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The Kalman filter is used to derive updating equations for the Bayesian data
density in discrete time linear regression models with stochastic regressors. The
implied “Bayes model” has time varying parameters and conditionally hetero-
geneous error variances. A o-finite Bayes model measure is given and used to
produce a new-model-selection criterion (PIC) and objective posterior odds tests
for sharp null hypotheses like the presence of a unit root. This extends earlier
work by Phillips and Ploberger [18]. Autoregressive-moving average (ARMA)
models are considered, and a general test of trend-stationarity versus difference-
stationarity is developed in ARMA models that allow for automatic order selec-
tion of the stochastic regressors and the degree of the deterministic trend. The
tests are completely consistent in that both type I and type II errors tend to zero
as the sample size tends to infinity. Simulation results and an empirical appli-
cation are reported. The simulations show that the PIC works very well and
is generally superior to the Schwarz BIC criterion, even in stationary systems.
Empirical application of our methods to the Nelson-Plosser [11] series show
that three series (unemployment, industrial production, and the money stock)
are level- or trend-stationary. The other eleven series are found to be stochas-
tically nonstationary.

1. INTRODUCTION

We have explored reasons for the apparent divergence of classical and Bayes-
ian statistical inference in time series applications in very recent work that
gives attention to the role of both prior distributions and data conditioning
in the practical implementation of Bayesian methods. The impact of prior
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distributions on Bayesian inference with time-dependent data was considered
by Phillips [16], who addressed the issue of determining “impartial” or “ob-
jective” priors for the parameters in simple time series models and showed
the sensitivity of Bayesian posteriors to both priors and model specification
in that context. The role of data conditioning in Bayesian analysis of time
series was studied by Phillips and Ploberger [18]. The operation of the like-
lihood principle that underlies Bayesian inference ensures that Bayesian time
series analysis is conducted conditionally on the realized history of the pro-
cess. The Phillips-Ploberger paper examined the first-order autoregressive
model (AR(1)) and showed that the mathematical effect of this data condi-
tioning by inference is to translate the model (and its reference probability
measure) to what we called in that paper a “Bayes model” (and, respectively,
“Bayes model” measure) in which the parameters are time varying and data
dependent. Methodologically, the Bayesian approach involves no commit-
ment to any “true” value of a parameter (unlike the classical approach). But,
given a particular historical trajectory, we showed in [18] that the use of the
likelihood principle, in fact, commits the investigator to a new model in
which the parameters evolve according to the latest best estimate from the
data available to that point on the trajectory. Phillips and Ploberger used this
conceptual framework to construct a new test of one Bayes model against
another. The test is a special type of posterior odds test and is based on the
Radon Nikodym (RN) derivative of the respective Bayes model measures of
the two models. The test can be used to test point null hypotheses (like that
of a unit root), it has good finite sample performance, and it has interest-
ing asymptotic properties because both type I and type Il errors tend to zero
as the sample size tends to infinity.

The main purpose of the present paper is to extend the Phillips-Ploberger
analysis to a general class of linear discrete time series models that includes
ARMA ( p, q) models with deterministic trends. Recursive least-squares (or
Kalman filter) methods are used to derive updating equations for the Bayes-
1an data density. These equations determine the precise form of the Bayes
model and Bayes model probability measure for this general class of time
series models. The Bayes model measure is used to produce a new-model-
selection criterion (PIC) that picks the model with the highest posterior den-
sity as given by the RN derivative of the Bayes model measure of that model
with respect to a general “reference model” measure in the class of compet-
ing models. This new criterion is, in fact, a generalization of the BIC crite-
rion by Schwarz [22] and, indeed, is asymptotically equivalent to BIC in
stationary time series models. The PIC criterion is used to select both lag
order and deterministic trend degree in the class of ARMA ( p,g) models with
deterministic trends. We show how to apply this procedure in the context of
a recursion that is based on the one suggested originally by Durbin [3] and
Hannan and Rissanen [7] for the consistent estimation of ARMA models.
After model selection, the posterior odds (PIC) criterion is used again to
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compare the selected Bayes model against the same model with a unit auto-
regressive root. The procedure provides a completely consistent test for the
presence of a unit root in this general class of discrete time series models and
gives an algorithm that leads to a data-coherent, parsimonious model choice
within this class.

The paper is organized as follows. Section 2 studies a general class of
linear discrete time models, derives the respective Bayes models and Bayes
model measures in this class, and explores the martingale structure of these
measures. Section 3 develops our PIC, gives its asymptotic properties, and
shows how it can be used for model selection and for testing point null hy-
potheses like that of a unit root. Section 4 gives a general application of our
methodology to the problem of testing difference- versus trend-stationarity
and provides an algorithm that incorporates both model-selection principles
and tests of point null hypotheses. Programs for the implementation of this
methodology have now been written in GAUSS-386i and are now available
in the COINT 2.0 software package for GAUSS users; see Quliaris and Phil-
lips [12]. Section 5 reports some simple simulation exercises that illustrate the
performance of the procedure in determining the presence of a unit autore-
gressive root in models that include AR(p) and ARMA( p, g) models with
and without deterministic trends. Overall, we consider these results to be very
encouraging. Section 6 reports an empirical application of our methodology
to the Nelson-Plosser data set. The empirical results are striking. Only two
series {industrial production and money) are found to have a deterministic
trend, only one series (unemployment) is stationary, and the remaining eleven
series are found to be stochastically nonstationary.

2. BAYES MODELS AND BAYES MODEL MEASURES
IN DISCRETE TIME

The model we consider is a linear regression
Ye=B%+ ¢, (r=12,...), 0))

whose dependent variable y, and error ¢, are real-value stochastic processes
on a probability space (Q,F, P). Accompanying y, is a filtration F, C F (¢t =
0,1,2,...) to which both y, and €, are adapted. The regressors x,(k x 1) in
(1) are defined on the same space and are assumed to have the property that
X; is ‘F,_, measurable. The standard example of (1) will be the autoregression
(with £ = p lags) given by

P
Ye = Z Biyi—i + &, )
i=1

which it will often be more convenient to write as

1
Ay, =hy,_, + Z YAy, + &. )

i=1
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We will also consider an augmented version of model (3) with intercept and
trend, viz.
=1
Ay =hyy + 22 @Ay +p+ vt + e )
i=1
ARMA models also fit into the general framework of (1), although in this
case the regressors are not all observable. By extending (4) with the inclusion
of moving average errors, we have (with k=p + g + 2)

p-1 q9
Ayr=hy .+ 2 eildyi+ e+ u+ vt e, 5)
i=1 J=1

which gives an ARMA( p, g) process with trend. In all these examples we will
suppose that E(e,|F,—;) = 0. In (4) and (5) the parameterization accommo-
dates a unit autoregressive root when 4 = 0. This parameterization is espe-
cially convenient when testing for the presence of a unit root. It is also useful
in setting up Bayes model alternatives to models like (4) and (5) with a unit
root. We shall be explicit about such possibilities later in our discussion.

We introduce the regression notation Y, = [¥,..., .1, Xo=[X1,..., X1,
and set A, = X, X,. We will assume that |4, | > 0 a.s. (P) for n = k. Let
g, =1i.i.d. N(0,¢?) and let us assume for the time being that the efror vari-
ance o2 is known. Then the inference problem presented by (1) is linear in
parameters. This facilitates an exact development of our theory and the nec-
essary extensions for unknown o? will be given after this development.

