodality is such that the regions
of highest posterior deasity (HPD) are disjoint, indicating considerable uncertainty about the true
value of p. The S-posterior for industrial production is bimodal and disjoint about zero. Inter-
estingly, even though the p-posterior for the unemployment rate is bimodal and disjoint, the 8-
posterior is nearly symmetric and indicates that a deterministic trend is most likely not present.
The MJ-posteriors for p and § vary considerably depending on the series and on the value of ¢.
In general, the real series appear to be trend stationary whereas the nominal series appear to have
a unit root. For all values of ¢ considered, the posteriors for real GNP, per capita real GNP,
industrial production, unemployment, and real wages show little evidence of stochastic trends.
In contrast, the posteriors for consumer prices, velocity, bond yields and stock prices indicate that
stochastic trends are quite possible. However, unlike the F-posteriors or the J-posteriors, the
MJ-posteriors for nominal GNP, employmeat, GNP deflator, nominal wages and the money stock
give some evidence for the unit root model. Moreover, this evidence is sensitive to the value of
&. When ¢ = .001, the p-posteriors are heavily skewed toward unity and the S-posteriors are
skewed toward the origin. The posterior modes for p (8), for the above series, are .961 (.003),
.933 (.002), .892 (.002), .944 (.002) and .933 (.004), respectively. For larger values of ¢, the
posteriors become bimodal and give substantial evidence of stochastic nonstationarity.

The posterior probabilities presented in Table 1 allow us to compare trend bebavior across
model specifications and priors. Consider first the model specifications chosen by Nelson and
Plosser (1982). Under the flat prior we have P(p = 1) > .05 and P(8 = 0) > .02 only for the
bond yields series. For Phillips’ approximate prior, we include industrial production, the unem-
ployment rate, nominal wages and velocity. For the modified Jeffreys prior with ¢ = .001 we

get the same results as with the Phillips prior except we include consumer prices and exclude the
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Table 1
Posterior Probabilities of Stochastic and Deterministic Nonstationary Nelson-Plosser Data
Event P{p = 1} P{8 =1}

Series k| F 1 MP M2 MP| F 1 MPH M2 MP
Nominal GNP 2 |.011 .042 .031 245 ) .01 ,035 .031 .104 .206
3].020 .081 .069 647 | .01 068 .074 310 625

Real GNP 2 ].002 .012 .006 048] .00 .009 .006 .019 .041
3]|.002 .015 .014 048 | .00 011 .013 .060 .174

Per Capita Real GNP 21.002 .010 .006 0421 .00 .007 .008 .014 .026
31.002 .013 .012 .055 .156] .00 .008 .020 .047 .120

Industrial Production 6| .005 964 .067 .287 .518| .00 955 .182 .353 .556
3].001 .19 .006 099 ] .00 .155 .012 .033 .094

Employment 3].004 .044 .024 418 00 .039 044 131 360
UnemploymentRate | 4 [.001 .092 .007 .032 .099| .59 587 .556 .556 .556
3|.001 .625 .005 .018 .038) .81 .810 .793 .793 .793

Consumer Prices 4 1.024 063 .173 99% | .00 .007 .030 .662 .954
3(1.073 .181 .221 992} .02 .050 .082 .654 .894

GNP Deflator 2 ].006 .027 .023 3051 .00 .018 .017 .096 250
3]1.005 .024 .044 .875| .00 .016 .038 .410 .876

Wages 3 ].013 .053 .059 7471 .01 042 .049 .333 730
Real Wages 2 ].001 .012 .004 .024 ] .00 .009 .003 .010 .020
3]1.002 .017 .01} 101 .00 .013 007 .037 .097

Velocity 2 |.040 313 .05%1 .197 .382| .81 .658 .687 .662 .604
3]1.070 533 .095 TJ36f 76 511 507 420 282

Money Stock 2 ].001 .005 .012 381 | .00 .005 .012 .114 328
31.003 .010 .045 982} .00 .011 .048 720 978