Conditional on Ty and 3, the joint density of Y,, with respect to Lebesgue
measure (v) is

dpf _ 1\
pdf(Y,|Fo,8) = = (270?) ””exp{ —(272)2 (¥ — B’Xt)zl
1

dv
1 . a
= (27r02)‘"/2exp{—(r‘2) [T, U,

+ (B = BYAn(Bn — 6)]} ,

©6)

where U, = Y, — X,,8,, 8. = (X, X,)"' X, Y,, and PF is the probability
measure of Y,. The corresponding measure when 3 = 0 will be denoted by
P, and will serve as a possible reference measure in the analysis that fol-
lows. The likelihood ratio process is then the ratio of these densities, i.e.,

4

dP, 1
L,(B) = dPn = eXP{—(E(?) [—268'X,Y, + B'Anm}

1 N N . .
:CXD[<ZT‘2'> [ﬁp;AnBrz_ (Bn_ﬁ)/An(Bn—ﬁ)]} (7)
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By combining (6) with a prior density 7 () for 8, we have the joint density
of (8, 7,) conditional on ¥, 1.e.,

pdf(ﬁs YnlrFO) = W(ﬁ)pdf(YnV.FOaﬁ)

1\ -
— [(ZWUZ)_(H—H/ZlAnl—VzeXp{_(7‘2) HU"J:I

X [w(ﬁ)(27r02) —k/2|A,|?

1 - N
Xexp{_(z_i) (ﬁn_B)IAn(Bn_B)}} (8)

For w(B3) = m, = constant, this expression gives a marginal posterior density
process for 8 of the form

IL,(8) = (27roz)—"/2|A,,|“2exp{—(2%‘2) (Bn — BYAn (B — 6)}

= N(B.,024;"). ©

This is the usual Gaussian posterior density for the parameters in the linear
regression model with known error variance. The density is centered on the
maximum likelihood estimator 3,, is based on the data Y,, and has variance
matrix ¢24;".

If we integrate 3 in (8), we obtain the data density for Y, viz.

1 NN

pdf(Y,|TFo) = mo(2mo?)~"072 |A,,|‘Vzexp{ - (F) U,;U,,} . (10)
(42

Let O, be the measure whose density with respect to v is (10). Then

Q.= f m(B)PdB = mg f Pidg, (1)

le IRk
and thus
dQ,

ae; . _
dPn = fmkﬂ'(ﬁ) d—l),, dﬁ = j;{kw(ﬁ)Ln(B)dﬁ

1\ . R
To(2m0?)* 2| A, "/zeXp{ (F)BAA,,B"} .
(42
Next observe that {taking expectation with respect to the reference measure P, )

40,
£ [ aP,

CFn—-l:I =f W(B)E(Ln(ﬁ) |an—l)d)6~
R¥

By using (7), we can compute the conditional expectation of the likelihood
directly as
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CFn—l)

E(Ly(8)|Fyoi)
1

= expl —{ =55 | (=28'X) Yooy + B'A,8) | E[exp] (= )87%,7
20

g
1 1
= exp{— (272> (=28 XY, + B’Anﬁ)} eXp{ (;)B'xnxm}

1
= exp{ - (272) (=28'X; 1 Yooy + B’An_lﬁ)}

=L,.1(B)
by using the fact that y,|F,_, = N(x;8,¢%) under P,. Hence,
dQn f dQn—l
E rF,,._ = Ln_ dg = ’
[dPn 1} o T(B)L,-1(B)dB P,

and dQ, /dP, satisfies the martingale property under the probability mea-
sure P,. Notice that this conditional expectation is finite even though
E(dQ,/dP,) is not finite (and dQ,/dP, is therefore not integrable) when
w(B) = 7 is constant, This is easily seen from the last equation for which
dQ,_,/dP,_, = o when n < k because |A4,_;| = 0 in this event.

By collecting these results together and by using £, ( - | F,) to denote con-
ditional P, measure given F,, we have the following theorem.

THEOREM 1. Under the uniform prior n(B) = my = (27) %, the ( prob-
ability) density of the data Y, = [y1,...,¥.] generated by the model (1),
conditional on Yy, and taken with respect to the reference measure P, is
given by

d p 1 —-1/2 1 . .

The density process dQ,/dP, is a P,( - }CF,) martingale for r = k. Although
dQ,/dP, is not integrable with respect to the unconditional measure P,, it
has finite conditional expectation and satisfies the martingale property

E 40 Foor| = dQn-s a.s.
dP, dP,_,
Joralln=k+ 1. |
Remarks.

(1) Expression (12) is the likelihood ratio of the measure Q, with respect
to the base measure P,. It may be used for both hypothesis testing and
model selection purposes, as we will explain below.

(i) The density dQ,/dv = p.d.f.(Y,|T,) given by (10) is not integrable
over the space R”, which supports the variate matrix Y,,, and thus Q, is a ¢-
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finite measure rather than a proper probability measure on R”. Hence, the
use of the parentheses around the word “probability” in the statement of the
theorem. This feature of Q, is the consequence of the use of an improper
prior 7 (8) = m, on B over R. As we shall show, the conditional measures
based on Q, are, in contrast to Q, itself, proper probability measures, and
it is the sequence of conditional measures that defines the characteristics of
the Bayesian solution to the problem of inference in the model (1). We shall
use these conditional measures to construct a model, which we call the “Bayes
model” of the data, that Bayesian inference implicitly uses in place of (1).

(iii) The general form of the RN derivative dQ, /dP, that is given in (12)
is invariant in large samples to the use of a wide class of continuous prior
densities 7 (-). To see this, we note that if the excitation condition (i.e.,
Amin (A,) = o as n — o) holds, we may apply the Laplace approximation
to the integral that defines dQ, /dP, and gives

o
dp,

=f T(B)L.(B)dB ~7r(6n>(27r02>“2|An|~'/2exp{(#)B;,A,,Bnl.
IRk

Because 7(8,) =, 7(8) as n — o when the excitation condition applies,
dQ,/dP, is asymptotically proportional to the formula given in (12). This
argument continues to hold in quite general nonlinear models, which leads
to the same general formula in (12). A complete treatment of the general case
is discussed in [18,19]. [ ]

First, it is of interest to define the model of the data for which Q, is the
(probability) measure. From (11) it is apparent that this measure is actually
a weighted average of the measures P? (whose density dP/dv is given in
(6)) with weights delivered by the prior density « (). The measure Q, is, as
we have remarked, a o-finite measure for the data Y,. Equation (12)
becomes undefined when there is insufficient data (i.e., # < k) to determine
3,. and in such cases |A,| = | X:X,| =0. It is therefore appropriate to re-
gard (12) as defining an admissible measure for the data provided a minimal
amount of information has already accumulated so that n = k and |A4,,| =
| X7 X,| > 0. As we shall see, conditional on the accumulation of such min-
imal information to initialize the process, Q,, as given by (12), leads to a
proper conditional probability measure, and this conditional measure defines
a new (Bayesian) model for the data that replaces the classical model (1).

Consider the data density p.d.f.(Y,|Fo) given by (10). An alternative way
of writing this density is to employ the prediction error decomposition, viz.

pdf(Yn|rF0) = H pdf(y,]"F,_])pdf(YklfFo)

t=k+1

(27)~ (nh)2 f[ [f,"”exp{—(%) V,Zdef(YkFFO).

t=k+1

(13)
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In this decomposition,
V,=y,-—f/,l,_1=y,—-6,'_1x,, t=k+1,...,n

are the prediction errors and J,,—; is the best forecast of y, by using infor-
mation available up to time ¢t — 1, i.e., information in F,_;. The forecast
error variance conditional on F,_, in (13) is given by

fi=0*1 +x] A x), t=k+1,...,n,
and the conditional distribution of », given F,_, is
ve|w,, = N(O,f).

Expression (13) is simply derived from the formulae for recursive least
squares (see Brown, Durbin, and Evans [3]). Note that

|Anl = IAn—l +xﬂxi/ll = IAn—l,(l +X;,A;_11X,Z)

= [ H (1 +X;A7_]|xt):l|Akl’

t=k+1

(Yn - Xn)én)’( Yn - Xn)én)
= U Uy + (0 — %5B,- )M — X045 X,)

=3
S
I

n (¥n = X3B01)?