Bond Yields 3|.758 .99 .506 999 1 03 020 685 .032 .018
Stock Prices 2 {.004 .043 .012 147 | .00 015 011 028 .063
3 |.017 220 .046 5481 .00 077 .024 .161 .428

Notes: "F", *J", "MJ", "MI2?" and "MJ3" denote "Flat,” "Jeffreys,” "Modified Jeffreys: & = .001,"
"Modified Jeffreys: & = .025" and "Modified Jeffreys: ¢ = .050," respectively. The first value of k is
the value specified in Table 5§ of Nelson and Plosser (1982). For some series, this value is equal to 3.

unemployment rate. When £ = .050, the probability inequalities hold for all series except real
GNP, per capita real GNP and real wages. The large posterior probabilities of stochastic nonsta-
tionarity for industrial production are due mostly to the dominating behavior of the prior, which
occurs since the lag length is large (k = 6). Notice that the MJ-posteriors for unemployment do
not indicate that a unit root is preseat as opposed to the J-posteriors.

For the model with k set equal to three, the posterior probabilities computed under the
flat prior satisfy P(p = 1) = .05 and P(8 < 0) for consumer prices, velocity and bond yields.
Using the J-posteriors we add nominal GNP, industrial production, unemployment, nominal wages
and stock prices. The MJ-posteriors for ¢ = .001 give the same results as the J-posteriors except
for industrial production, unemployment and stock prices. When ¢ = .005, the unit root model
appears plausible for all of the series except real GNP and per capita GNP. Even though the
posterior probabilities of stochastic nonststionaxify for the GNP deﬂétbll, money stock and stock
price series are not very large, their p-posteriors are heavily skewed toward unity and their 8-



318 ZIVOT AND PHILLIPS

posteriors are skewed toward the origin. The posteriors are also very seasitive to the a priori
amount of stochastic nonstationarity permitted. Thus, the unit root model is not necessarily
implausible for these series as well.

Our empirical resuits are in general agreement with the results obtained by Phillips
(1991a). The only series for which our interpretation of stochastic structure differs substantially
from that of Phillips are industrial production and the unemployment rate. For k = 3, Phillips’
unmodified prior produces posteriors for p that have significant second modes beyond unity. Our
modified prior that attenuates extreme unstable values of p does not produce posteriors that reflect
this much uncertainty.

4.2. Stock price and dividend data

In this section we analyze the annual stock price and dividend data examined by DeJong
et al. (1988) and DeJong and Whiteman (1989b). These include the Dow Jones Industrial Aver-
ages (1928-1978) used by Shiller (1978), the value-weighted New York Stock Exchange Index
data (1926-1981) used by Marsh and Merton (1987) and the Standard and Poor’s 500 series (1871-
1985) used by Delong et al. (1988).

DeJong et al. (1988) conducted various classical unit root tests on the above data and they
could not reject the unit root hypothesis at the 5% level for all of the series except the Standard
and Poor’s dividend series. Using a trend stationarity test, however, they could not reject the null
hypothesis at the 5% level that 8 = 0 and p = .85 either. Faced with these conflicting results,
DeJong and Whiteman (1989b) resort to a flat prior Bayesian analysis of the type used in their
earlier paper to try to settle the issue. Based on their Bayesian analysis, they find that trend-
stationarity is strongly supported by the data and only when the trend coefficient is restricted to
zero a priori do the data admit unit roots.

Our Bayesian analysis of these series is summarized in Table 2, where we compute pos-
terior probabilities of stochastic and deterministic nonstationarity for models with k = 3 (as in
DeJong and Whiteman (1989b)) and k = 4 (as in DeJong et al. (1988)). Figures 3 and 4 display
the posterior pdf°s of p and 8 computed under the three sets of priors described earlier for a
model with k = 3. As in the previous section, the MJ-posteriors are computed for three values
of ¢ to show the sensitivity of the posteriors to the specification of the prior.

The posteriors computed under the three sets of priors vary considerably. As with the
Nelson-Plosser data, the F-posteriors for the stock price and dividend data give very little, if any,
evidence in support of the unit root model. For all of the series, the posterior probability that
p exceeds unity is less than .036 and the probability that § exceeds zero is greater than .938.