= Ur/r—l Un—l
(&
02
n
> vl
— Aé(‘jk+ t__IL
£
UZ
n
I
1=k+1

(%)

because U, = Y, — X, B3, = 0. To establish equivalence between (10) and
(13), we simply set the initial conditional density of Y to be

pdf( Yy |TFo) = mo| Ag| V2.

Next, observe that
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dQ, _
= pdf(Yk‘ CF()) (27|.)—(n—/<)/2 H [f,"l/zexp{ — (L) Vtz} :| N
t=k+1 2ft
so that
agy, _ —1/2 _ i 2{ —
dQ,,_.l - (27rfn) eXp{ (zﬁ’)ynl "'N(Osfn)s

which gives the conditional density of the data at the latest observation, n,
by using information on the trajectory up to the time period n — 1. This con-
ditional density is proper and holds for all #» > &, which leads to the follow-
ing general statement of the result.

THEOREM 2. The Bayesian conditional density of the observation y,
given t,_, (i.e., information on the historical trajectory up to time t — 1) is

oo = pdf(| i) = <2vrﬁ>~“2exp[—(2iﬁ)vf} = NBt1 0 S,
t=k+ 1L k+2,... (14)
The Bayes model corresponding to this data density is ’
Yo=Bloix + v, wherev|, =N(O,f), (15)
that is,
E(v|Tc)) =0, E(v?|TFmy) = fi = 0H1 + x{ A7} X}, (16)
and By = (X1 Xe2))' X (_1Y,_\ is the least-squares estimate based on in-
Jformation in F,_,. |
Remarks.

(i) In contrast to (1), the Bayes model in (15) is a time-varying parameter
model where 3,_, evolves according to the best estimate of the slope coef-
ficient that is available from the latest data. The error process in (15) is con-
ditionally heterogeneous with conditional variance f;, as given in (16), and
is explicitly dependent on the past data. The form of the conditional hetero-
geneity is nonlinear in {x,:s =1+¢ ¢t — 1,...,1}. As information about the
process y, accumulates (i.e., as Ay, (A,) — o), the conditional variance f;
tends to a constant value ¢2. This formulation of the Bayes model for the
data extends the one developed in [18] for the AR(1) model.

(ii) The prediction error decomposition of the density pdf (Y, |F,), from
which (14) is derived, is closely related to the traditional prediction error for-
mulation of the likelihood function that is based on the Kalman filter (see,
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e.g., [8]). There is, however, a major difference in the use of the Kalman
updating algorithm in these two cases. In the traditional use of the updat-
ing algorithm, it is the likelihood function (as a function of the parameter
vector ) that is extracted. In that case, the optimal predictor of y, from
F,—1 would be y,,_, = B'x, and, in place of (15), we would have

¥ =B'x, + »,, where », = N(0,0%), t=k+1,...,n
) Fra1

That is, the Kalman filter produces the exact likelihood (conditional on
Fx and B) of the classical statistical model (1) that we started with. By con-
trast, in our use of the updating algorithm, it is the Bayesian data density
pdf (.| F.—;) that is generated by the algorithm. It is this data density,
given by (14), that prescribes the implied Bayes model of the data.

(iii) The data density in (14) is exact, as is the Bayes model in (15). When
we relax the Gaussian error assumption and the uniform prior assumption
in (1), under both of which the density pdf (Y, ] Fo) given in (10) is derived,
the data density in (14) holds only approximately. The same is true when the
error variance ¢2 in (1) is treated as an unknown parameter. In these cases,
a large-sample approximation theory for the likelihood leads to an asymp-
totic density and Bayes model that have the same form as (14) and (15). In
the latter case, because it is assumed in the development of the asymptotics
that Ay (A,) = o as t — oo, the conditional variance of the prediction error
in the approximate Bayes model is E(» | F,_,) = o rather than (15), which
applies exactly in the Gaussian case. A general theory that covers these cases
is to be reported elsewhere [19].

(iv) The Bayes model in (15) can be interpreted as a simple “location
model” in which 3;_, x, provides the best estimate by using data from F,_,
of the location of the latest observation y,. Another way to express this idea
is as follows. Bayesian analysis proceeds by conditioning on the observed his-
torical trajectory. As we move along such a trajectory, the best Bayesian esti-
mate (delivered by the posterior mean of the conditional predictive density
of y,) given the data record i{l For 18 Yrpe— = 8,_, x,. Thus, Bayesian infer-
ence about y, is centered on 3/_, x,. Under Gaussian assumptions about the
errors in the model and a uniform prior on the coefficients we get, in place
of the original time series model in (1), the simple location model in (15) with
Gaussian errors »,. The only complication is that this model evolves period
by period and is conditional on the historical record to F,_;.

(v) We call (15) the Bayes model because it is the exact model for the data
that is implied by the use of traditional Bayes methods under a Gaussian like-
lihood and (improper) uniform prior. Such methods lead to the Gaussian
posterior density N(8,,s2A; ') given by (9) when working with the full
sample of data Y,. This density is obtained by taking the product of the
prior and the likelihood or the likelihood ratio (giving # (8)L, (8)) and by
rescaling to achieve a proper density, i.e., the posterior density (9) is
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1,(8) = T(B)Ln(B) _ m(B)L.(B) a7

aQ,\ ’
fmkﬂan(ﬁ)dﬁ <dPn>

where the last equality follows from (12). By noting that L,(8) = dP/dP,,
we deduce that

7 (B)dP}
g,

Thus, the posterior density II,,(8) = N(8,, 62A,;') is the direct outcome of
employing the likelihood ratio LE(3) = de/dQ,,. This is the density of the
measure P° of the model (1) taken with respect to the measure Q, of data
Y, generated by the time-varying parameter model (15). Under this transfor-
mation of the measures, the reference measure P, is replaced by the Bayes
model measure Q, in constructing the likelihood. With this new reference
measure, associated with model (15), it is natural that inference about 8 be
centered on 5, when it is conducted through the posterior I1,,(8). In this
respect, Bayesian analysis of the time series regression model (1) is identical
to Bayesian analysis on the linear regression model with fixed regressors. The
equivalence is the result of data conditioning and the implicit use of the mea-
sure @, in constructing the likelihood. ’

I.(8) =

THEOREM 3. (a) The least-squares estimator B, is a local Q.-martingale,
has finite conditional expectation under the measure Q,, and satisfies the
martingale property

EQ,(Bt‘(Ft~I) = Bl—l-

(b) Under the Bayes measure Q,, the conditional distribution of f, given
Ty, is normal with mean 3,_; and covariance matrix 0*(A; — A, e,

Bile_ =a N(Biey, 0¥ (AT — ATY) = N(Beo 1 AT X X{ AT,

(¢) Under the Bayes measure Q,, the posterior distribution 11, = N(,,
o2A; 'Y is a local martingale, has finite conditional expectation, and satis-
Jies the martingale property

Eo [N, o?A ) |Fisy] = N(Bi_y, 02 A7),

Proof. (a) From recursive least-squares formulae (e.g., Brown-Durbin-
Evans [3, lemma 2}) we have

Br = Bt_l + (X;Xt)_lxr(}ﬁ - xtlBt—l) = Bz~1 + Aflerr-
Under Q,, we have Eg (»|F,_;) = 0 by Theorem 2 and, hence,
EQ,(BI‘(Ft—l) = Bt—l:
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as required. The process B, is a local Q,-martingale because Q, is o-finite
and, thus, 5, is not Q, integrable, i.e., Ey (,) does not exist.
(b) From Theorem 2 we have », |°F,_. = N(0,f;) and, hence,

Bt’q'-t—l :dN(Bt—l,ftAt—lxtx/At_l)-
Next, observe that

A xx] AL
-1 _ -1 -1 [t R A T !
A7 = (A +xx)” =A — —

&
where g, = 1 + x/ 47} x,. Also,
A—l /A—]
A7l = (A, = xx) T = AT 4 SRR
hy

where 4, = 1 — x]A;'x,. Now,

x]A,_1x)?
hy=1—x/A,_1x + (% ; 1)

H

1
<g> (g —x/A 1 xg + (X;A!—lxt)z]
'

1

&y

Hence,

ALy — AT = g AT X XA,

and because f, = o%g,, we deduce that
Bl =a N(Biy, 0 (AT — ATY)),

as required.
{(¢) The characteristic function of the posterior distribution II, is

cfi(s) = explis’'B, — (3)o2s° A7 's).