The J-posteriors, on the other hand, give considerable support for the unit root model for
all of the series with the possible exception of the S&P 500 dividend series. The p-posteriors are
bimodal about unity, with the stock price series exhibiting more substantial second modes (for
p > 1) than the dividend series. The §-posteriors are not bimodal like the p-posteriors but they
often have significant density to the left of the origin. When k = 3, all of the stock price series
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Table 2

Posterior Probabilities of Stochastic and
Deterministic Nonstationary Stock Price and Dividend Data

Event Plp 2 1} P{B < 1)
Series x| F ] Mt M2 M| F 1 Mt M2 mMmp
Dow Jones Dividends 003 .368 .009 .025 .042).008 .027 .054 .048 .052

001 445 :010 029 .050 } .003 .016 .048 048 .051
015 563 .026 .070 .114 | .051 .091 .186 .175 .175
022 899 .048 147 .244 | 068 .154 .353 .351 .367

Dow Jones Stock Prices

NYSE Dividends 009 227 .025 .078 .147 | 011 .,116 .051 .088 .140
.005 .099 .024 .073 .126 | .004 .053 .022 .061 .104
NYSE Stock Prices K 530 .045 (131 .218 | .054 .265 .165 .197 .243
025 389 .047 .144 .232 ] .029 .181 .142 .186 .238
S&P 500 Dividends .000 .140 .001 .013 .065 | .001 .003 .009 .009 .017
000 .394 .007 .050 .261 | .000 .012 .021 .028 .083
S&P 500 Prices .007 411 .025 .123 .328 | .037 .069 .156 .149 .164

SPLAEALELLAIEIVELLEWL
(%]

002 .132 :034 257 726 | .017 .030 .131 .140 .209

Notes: Sce the notes for Table 1. The data were generously provided by Charles Whiteman.

bhave P(p = 1) > .41 and P(8 < 0) > .69. The Dow Jones and NYSE dividend series satisfy
Plp 2 1) > .22 and P(B < 0) > .02. Although the S&P 500 dividend series has P(p = 1)
= .14, it has P(8 < 0) = .003 which is quite small. The evidence for the unit root model for
this series is tenuous.

The MJ-posteriors for the stock price series show some support for the unit root model
whereas the posteriors for the dividend series, with the possible exception of the NYSE series,
give relatively little support For the stock price series with k = 3 and ¢ = .001, the p-posteriors
are heavily skewed toward unity. The posterior modes are .963 (Dow Jones), .975 (NYSE) and
.915 (S&P 500). The S-posteriors are more symmetric than the p-posteriors but they bave
substantial density to the left of the origin; the §-posteriors for the three stock price series satisfy
P(B < 0) > .15. In addition, for all of the stock price series except the S&P 500 series, as ¢
is increased the posteriors for p and 8 do not change very much. For the dividend series with
k = 3 and ¢ = .001, the p posterior modes are ,719, .855 and .798 and all series have P(p = 1)
< .025 and P(B < 0) < .051. The posteriors for the NYSE dividend series are sensitive to the
value of ¢, indicating that inferences concerning the unit root hypothesis are fragile.

As illustrated above, posterior inferences concerning the stochastic structure of these stock
price and dividend series are quite sensitive to the specification of the priors. They are not,
however, particularly seasitive to the model specification. If one adopts a flat prior, like DeJong
and Whiteman (1989b), then one is led to believe that the data are trend statiopary. If, on the
other hand, one uses a Jeffreys-type prior then one is led to believe that only some of the dividend
series are trend statiopary. One cannot easily dismiss the unit root model for the stock price series
and the NYSE dividend series.
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4.3. The Nelson-Plosser data set revisited

In this section we reexamine some of the Nelson-Plosser data by considering models that
allow for the possibility of structural change in the deterministic components. Specifically, we
utilize two versions of (30). The first model we analyze, which we call Model (A), has the
restriction that dg = O a priori. This model allows for a one time change in the level of the series
occurring at time r. Perron (1989) called this the "crash® model. Our second model, Model (B),
allowsd, # 0 and dg » 0. Perron used a variant of these two models for some of the Nelson-
Plosser data to test the null hypothesis of a unit root with structural change against the alternative
of trend stationarity with a broken trend where the point of structural change was set a priori at
1929. By allowing for & flexible trend under the alternative, Perron could reject the unit root
hypothesis at the 5% level of significance for all of the series except consumer prices, velocity
and bond yields.