Now,

Eo (cfi(s) | Fiy) = explis’B,, — (3)0?s’ A7 s)Eg,[exp(is’ AT x,v,) | TFimi ]
= exp{is’Bi_y — (3)0’s’ A7 s}exp(— (1)fis’ A7 x,x{ AT s)
= exp{is'B—1 — (3)0%5'4,-,5)
=¢fii(8).

This shows that under the measure Q, the characteristic function cf, (s) sat-
isfies the martingale property. It follows that ¢f,(s) and hence the posterior
distribution II, are local Q,-martingales.
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Remarks.

(i) Theorem 3(a) tells us that §, evolves as a martingale under the mea-
sure Q,. Part (b) of the theorem shows that 5, is a Gaussian process with
conditional variance matrix

var(B,|Fim1) = oX(A7Y — A7) = LA X x AT

This is the conditional variance of the martingale difference 8, — 8,_,.
Observe that this variance matrix is singular when & > 1. In the time period
from 7 — 1 to f only one additional observation, viz. x,, on the regressor is
available. The increase in precision with which 3, is determined depends on
this extra observation and is measured by ¢?(A2}, — A7) = LA xx] AT
As t — oo, the variance matrix ¢2(A,Zy — A;!) — 0 when the excitation con-
dition Ay (A,) — oo holds. In this case, 8, =, 8 and the conditional dis-
tribution 3, | F,_, converges to a point process with unit mass at £.

(ii) Part (c) of the theorem shows that the posterior distribution II, also
evolves like a martingale under Q,. As new information accumulates, the
mean and variance matrix of the Gaussian measure II, evolve according to
the processes (B,) and (02A;"). The best estimate (under the Bayes measure
Q,) of the posterior II, given F,_; is simply IT,_,.

3. MODEL SELECTION AND HYPOTHESIS TESTING

Trajectory-dependent location models like the Bayes model in (15) can be
expected to be hard models to beat, precisely because they rely so intimately
on the existing data record. One important element in assessing how satis-
factory such models are in practical applications is the dimension of the
respective parameter spaces that they require. In fitting the historical time
series trajectory, improvements in fit are (almost) always possible by raising
the dimension of the parameter space. This is certainly true in the present
context where y,,—; = B{_,x, in (15) is the best predictor of y, given data
in CF,_[ .

General model selection principles introduce penalties for increasing the
number of estimated parameters. Among the most popular of these in time
series contexts are the order estimation criteria AIC of Akaike [1,2] and
BIC of Schwarz [22] and Rissanen [21]. The statistical properties of these cri-
teria have been intensively investigated in both stationary and nonstationary
autoregressive and autoregressive-moving average models. Hannan and Deistler
[6, Ch. 5] provided a detailed discussion on the subject. A general treatment
that is suited to the present context and that establishes strong consistency
of order estimates for variants of the BIC criterion applied to the regressor
selection problem in stochastic regression models is given in Pdtscher [20].
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Applied to (1), order estimates by BIC of the dimension k& of 3 are obtained
by minimizing the quantity

BIC, = In(67) + kh;(”), (C1)

where 67 is the maximum likelihood estimate of o2 from the model with
order k. Consistency of BIC order estimates have been obtained for station-
ary autoregressive-moving average models by Hannan [4,5] and nonstation-
ary autoregressive and stochastic regressor models by Paulsen [15], Tsay [23],
and Pdtscher [20].

In our context, a natural measure of model adequacy is provided by the
data density dQ,/dP, given in (12). The principle we use, which seems
appealing in this case, is to choose the model with the greatest data density,
that is, the model with the greatest likelihood ratio or posterior density in the
general model class. We now proceed to develop this criterion.

Let QFf be the Bayes model measure given by (11) for a model with &
parameters (i.e., 8 € R* in (1)). We rewrite (1) and our later notation to
incorporate the index “k,” which signifies the number of regressors. Thus,
we set

Y, = X (k)B(k) + E,,  An(k) = X, (k) X,(k), (18)

B (k) = [ Xy (k) Xy (K] X (k) Yy En(k) = Yo — X, (k)Ba(K),

Sk = En (kY E, (k). 19)
Then,
dQk 1 -2 1\, .
= |l k — A, (k k
ap, '<02>An( ) exp) | 5,2 Bn (kY An(K)Ba (k) 1, (20)
where (kK = 1,2,...,K) is a sequence of alternative densities for Y, taken

with respect to the reference measure P, of the null model in which ¥, = E,,.
We let K be some maximum number of regressors and suppose that if &, is
the number of regressors in the true model, then ky, < K. Of course, if ky = oo,
then we will need to allow K — o as n — o« to accommodate this possibility
(just as in the application of AIC and BIC model-selection principles).

We may proceed directly to maximize (20) over k. However, in general it
will be useful to employ a more relevant reference measure than P,. One
such measure with nice properties is QX because this corresponds with the
“least restricted” option in the class. By multiplying the RN derivatives,
we obtain
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ok [ dok <dPn
aok — \ ap, ) \dQ¥
1 —1/2 1
- (0] (s
[¢2 [¢2

1\ . . s R
X exp{<272> (8. (k) An(K)B, (k) — BH(K)/AN(K)Bn(K)]}- 21

1/2

This expression is the likelihood ratio of the measures corresponding to the
two Bayes models:

H(fo) :yn-H = Bn(k),xn—%—] (k) + Vr{{—%—l;
H(QX) 1 ¥op1 = Bu(K) X001 (K) + 05,

The first model has & regressors x,(k); the second, which is the reference
model, has K regressors x,,(K). The likelihood ratio dQ¥/dQX measures the
support in the data, as it is embodied in the data density, for the restricted
model against the base model with X regressors. If we assign equal prior odds
to the two models, we may actually test H(Q/) against H(QX) by using the
criterion

d k
dg"],’( > 1. (C2)

This criterion, as we discuss below, gives a completely consistent Bayes model
test in that the probabilities of both types of error tend to zero as n — co.

The following partitioned regression notation will be helpful in formulat-
ing some alternative representations of (21).

Y, = X, (K)B(K) + E, = X, (k)B(k) + X, (%)B(*) + E,,
Ay (%) = X, (%Y X, (%),
Ay (%, k) = X, (%) X, (k),
An (% k) = Ay (%) — A, (%, 5)A, (k) A, k%),
Ba(*) = [ X, (%)X, (%)
— X (%) X, (F) (X (kY X, (KT X, (K) X, ()]
X [ X, (%) Y, — X, (%) X, (k) (X, (k) X, (k)7 X, (k) Y],
&(k)} k
0 K~-K
s = (Y, — X, (K) B, (k) (Y, — X, (K) B, (K)),
ssg = (Y, = Xy (K) By (K (Y, — X, (K) B, (K)).

Accept H(QX) in favor of H(QK) if

Bu(k,K) = [
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The expressions given in Lemma 1 follow from standard regression
manipulations.

LEMMA 1.

e A
‘;gi: - (é)An(**.k) _mexp{(%)&(*)'An(**.k)&(*)}, 23)
Zg; _ <$>An(**.k) "‘/Zexp“ 1 )(6,,<1<> Bk, K)) A, (K)

X (B (K) ~ Bn(k,K»}- (24)

Remarks.

(i) One advantage of using the reference measure QJ is that it provides a
general model for the estimation of the error variance ¢ by giving

. 1 A N SSk
Z= Y, — X, (K KW(Y, — X, (K K)) = ,
K <n—K>( n 2(K)B, (K)) (Y, #(K)B,(K)) DK

which is the least-squares estimator of o2 in (1) when there are K regressors.