We now examine the sensitivity of Perron’s results to his exogeaeity assumption concern-
ing the break date by assuming ignorance about the location of the change point and computing
the marginal posterior pmf of r and the unconditional posterior pdf’s for p, £ and d,, (and d; for
stock prices). We focus our analysis on the series for which we earlier found evidence of stochas-
tic trends. These series include nominal GNP, GNP deflator, consumer prices, employment, nom-
inal wages, money stock, velocity, stock prices and bond yields. Following Perron, we use Model
(A) for all of the above series except stock prices, for which we use Model (B). We compute the
posteriors with values of k used in section 4.1 and with values of k used by Perron (1989).

Figures 5-7 display the posterior pmf of the break date r, the unconditional marginal pdf’s
of p, 8 and d“ (and dj for stock prices) as well as the conditional densities of these parameters
for r = 1929 for the nominal GNP, nominal wage and employment series (see Zivot and Phillips
(1991) for a full set of results). As in the previous sections, these posteriors are computed under
three sets of priors. The mass functions and densities are plotted for q, the prior probability of
no structural change, equal to zero to illustrate the most extreme case. Table 3 summarizes the
posterior pmf’s of r, Table 4 summarizes the posterior pdf’s of the trend determining parameters
for the Model (A) series and Table 5 gives the results for the Model (B) series (stock prices).

Consider first the posterior pmf’s of r. Because the posterior pmf’s of r give essentially
the same inferences for most of the series, we only discuss the values of the mass functions com-
puted from the MJ-posterior with € = .001. Notice that the pmf’s computed under the three sets
of priors for a given lag length are very similar and, in most cases, give the highest posterior mass
to the same value of r. In addition, the F-posteriors are generally larger than the J or
MJ-posteriors. Second, the break date with highest posterior mass varies with the lag specification
for some of the series. If we define the Bayes estimator of the break date to be the date with
highest posterior mass, then r = 1929 is chosen as the Bayes estimate for nominal GNP and nom-
inal wages irrespective of the value of k and it is chosen for employment only when k = 8. When
k = 3, the most likely change date for employment is 1894. With q, the prior probability of no
structural change, equal to zero the MJ-posterior (¢ = .001) masses associated with r = 1929 for



328 ZIVOT AND PHILLIPS

Table 3
Break Dates with Highest Posterior Mass: q = 0
Rank 1 2 3
Series k[ F 3 Mt M|l F 3 M MPLF 1 Mt MP

Nominal GNP 211929 1929 1929 1929 | 1928 1928 1928 1928|1926 1926 1926 1926
884 886 845 849 | 055 .058 .060 .060].015 .017 .019 .018
311929 1929 1929 1929 | 1928 1928 1928 1928 {1926 1926 1926 1926
901 882 .830 .83 | .044 047 051 .051].012 .015 .018 .018
911929 1929 1929 1932 | 1930 1930 1933 1929 1928 1928 1938 1933
993 992 603 999 | .004 .004 . 000 | .000 .002 .110 .000
Employment 3] 1894 1894 1894 1894 | 1893 1893 1893 1893 | 1897 1897 1897 1897
681 .675 647 648 | 183 195 235 .235].031 .028 .022 .022
81 1929 1929 1929 1929 { 1928 1928 1928 1928|1927 1938 1938 1938
449 422 208 208 | .167 .161 .108 .108] .04 057 .063 .063
Consumer Prices | 4 | 1864 1864 1864 1864 | 1920 1920 1920 1520 1873 1867 1919 1919
999 999 997 997 | .000 . . 000 .000 .000 .000
3] 1864 1864 1864 1864 | 1863 1863 1863 1863 | 1867 1867 1867 1867
GNP Deflator 21920 1920 1920 1920 | 1929 1929 §928 1928|1928 1928 1929 1929
539 578 580 567 | .073 .061 .054 .058 | .072 .061 .054 058
3] 1920 1920 1920 1920 | 1929 1929 1929 19291928 1928 1928 1928
419 472 496 486 | 133 111 085 .089].103 .088 .069 .071
1920 1920 1920 1920 | 1929 1929 1929 19291928 1928 1918 19i8

6
488 549 626 625 | .179 143 045 .045| .082 .069 .036 .036
Nominal Wages | 3 | 1929 1929 1929 1929 | 1928 1928 1928 1928 | 1930 1930 1930 1930
405 377 314 319 | .234 228 203 206 | .114 .106 .092 094 -
8| 1929 1929 1929 1929 | 1930 1930 1920 19201928 1928 1930 1930
626 .623 243 243 | 281 272 124 124 .044 048 098 .089
Velocity 2] 1946 1946 1946 1946 | 1949 1949 1949 1949 | 1947 1947 1880 1880

.157 153 147 150 | .152 136 119 123 | 130 .124 .114 .116
3] 1880 1880 1880 1880 | 1946 1946 1946 1946 | 1949 1949 1947 1947
237 237 215 218 ) L1330 127 117 .120) .119 .105 .083 .084
Money Stock 311928 1928 1928 1928 | 1929 1929 1929 1929|1930 1930 1927 1930
140 127 095 098 | 103  .092 .068 .071 ) .062 .055 .043 .044
711928 1928 1896 1896 | 1929 1929 1928 1928 [ 1930 1930 1929 1929
A54 146 102 102 | 141 .130 .054 .054| .135 .122 .044 .044

Bond Yields 3| 1967 1967 1967 1918 | 1965 1920 1965 1935 | 1966 1921 1966 1920
681 262 686 163 | 113 .178  .125 .089| 078 174 .093 .084
Stock prices 2| 1953 1953 1953 1953 | 1954 1954 1954 1954|1952 1952 1952 1952

547 528 514 515 | 143 (139 134 1351 .098 .099 .099 .099
3] 1936 1936 1936 1936 | 1937 1937 1937 193711939 1953 1953 1953
102 0100 091 102 ] 301 097 091 .091].090 .08 .088 .088

Notez: q denotes the prior probability of no structural change. Model (A) is used for all of the series except stock prices,
for which Model (B) is used.

these series are .830, .208 and .314, respectively. The Bayes estimate of r for the money stock
is 1928 (1929 had the second highest posterior mass) with posterior mass equal to .095. In addi-
tion, from the plots of the pmf’s we see that most of the posterior mass is concentrated around
r = 1929. These results indicate that a structural break most likely occurred near 1929. The
results for the other series are mixed. There is no evidence of structural change occurring at 1929
for the consumer prices or bond yields series since the most likely break dates for these series
occur at the sample endpoints. For the GNP deflator, structural change is most likely to have
occurred in 1920 (P(r=1920) = .496) and r = 1929 has the second highest posterior mass
(P(r=1929) = .054). There is no clearly dominant change date for the stock price series. The
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Table 4

Posterior Probabilities of Stocbastic and Deterministic Nonstationarity: q = 0
Model (A): y, = g + Bt + d,DU(r)y, + 8y, + I} 'pdy, | + g

Eveat P{p =1} P{8 < 0} P{d, = 0}

Series k|l F 3 M M| F 3 Mt MPlF 3 Mt MP

Nominal GNP 3] .001 .004 .007 043 | .001 .004 016 .041).009 .014 .040 .036
Employment g} .000 .008 .097 846 { .005 .012 .305 .807].191 .216 .272 .281
000 000 .025 .763 | 000 000 .059 .663].001 .001 .009 .009
Consumer Prices { 3 | .004 012 .024 .114 | 000 .000 .000 .004).000 .000 .000 .000
01 245 259 996 | .036 .048 097 .11l | 364 330 .284 299