This estimate of o2 can be used in formulae (21)-(24) and leads to our
model-selection criterion,

PIC, = <fig” )( 62)

1 —1/2 1 R R
= ‘(q)z‘h(**-h' eXP{(7)6,1(*)%”(**-/()6”(*)] (C3)
oK ZUK
and order estimator
k = argmin, PIC,. (25)

In minimizing PIC,, we are maximizing the reciprocal 1/PIC, = dQ}/dQ¥
and thereby choosing the model, H(Qy), that we favor most over H(QX)
according to the data density.

The properties of this new order estimator will be studied systematically in
another paper. The procedure is asymptotically equivalent to BIC in station-
ary autoregressive and stationary autoregressive-moving average models. In
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models with some autoregressive unit roots, however, the PIC criterion (C3)
is asymptotically different from BIC. The PIC criterion attaches a greater
penalty than BIC for additional regressors in this case and involves a pen-
alty that is asymptotically of the form d (&, k,,)In(n)/n where d{k,, k,) =
ks + k,(k, + 1), k; is the number of stationary regressors and 4, is the num-
ber of autoregressive unit roots in the system, The BIC criterion (C1) may
be regarded as a specialization of PIC to the case of stationary regressors.
Both criteria produce consistent order estimates, but, as the simulations in
Section 5 show, PIC outperforms BIC in terms of correct model choice even
in stationary autoregressive systems.

(ii) An alternative version of the PIC criterion can be obtained directly
from the conditional Bayes model measure in (14). We have the density (con-

ditional on F)
[ _ i; (Vtk)z }
—(Hn— K+1 2ftk
= pdf(Yn|‘FK) = (27)"("K)2 exp .

" 172
- (i)

K+1

doy
dv

The idea is now to compare the Bayes models H(Q}) and H(QJX) in terms
of their densities over the same subsample, viz. # > K. We then have (con-
ditional on Fy)

Qv | _ [ { Jj)”z [ [(vﬂz_ (W]
dox |¢ .~ <,£Il 7E) PR o T o }

where f/ = o2{1 + x,(kY'A,_,(k)"'x,(k)). If we now estimate o2 by using
the reference model with K parameters (i.e., the most complex model), this
leads us to the following alternative form of the PIC criterion.

aoxr ., < ff)” { [vt(k)z w(K)ZH
PICF, = = ry — — — , C3
= GgF 0=\ 1L 7 ) el 2 27 ok ©

where
FE =63+ x, (k)Y Ay (k) x, (k)),
FE =620 + x(KY A, (K)'x,(K));
vi(k) = p, — Bey (kY x,(K), vi(K) = 3 — B (K)'x:(K).

The form of PICF has the distinct advantage (over PIC) that it is invariant
to linear transformations of the regressors x, (k) and x,(X). Because PICF
is constructed from the measures of the competing Bayes models over the
same subsample of data, the criterion is free from initialization differences
and (implicitly) prior distributions on the parameters. The criterion is as close
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to an “objective” Bayes criterion as we can hope to get —it is dependent only
on the data history over the subsample from ¢t =K + I, ..., n.

(iii) As-constructed in (C3) PICF is simply the conditional density
dQk/dQX |, conditional on ¢® = G%. As such, we can think of PICF as
a conditional version of PIC, wherein we condition on “presample” data
t € [1,K]. We use the letter “F” in the acronym to emphasize that PICF is
a forecast version of the PIC criterion. As is clear from the formula (C3’),
it is simply the ratio of the forecast error densities of the two Bayes models
over the subsample 1 € [K + 1,n]. The criterion PICF may be justified in
the same way as a classical criterion in that, conditional on ¢* = 2, PICF is
the ratio of the asymptotic approximation to the forecast error densities. The
advantage of the Bayesian interpretation is that dQ, /dQ,f [¢ is explicitly a
density, and one does not need to be concerned about the effects of “plug-
ging in” the maximum likelihood estimator 3, in generating forecasts and in
calculating the forecast error variance.

(iv) To the extent that one prefers its invariance properties and its relation-
ship to a classical forecast error density ratio, the criterion PICF will seem
preferable:to PIC. PICF also has the advantage that it can be used as a basis
for forecast encompassing tests [17]. The criterion PIC does have some of
its own advantages. First, it can be justified asymptotically for a wide class
of (non-Gaussian) likelihood functions [18], so we may expect it to have cer-
tain robustness properties. Second, PIC does make use of all of the data by
not conditioning on Fx. In situations where n is small and X is a non-
negligible fraction of n, there could be a distinct advantage to using PIC.
Finally, PIC is computationally straightforward, whereas when n is large
PICF involves much more intensive computations. The latter can be reduced
somewhat by using recursive least-squares formulae or by calculating PICF
directly from PIC with adjustments for the marginal data densities for Yx.

(v) When this paper was in the final stages of write up, we learned of some
related work on model selection by Wei [24], Wei suggested a criterion (called
“FIC”) based on the use of the “Fisher information” |4, (k)| as a penalty
rather than a simple parameter count. Wei’s criterion was to select the model
(i.e., k) that minimizes

FIC, = néf + 6% 1n| A4, (k)|,

see [24, equation (5.1.1)]. By using (22) and (C3), our criterion can be trans-
formed to

2 In(PIC,) =

(ssk—ssK) ’A NETN3) ‘)

A (k)

A

[ssk + 6%1n

K
} Ssk /G2 lnl A"A(Z )
Ok
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The quantity in brackets is asymptotically equivalent to FIC, when the
penalty term In|A4,(k)| in FIC, is replaced by the scale invariant term
In| A, (k)/?2| (this modification to FIC was suggested in [24, Remark 5.3).
Wei’s justification for the FIC, criterion was that it is more meaningful to
use statistical information that was relevant to the model (i.e., In|A4,(k)|)
as a penalty rather than the dimension of the parameter space (k). Our
justification for PIC, is that it is actually the posterior odds in favor of the
mode] with & parameters over the reference model in the given class. Our jus-
tification shows that PIC (and the asymptotically equivalent FIC) are Bayes-
ian criteria that are founded on the principle that one should choose the
model that is most favored by the data a posteriori (i.e., in terms of its pos-
terior odds). Development of the respective Bayes model measures Q% and
QX for competing models in the class is the essential element in deriving the
criterion PIC, and this idea is capable of substantial generalization beyond
the present context.
(vi) The exponent in (C3) is one-half times the quantity

B (%)

6%

W, = B (%) A, (*%.k)

’

which is the Wald statistic for testing the hypothesis that 3(#*) = 0 in the par-
titioned model,

Y, = X, (k)B(k) + X, (*)B(*) + E,.

Assume that the model is autoregressive or autoregressive with trend as in
(2), (3), or (4), possibly with some unit roots. Then, by using the asymptotic
theory developed by Park and Phillips [13,14], it is easy to show that W, =
O,(1) as n — o when the null hypothesis

Hy(*):8(x) =0

is correct. Now 62 —, 0% and |A,(**.k)| = O,(n™) for some integer m =
K — k, again under the null. Hence,

(dQé‘
doy
as n — o under H(*). On the other hand, when H(x*) is false, we have

W, = O,(n%) for some ¢ = 1, and, hence, (dQX/dQF) (&%) diverges as
n — o. By stating this result formally, we have the following theorem.

)(51%) =0

THEOREM 4. Let the true mode! (1) be autoregressive or qutoregressive
with trend as in (2)-(4) with stable roots and possibly one or more unit roois.
A Bayes model test of

Ho(*):8(%) =0, against H,(*): () # 0

is based on the criterion
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d K
Accept Hy(*) in favor of H,(*) if <dgn"> (62) < 1. (C4
1
This test is completely consistent in the sense that both type I and type I
errors tend to zero as n — oo. | |

Remarks.