3} .002 .010 .020 339 .001 .002 .010 .295].050 .054 .081 .081

000 000 .002 217 .000 .000 .002 .253].001 .00§ .004 .004
Nominal Wages | 3 | .001 .009 .014 .203 | .003 .010 .024 .224|.049 .066 .119 .116
000 .000 001 0421 .000 .000 .001 .001]|.000 .000 .002 .002
Velocity 3] .007 .30 029 277 | .93¢ .878 790 .750 | .537 .517 .483 485
078 578 .101 759 | 625 .478 362 .294} .356 341 .325 334
Money Stock 3] .003 .002 .038 .90 | .009 .014 .051 956 | .343 364 .417 418

GNP Deflator

Bond Yields 3].239 871 Ja7m 977 | 360 302 969 518 .767 509 .980 .248
377 946 314 987 | .005 .184 163 964 | .024 .097 .000 .801

Notes: See the Notes for Table 1. q denotes the prior probability of no str I change. The second line of probabilities
are conditional on r = 1929,

Table 5

Prior Probabilities of Stochastic and Deterministic Nonstationarity
for Stock Prices: k =3,q=0
Model (B): y, + # + Bt + d,DU(r), + dgDT() + oY1 + I¥"loAy,; + &

Event F b My M
Plp = 1) .000 .123 .001 .016
.000 .000 .000 .000

P{B < 0} .002 .004 .005 .010
.000 ,000 .000 .000

P{d, = 0} .404 .402 412 412
.000 ,000 .000 .000

P{d; < 0} .018 022 .033 .033
.000 .000 .000 .000

Notes: See the Notes for Table 1. q denotes the prior probability of no structural change. The
second line of probabilities are conditional on r = 1929.

Bayes estimate of r is 1936 with a posterior mass of .091 and P(r=1929) = .07. The posterior
pmf of r for the velocity series is bimodal with one mode at 1880 and another at 1946 and there
is very little posterior mass at 1929. These results suggest that Perron’s conditional unit root
testing results are most likely applicable to the nominal GNP, employment, nominal wage and
money stock series. His results appear tenuous for the GNP deflator and stock price series.
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Now consider the posterior pdf’s of the trend determining parameters. For nominal
GNP, since the posterior mass at r = 1929 is near .8 for all of the priors, the unconditional
posterior pdf°s (with q = 0) are almost identical to the pdf’s conditional on r = 1929. In addi-
tion, the posteriors computed from the three sets of priors are very similar. The p-posteriors and
p-posteriors give virtually no indication of stochastic nonstationarity and the d -posteriors clearly
indicate a drop in the level of the series at 1929. The trend stationarity structural change model
appears to be quite plausible for this series unless one has a large prior probability of no structural .
change. Similar inferences can be made for the employment and nominal wage series based on
the F and J posteriors. Since k = 8 for employment, the MJ-prior has a large influence on the
shape of the posteriors, as is clearly indicated from the plots of the posteriors, and, consequently,
the unit root model is given considerable posterior probability. The MJ-posteriors for the nom-
inal wage series indicate more uncertainty about the true values of the trend parameters than the
F or ] posteriors but not enough to sway inferences toward the unit root model. Inferences con-
cerning the stochastic structure of the money stock series, however, are not as clear cut. The
unconditional F and J posteriors for p and 8 are close to the conditional distributions and they give
negligible support for the unit root model. The unconditional MJ-posteriors for these parameters
display much more uncertainty about the true values of p and 8. Further, the posteriors are very
sensitive to the value of &. When & = .001, we have P(p = 1) = .038 and P( < 0) = .051
and when ¢ = .05 these probabilities become .960 and .956, respectively. More importantly,
however, the unconditional posterior pdf’s of d,, for the three priors are much different from the
conditional pdf’s. The unconditional pdf’s are centered near zero and indicate considerable uncer-
tainty about the presence of structural change. For the three sets of posteriors we have P(d, > 0)
> .34. For the GNP deflator, the unconditional pdf’s give substantial evidence for the TS SC
model with a change occurring at 1920 instead of 1929. For £ = .05, however, the MI-posteriors
indicate that the unit root model is still plausible. Last, the posterior pdf’s of the trend parameters
for the stock price series indicate that the SC model with r = 1929 is not very plausible. The
unconditional posterior pdf’s of d, and dg are quite different from the pdf's conditional on
r = 1929.