(i) Theorem 4 can be applied directly to test for the presence of a unit root.
For instance, in model (4) weset K =p + 2, k=p + 1, B(*) = h (the
coefficient of y,_,) and x, (k) = (1,£,Ay,—1,...,AY_p+1). The criterion
(C4) then determines which of the following two Bayes models the data
favors:

~ -l
H(Qrf(zp+2) :Ayn+l = hnyn + Z ﬁoinAyn+l—i + K + 'Yn(n + 1) + €41
i=1

or

p—1
HQEP Y i Appir = 25 @inAVnir=i + Bn + Yu(n + 1) + &,41.

i=1

The second model explicitly incorporates a unit root. Both have data-
determined and time-evolving coefficients. The only reason for not prefer-
ring H(QX=P*2) is that it carries the cost of an additional parameter. The
criterion (C4) assesses this cost through the penalty that is incorporated in
the denominator of (dQX/dQX)(6}). If this cost outweighs the gain that is
measured in terms of the reduction in the error sum of squares (i.e., (S —
sSx)/6%, as in the formulation (22)) from the inclusion of the additional
regressor, then the criterion favors the presence of a unit root in the model.
When the cost does not outweigh the gain, then H(QX=7*?) is chosen and
the unit root rejected. '

(i) In testing the hypothesis Hy(*) by using criterion (C4), we are em-
ploying the PIC model-selection criterion to assess the evidence in the data
in support of two Bayes models, H(QX) and H(Q}). We have justified
PIC as the likelihood ratio of the respective Bayes measures of these mod-
els. The PIC criterion could be interpreted as a form of posterior odds.
Because posterior odds usually involve the use of proper priors on the param-
eters (albeit often with rather arbitrarily chosen domains of integration), it
may be useful to clarify the justification for our procedure. As we have
emphasized in Section 2, the Bayes measure O, given in (12) is o-finite in
view of the use of the improper prior 7(8) = 7o = (27) ~¥? in its construc-
tion. Because our data are time series, we carry with Q,, a filtration F,,, and
as n increases, we evolve away from the improper prior. As shown in Theo-
rem 1, the density dQ, /dP, is a martingale and indeed a proper probability
density with respect to P, (- |F,) for any 7 = k. The test criterion (C4) is
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based on the likelihood ratio dQX/dQF = (dQFX/dP,)/(dQ}/dP,) condi-
tional on ¢ = 67 and is similarly a proper density with respect to QX(- |F,)
for 7 = K. We may therefore justify (C4), and thereby PIC and PICF, as a
proper likelihood ratio or Bayes test with prior odds ratio set to unity. The
Lindley paradox [10] does not arise here because our criteria PIC and PICF
are not affected by boundaries of the parameter region that are used in the
construction of conventional odds ratios; see Zellner [25, pp. 302-306] for
a detailed discussion of this issue in relation to the Lindley paradox. One of
the advantages of our martingale structure and the theory of Section 2 is that
it gives us an opportunity to work with improper priors and yet still perform
a type of posterior odds analysis. This is because we can construct and jus-
tify our criteria PIC and PICF directly as likelihood ratios. We mention that
one possible critique of our use of the criterion PIC in this way is that it
depends on the constant setting of the improper prior density 7(8) = m, =
(2m) %%, Like the bounds of the parameter region in a conventional pos-
terior odds test, this constant is somewhat arbitrary, and if this is a matter
of concern, then PICF can be used rather than PIC. The justification for the
particular constant o = (27) %2 is that under P, (wherein y, = ¢, = i.i.d.
N(0,0%)) we have n™* A4, —, oI, when the model form is autoregressive.
Then, twice the scaled log likelihood ratio is

kr2 57 -1
zm(” 90\ _ Biddnby | n~' A,
dap, a? g
BrAnBn
= = + o,(1),

which is asymptotically identical to the classical Wald test of the hypothesis
Hy : B =0 for which P, is the relevant measure of the data. The effect of
o is to influence the size of statistical tests that are based on the PIC ratio.
Our normalization my = (27) “*/2 is calibrated to that of the classical Wald
test (up to an appropriate power of n) for the null model that corresponds
to the base measure P,. As will be apparent from our experimental results
in Section 5, the size of the test is in the range of 2-10% for a unit root test
in an ARMAC(1,1) model when n = 100. This level of the test seems quite
reasonable.

4. TESTING DIFFERENCE-STATIONARITY VERSUS
TREND-STATIONARITY

Bayes model tests of the form given in (C4) may be used to test any sharp
null hypothesis (like that of a unit root) about a model. As our discussion
makes clear, the test compares one Bayes model with another, and the out-
come of the test depends on the balance of the gains versus the costs of addi-
tional regressors. The testing apparatus will be employed in this section to



PIC AND MODEL SELECTION 795

assess evidence for trend- versus difference-stationarity. In such cases we
must give attention to the gains and costs of including a deterministic trend
as well as additional lagged variables. As pointed out in Section 1, our
approach, as well as our methodology, is different in this respect from exist-
ing work on this problem, both Bayesian and classical, in which a determin-
istic trend is often a maintained element in the fitted model. Our Bayesian
model-selection criteria will be used to determine the stochastic regressor
components of the model as well as the form of any deterministic polyno-
mial trend. We therefore do not maintain the presence of a polynomial trend
function in the model as in (4) but instead rely on our selection criteria to
decide whether it should be included and, if so, in what form.

In addition, we wish to allow for more general stochastic regressor mod-
els than autoregressions. The reference model we use for assessing evidence
in favor of the presence of a unit root is the ARMA( p,qg) + trend model
given earlier in (5) (and repeated here for convenience):

p—1 q
Ay, =hy oy + 2508y + 2t p v+ & (5)

i=1 J=1

where g, = i.i.d. N(0,0?). To deal with the MA error components in (5), we
propose employing the first two stages of the so-called Hannan-Rissanen [7]
procedure. This involves the use of a (possibly) long first-stage autoregres-
sion in place of (5) to estimate the error process g,. The residuals from the
first-stage autoregression are then used to replace the lagged errors g,_; in
the MA component of (5) in the second stage. In both first and second stages,
a consistent model-selection procedure (like BIC or PIC) is used to determine
the appropriate order of the regression. In addition, we apply a model-
selection procedure to determine the order of the accompanying trend poly-
nomial. The precise steps in our procedure are detailed in full in the following
algorithm,

Algorithm 1. Model Selection and Data-Based Unit Root Test

Step 1. Set maximum orders for the stochastic and deterministic compo-
nents of the model as follows:

K = maximum autoregressive lag,

J = maximum moving average lag,

L = maximum degree of polynomial time trend.

Step 2. Run a sequence of long autoregressions with a fitted time trend
of the form

k—1 L
Ay, = Goyio1 + 2, @AY+ 2, byt’ + residual 26)
i=1 £=0

H
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for k =0,1,...,K. Choose K > K to be large in this step (for example, we
might choose K = 10 or 15 when the sample size n = 100). (When & = 0, the
regression is “y, = 214_ byt ’ + residual” and there is no autoregressive com-
ponent.) Select the order of the autoregression by using the PIC or BIC cri-
teria. If PIC is used, it is helpful to run regression (26) with k = K first to
set the reference measure. Let & be the selected order of this regression.

Step 3. Runa Sequence of autoregressions with fitted time trends of vari-
able degree of the form

k-1 ¢
Ay, = Goyim1 + 23 4;Ay,_; + 2, bt/ + residual Q7
i=1 Jj=0

for £ =-—1,0,1,..., L. (When £ = —1, no intercept is included in (27).) Select
the order of the trend polynomial by using the PIC or BIC criterion. (Again,
if PIC is used, run the regression (27) with ¢ = L first to set the reference
measure.) Let { be the selected degree of the polynomial time trend from this
regression. Compute the residuals from this regression and call them &,.

Step 4. Run a double sequence (or array) of regressions with lagged resid-
ual regressors &._, of the form

k—1 ¢

P q
Ay, = QoY+ 25 @AY+ D23 bt/ + 3 &€, + residual (28)
i=1 Jj=0 §=1

for (k=0,1,...,k =max(k,K); g =0,1,...,J). Select the orders of the
moving average and autoregressive components simultaneously from this
array of regressions by using the PIC or BIC criterion. If PIC is used, the
regression (28) can be run with k = &k and g = J first to set the reference mea-
sure. If BIC is used, it is preferable to compute the estimate of ¢ that is uti-
lized in the criterion (C1) from the second-stage regression (28) by means of
the recursion

k [ q
& = Ay, — Qo Yy — Z G;Ay._; — Z bit! + Z éer_s,
i=1 J=0 s=1

with the initialization € = y, = 0 for ¢ =< 0. Kavalieris [9] shows that this
method leads to improved estimates of the autoregressive-moving average
orders. Let p and § be the respective order of the autoregressive and mov-
ing average components selected from this array of regressions.

Step 5. Run the regression (28) with selected orders p, d,¢ of the auto-
regressive, moving average and trend components to give
p=l i
Ay, =dyy. . + Z GAY, i+ D bt + 3Gk + &, (29)

i=1 J=0 s5=1
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Step 6. (a) If p > 0, compute the Bayes model test criterion (C4) to assess
the support for the presence of a unit root in the selected model (29). By writ-
ing (29) in the regression notation
Ay =dyy_, + Z5 + &,
the test criterion has the simple form

M

1 _ —-1/2 1 . _
{(—Az)y’_ley_I} CXPI('——A2>0(%())’—1PZ.V—I)I; 30)
O ZO'K

where M=p+ g+ 0+ 1, P,=1—Z(Z'Z)"'Z’, and 6} = €&/ (n — M).
The Bayes model with a unit root is favored over (29) when BLR(4;,) < 1.

(b) If p =0, we accept that there is no autoregressive component in the
model and, hence, no autoregressive unit root. ]

BLR (ap)

l

The order estimators ( §, §,£) are consistent estimators of the true orders,
provided the latter are finite (see Hannan [4], Hannan and Rissanen [7], Han-
nan and Diestler [6, Ch. 5], and Kavalieris [9] for details in the case of the
BIC criterion). Also the fitted residuals &, are consistent estimators of g,_
in (29). (If the true model has an MA component, the residuals are still con-
sistently estimated in the firsi-stage regression (26) with & = K because KX is
selected to be large and is allowed to tend to infinity with n, so that the
selected AR order £ — oo in this case.) It follows that (29) is asymptotically
correctly specified and (@, — ag)* (¥~ Pzy_;) = O,(1) where a, is the true
value of @,. Furthermore, y”, P, y_, diverges as n — o so that the statistic
BLR(a) —, 0 as n — o when a, = 0, whereas BLR (q,) diverges to infin-
ity when @, # 0; see Theorem 5.

THEOREM 5. The Bayes model likelihood ratio criterion BLR (ap) given
by (30) provides a completely consistent test of the hypothesis of a unit root
in the class of finite parameter ARMAX( p,q,t) models with trend poly-
nomials as exogenous regressors.

Remarks.

() The sequence of model-selecting regressions in Algorithm 1 can be used
for a variety of ultimate purposes. Here we have focused on obtaining a data-
based unit root test using our Bayes model test criterion (C4). This relies on
the BLR(a,) statistic given in (30). We could also use the algorithm to
extract a Dickey-Fuller type -test for a unit root in terms of a long autore-
gression (leading to the so-called ADF or augmented Dickey-Fuller test); but
in our procedure a general ARMAX system would be considered, and our
order-selection methods would be employed to determine the best model
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before attempting to test for the presence of a unit root. Work on this alter-
native procedure is now proceeding and will be explored in a later paper.
(ii) A major difference between our procedure and the ADF procedure as
it is used in practice is that we allow the data to select the order of the trend
polynomial. As a result, our test procedure is not invariant to the presence
of trend or the trend coefficients themselves. We view this as an advantage.
Indeed, the stronger the trend is, the more likely our procedure is to find a
trend to be present in the data in finite samples. Moreover, if the true model
has a unit root with drift, then our procedure will asymptotically select a
model with a unit root and intercept, i.e., model (29) with ¢, = 0 and ¢ = 0.
In this sense, our statistical procedure will be economical on the number of
parameters and, unlike the Dickey-Fuller procedure, will not always include
parameters and variables that are unnecessary under the null hypothesis.
(iii) We may also be interested in the Bayes model produced by Algorithm
1, for example, if we wish to use the model for forecasting. In such cases we
may wish to proceed with the third stage of the Hannan-Rissanen procedure
(see [6, Ch. 5] and [7]) to obtain asymptotically efficient estimates of the
coefficients. Work along these lines is contained in Phillips [17]. [ ]

All of the procedures outlined in this section of the paper have been pro-
gramed in GAUSS-386i and are available. When n = 100, K = 10, K = 3,
J =3, L =1, the computation time taken by the algorithm on a 486-33 PC
is approximately 0.85 second.

5. SIMULATION EVIDENCE

Simulations were conducted to evaluate the performance of our model-
selection criterion PIC and our data-based algorithm for detecting the pres-
ence of a unit root. We shall discuss these experiments in turn.

5.1. Model Selection by PIC

The model chosen for this experiment was the AR( p) given by (2) with p = 3
and g, =i.i.d. N(0,1). In the PIC criterion the reference model used in the
construction of PIC, in (C3) was an AR(K) with K = 10. The BIC criterion
given in (C1) and the AIC criterion [1] were also used for comparative pur-
poses. A sample size of n = 100 was used, and a large grid of autoregressive
coefficients were considered, thereby giving a range of models from three
unit roots to a nearly i.i.d. process. In terms of the roots (\;,i = 1,2,3) of
the characteristic equation of the autoregression, we took a grid of values in
increments of 0.20 for each root X; in the interval [—0.8,1].

The results are graphed in Figure 1, which gives a surface that displays the
difference between the estimated probability (based on 10,000 replications)
of a correct model choice by PIC and BIC, respectively. The surface shows



(b) first root 0.60
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that PIC outperforms BIC almost uniformly over the parameter space con-
sidered here. The probability of a correct model choice by PIC exceeds
that of BIC by over 0.06 in some cases and by more than 0.02 on average.
Observe that PIC improves BIC not only in the nonstationary and near-
nonstationary regions but also in the stationary region of the parameter
space.

Table 1 gives detailed model-choice statistics for AIC, BIC, and PIC for
eight specific parameter configurations of (A;,2,A3), including stationary
and nonstationary cases. Only in the case where (A;,\;, ;) = (0.4,0.4,0.4)
does BIC choose the correct model more times than PIC and then the esti-
mated difference P(correct model choice by BIC) — P(correct model choice
by PIC) = 0.005. In this case all the criteria favor the more parsimonious
AR(2) over an AR(3), and BIC underestimates the order by choosing an
AR(1) more frequently than PIC. For the other parameter values, PIC
clearly dominates BIC in terms of correct model choice by as much as 10%
in some instances (e.g., A = 0.80, A, = 0.80, A\; = 0.40). The tendency
toward overestimation of model order by AIC is evident in all cases.

b.2. Posterior Odds Data-Based Tests for a Unit Root

Table 2 shows estimated rejection probabilities for the data-based unit root
test described in Algorithm 1. An ARMA( p,d) + trend (#) model is con-
structed with estimated orders p, ¢, and ¢ by using Steps 1-6 of the algo-
rithm. The estimated rejection probabilities given in this table are obtained
from 1,000 replications. The unit root test is based on the posterior odds ratio
given by (30) when p > 0. The odds favor the presence of a unit root when
the statistic satisfies BLR(&,) < 1. When p = 0, a unit root model is auto-
matically rejected because there is no autoregressive component in the se-
lected model.