In sum, our Bayesian analysis indicates that the trend stationary structural change model
with r = 1929 is quite likely for nominal GNP and nominal wages if the prior probability of no
structural change is not too large. Further, these inferences are robust across different priors and
lag specifications. The TS SC inference for employment is fragile since it depends on a particular
lag specification.

5. CONCLUSIONS
This paper expands on the methodology introduced in Phillips (1991a) and provides a

comprehensive Bayesian posterior analysis of trend behavior in general autoregressive time series
models based on a modified information matrix prior that incorporates the interactions between
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short-run and long-run dynamics and which permits the researcher to limit the amount of stochas-
tic nonstationarity allowed. Analytic posterior densities for all of the trend determining parameters
are derived using Laplace approximation techniques. Simulations show that Bayesian methods
based on our modified information matrix priors work well when there are transient system
dynamics. Bayesian methods of trend determination in models that permit structural change or
trend breaks are also presented.

These Bayesian techniques are applied to the Nelson-Plosser historical US macroeconomic
data and to various stock price and dividend series. Our empirical results for the Nelson-Plosser
series are generally in accord with those of Phillips (1991a) concerning the presence of stochastic
trends. In addition, we find much more evidence of stochastic trends in the stock price and
dividend series than is suggested by the results of DeJong and Whiteman (1989b). Our Bayesian
analysis also shows evidence of trend breaks in some of the macroeconomic series with the breaks
occurring around 1929, thereby providing some partial support to the conclusion reached by
Perron (1989).

APPENDIX

PROOF OF PROPOSITION 1: The joint posterior is given by
Plo: 0, 3y, ) = 073 AG (o, @) VKL + 07N (o, 8)1207T
X exp{~(12)L](y, - # — Bt — v'%-1)%} (A1)
= o~ TI|AG (o, @) '2IQ + 0720} (o, 8)!Pexp{~(12)[m(t) + (03 *my(y_ ]}
X exp{~(1726%)(5 — 3(0))’'V'V(s — o))} ,
where the last line follows from the decomposition (15).
To determine the marginal posterior density of p we must integrate the joint posterior
with respect to & and o2
Pely, 1) = [[ plo.0.8ly.0dddo . (A2)
We first integrate (A1) with respect to § to give
P2, 01y, 1) & 0~ T+ Iexp( (12 [m(®) + (o= my_ P} [| A5 ,0)] 12
+ T + 0727 (0,8)Zexp{ —(1/26%)5 — §(o))'V'V(® — Bp))}ds . (A3)
Recognizing that the major contribution to the integral occurs about the vector of points 8’ = 5(p)’
= (@(p), B(p), #(p)"), the Laplace approximation reduces the integral to
V'V =126+ AG o, 30D 2TE( + 0725 (o, 3012 . (A4
Since the elements of V'V are at least O(T), this approximation has a relative error of oTh.
Combining (A3) with (A4) gives
PO, 0y, 1) & |AG(,80)| 2T + 672N] (o, 3o
x o~ T*+2=Bexp{— (12D [mW + (o—p)Pmy(y_ )]} . (AS)
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The marginal density of p is then given by
POy o) = [AG G, #eNI"2[TI1 + 072} (o, o)) 20~ T+2-0)
X exp{—(126)[m(8) + (o) my(y_pI}do . (A6)
Making the change of varisbles z = o~2 in the above integral gives
PGlY. ) = |A3 0, 2D ATA + 2] (o, B! P#—0D
x exp{~(2/2)[m(®) + (p—p)my(y_)]}dz, (A7)
where g = (T+2—k)/2. The integral in (A7) may be expressed as a confluent hypergeometric
function of the second kind with mulitiple arguments (see Phillips (1988)). If [m(D)
+ (p—py*my(y_ )] is large, then most of the value of the integral comes from a neighborhood
of z near the origin. In this case we may approximate IT{(1 + zA] (o, 3012 by 1 and (A7)
becomes
PR1Y, 1) = |AG 0, 20N 2[5~ CPexp{—(DIm(®) + (7 my(y_pl}dz. (A8)
If we let w = z{m(0) + (p—b)zmv(y_l)], then using properties of the gamma function and
ignoring terms that do not depend on p leaves us with
POly. 1) & |AG (e, @) 2m(®) + (=2 myly ]~ T ¥V, ©(A9)
This completes the proof for part (a). ‘
The proofs for parts (b) and (c) follow in & similar fashion using the sum of squares
decompositions (16) and (17).

PROOF OF THEOREM 2: Part (2). Using the sum of squares decomposition (37), the joint
posterior is given by
PErle, v, 1) & o~ T+ DT 500,00 Pexp{—o")
X exp{—(1226~HmD) + (¢ — ENXEO'XWE — EON} - (A10)
To determine the marginal posterior mass functionsof r, r = 2, . . ., T—2, we must
integrate the joint posteriors with respect to £ and o:
prle, y, ) & ffp(e, o rly, wdtda, r =2, ..., T-2. (A11)
We first integrate (A10) with respect to { to give
P(o, rle, ¥, 1) o 0~ T+ Vexp{—m@)/20~2} [(Ta § 40, o)) exp{—p 4}
x exp{—(1/20~ ) — E@)'X@)'X()E — §(r))dt '
Recognizing that the major contribution to the integral occurs a'bout £ = E@r) = (@), a0, B,
&(r)"), the Laplace approximation yields
Po tle, y, 1) & | X)X 726 TE= 9Tt § 6. 000!
x exp{—p()"*}exp{— m(d()/20-2} ,
which bas a relative error of O(T ‘l) since the elements of X(r)'X(r) are at least O(T). Next we
integrate with respect to ¢, and find

prle, ¥, @) = | X@0)X@)] ™ P@Eag;00), () Pexp{—p1)
X f o~ Tk ey ol —m(ir))/20~2}do . (A12)

20):(5)}
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Making the change of variables z = m((r))/20™2 and using the Gamma integral, we have
prle, v, 1) & XX ™12 5 B(0), SN Pexp{—p0) P pma(e) ~T k=97, (A13)
r=2,..., T—2. This proves part (a).
Consider now the determination of the posterior density of p. Using the sum of squares
decomposition (23), we may rewrite the joint posterior as
P, 0, 8, 1€, ¥, 1) = o~ TG (0, P))meXP{—cht(s)}
X exp{— (1126~ H[m((r)) + (p~AD) Myu(-1) + G=8@) VI VEE-¥N]) - (Al4)
We proceed as before and start by integrating (A14) with respect to 5 to give
P> 0, 1]E, ¥, 1) & 0~ T+ Vexp{—p ¥ }exp(—(1/2~Hm(dE) + (o — P mygy(y_ ]}
x [ 3, o) 2exp{~ (112073 — 8)'V@)V()E - 3D} - (A15)
Using the Laplace approximation, and ignoring terms that do not depend on p, o orr, the integral
that appears in (A15), may be reduced to
[ V)V =124 Tha o, 202, (A16)
which bas a relative error of (T ~!). Combining (A15) with (A16) gives
Po, 0, 1|2, ¥, 1) & | V'V e~ Tk~ I(a g (o, $() exp{—p"*)
X exp{~(1/20"D)[m(0(r)) + (o — BN mye¥_pI} . (A17)
Integration with respect to ¢, ignoring terms that do not depend on p, then yields
P, T, ¥, 1) & (Ta g (o, B(n) 2exp{—p ")
X [m(@() + (@ — A myely_ I~ TEI2. (A18)
Since plp, ri¢, ¥, ) = pll&, 1, ¥, )p(r]e, ¥, ), averaging (A18) with respect to (A13) thus
gives the marginal posterior deasity function of p. This proves part (b).
The proofs for parts (c)-(e) are straightforward extensions of the above reasoning based
on the decompositions (34)(36). They are therefore omitted.
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