For the first case, given in Table 2 (top), we considered models with no
trend, and the maximum degree of the polynomial trend was set at L = —1
in Step 1 of the algorithm. Results for both ARMA(1,1) and AR(2) models
are shown in the table. For the ARMA(1,1) model and n = 100, the rejec-
tion probability under the null (when @ = 1.00) is in the range 0.06-0.09 for
all values of the MA coefficient 6, except § = —0.8. At § = —0.8, the rejec-
tion probability is 0.173, and in this case the algorithm more frequently
selects a model with no autoregressive (and moving average) component that
gives p = 0. The rejection probabilities rise rapidly for all values of § as «
departs from unity. When n = 150, the rejection probabilities at the null are
noticeably smaller than when n = 100, which corresponds to the fact that the
type I error for this test goes to zero as » increases. Again, rejection proba-
bilities (or power) increase rapidly for @ # 1, Similar observations apply to
the AR(2) model. In this case, the size characteristics of the test are more sta-
ble at » = 100, although rejection under the null decreases as the second AR
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coefficient p — 1.00, as would be expected because there are now almost two
unit roots in the model. The power in this case is substantial for all param-
eter values except p = 0.80 (again, because the second root is near to unity).
Size decreases and power increases when n increases to 150, as in the
ARMA(1,1) case.

Table 2 (bottom) shows corresponding results for the same models and
parameter values but has a linear trend in the generating mechanism and al-
lows the algorithm to select the trend degree as well as the lag orders. In
this case, the rejection probabilities under the null are much higher than in
Table 2 (top), as would be expected. In finding the best model for the data,
the algorithm frequently favors a Bayes model with evolving trend and tran-
sient dynamic coefficients even when there is a unit root. When » increases
from 100 to 150, the probability of rejecting the presence of a unit root under
the null falls and the procedure clearly has more discriminating power for
samples of this size. For the AR(2) + trend model, the rejection probabili-
ties under the null are lower and more uniform than for the ARMA(I,1) +
trend model. Power increases rapidly in this case except when p = 0.80, in
which case the presence of the two positive and large autoregressive roots
leads to somewhat lower rejection probabilities (e.g., 0.46 fora =p =0.8
when n = 150).

Overall, we find the results of these simulation exercises to be quite encour-
aging. Even for cases where classical unit root tests have serious size distor-
tion, like the ARMA(1,1) model with a strong negative moving average
effect, the data-based procedure seems to work quite well. As in the case of
classical tests, the presence of trends generally reduces discriminatory power,
but when n = 150, the data-based procedure gives acceptable results, espe-
cially given the complexity of this problem and the disappointing perfor-
mance of other methods. For AR models with trend, the procedure seems
to work rather well.

6. EMPIRICAL ILLUSTRATION

The methods of Sections 3 and 4 were applied to the 14 historical U.S. time
series studied by Nelson and Plosser [11]. For each of the 14 series we applied
Algorithm 1. We set the maximum polynomial time trend degree at L = 1
in Step 1, the long autoregressive lag parameter in Step 2 at K= 10, and the
maximum ARMA lag lengths in Step 4 at X = J = 3. Both ARMA + trend
and AR + trend models were employed. We used our model-selection crite-
rion PIC to choose the trend degree and AR order and the BIC criterion to
choose the ARMA lag lengths in Step 4. The BIC criterion was used in the
latter step because it was simpler to program. In future work we plan to use
the PIC criterion throughout once the software is written to accommodate
ARMA specifications.

The empirical results are shown in Table 3. Real GNP, nominal GNP, and
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per capita GNP are all found to have AR(2) specifications with no determin-
istic trend but with a unit autoregressive root. The posterior odds in favor
of the unit root for these series ranges from 60:1 to 400:1. These are odds
in favor of the Bayes model with a unit root against the corresponding Bayes
model without the unit root; see remarks that follow Theorem 4. This result
provides strong Bayesian confirmation of the earlier classical results of Nel-
son and Plosser [I1].

Omnly two series (money stock and industrial production) are found to have
linear deterministic trends. For these two series, the odds against the pres-
ence of a unit root in the Bayes models are around 6:1 and 3:1, respectively.
Unemployment is found to be stationary with a nonzero mean (i.e., the
model with fitted intercept is selected in favor of a model with a linear trend
and a model with no trend and no intercept).

All of the remaining series are found to be stochastically nonstationary.
The nominal wage series provides a very interesting case where a Bayes model
with a mildly explosive, long-run autoregressive coefficient of 1.0054 is
selected over a model with a unit root. The nonstationary models selected for
all of the other series have unit roots. In the case of the stock price series,
the odds in favor of the presence of a unit root are close to 100:1.

Table 3 also details the models and the lag orders selected. We note that
11 of the series are found to be autoregressive, either AR(2) (6 series) or
AR(1) (5 series). Three of the series are autoregressive-moving average, either
ARMA(1,1) (unemployment and the nominal wage) or ARMA(2,1) (the con-
sumer prices).

Results obtained by restricting the model class to be purely autoregressive
are given in Block B of Table 3. All of the conclusions concerning stochas-
tic nonstationarity are the same. The only important change from restrict-
ing the class of models to be autoregressive is for the nominal wage series.
In this case, an AR(2) model with no deterministic trend is selected (as dis-
tinct from an ARMA(],1)) and the posterior odds are in favor of the pres-
ence of a unit root as compared with a mildly explosive autoregressive root
when the wider model class is used for model selection.

7. CONCLUSION

This paper puts forward what we believe is a new paradigm for Bayesian
inference in time series. As we have shown in Theorem 2, the effect of data
conditioning in a time series model is to alter the context of statistical infer-
ence from the original model to a location model, like (15), where B,x,., is
the best estimate of the location of y,,; given the historical trajectory (i.e.,
information in F,). In such a context, a Gaussian (or asymptotically Gauss-
ian) posterior density for the parameter vector 3 that is centered on the max-
imum likelihood estimate f3,, seems eminently reasonable, whereas it is much
less reasonable in the context of the original time series model because of the
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poor sampling properties of 3,. We call location models such as (15) “Bayes
models” because they arise naturally in the passage to the posterior density
due to data conditioning. Associated with these models are probability mea-
sures that we call “Bayes model” measures. Our new paradigm for Bayesian
inference works explicitly with these Bayes model measures. The measures
allow us to compare models and to conduct tests, almost as we do in classi-
cal theory, by using likelihood ratios. What is especially powerful in the new
paradigm is that problems that have been separately treated before in time
series analysis (like model selection and hypothesis testing) are now treated
simply as different aspects of the same common theory. Thus, a model is
selected when its density under these new measures is the largest in a given
class. And a point null hypothesis is favored by the data when the likelihood
ratio of the Bayes model densities exceeds given prior odds, which we typi-
cally set to unity. In other words, the likelihood ratio or RN derivative of
the respective Bayes model measures allows us to discriminate statistically
equally well among models and among sharp hypotheses about parameters
in those models.

The empirical results of Section 6 provide support for the earlier con-
clusions of Nelson and Plosser [11] concerning the presence of stochastic
trends in U.S. historical time series. Especially interesting in these results is
the fact that deterministic trends receive support from model-selection meth-
ods for only two series (the money stock and industrial production). These
series and the unemployment rate are the only series found to be trend- or
level-stationary.

We emphasize that our approach to inference is very different from both
classical and Bayesian methods that have been adopted heretofore in stud-
ies relating to the presence or absence of unit roots in economic time series.
Because our methods are data based and integrally involve model selection,
we allow the data to choose the most appropriate model. As more data accu-
mulates, this approach recognizes the potential need for the model itself to
evolve. And when the model changes, so too may the conclusions concern-
ing the presence or absence of stochastic nonstationarity. We view this flex-
ibility and updating as an inherent advantage of our approach.

This approach to Bayesian inference in time series models has many appli-
cations beyond those presented here. We plan to report on analytical exten-
sions of the theory to nonlinear models, multivariate models, and models
with cointegrated processes in future work.
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