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1. INTRODUCTION

Since the mid 1980°s there has been enormous growth of interest in the sta-
tistical analysis of trending time series. Recent research has focused on meth-
ods that attempt to distinguish the nature of the trending mechanism and,
in particular, to determine whether it is best modeled through deterministic
time trends (such as polynomial functions of time) or stochastic trends (such
as random walks or integrated processes). A concomitant interest in the
applied macroeconometric literature has been the decomposition of aggre-
gate time series such as GNP into components that may be deemed persis-
tent and those that may be deemed transitory. Such decompositions are
important in macroeconomic thinking and policy analyses because the impli-
cations of persistent shocks are quite different from those that are transitory.

Econometricians and statisticians are also interested in the effects of sto-
chastically trending time series on forecasting. The practical implications for
forecasting the long-run behavior of a set of trend-stationary series are very
different from those of time series with some unit roots and possibly some
cointegration. The effects of nonstationarity in forecasting are particularly
relevant when one has to evaluate the long-term effects of investments. For
example, in evaluating public investments in economic infrastructure like
information highways, high-speed trains, or large airports it is necessary to
forecast the effects of the investments over time horizons such as 15-20
years. How we model the nonstationarity in the data then has a big effect
on forecasts and forecast-confidence intervals over such long time horizons.
Similar considerations apply to insurance companies in determining the level
of pension premiums that are designed to cover indexed pensions in 20-30
years’ time.
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Although much of the emerging literature on the topic of nonstationary
time series has been written by econometricians with economic applications
in mind, many of the results and methods are of more general statistical
interest and have been obtained by statisticians and probabilists. Indeed, ini-
tial work by Fuller [6] and Dickey and Fuller [3,4] on statistical testing for
Gaussian random walks provided a starting point for subsequent work. Solo
[21], Phillips [12], and Chan and Wei [1] demonstrated the utility of func-
tional limit theory in this context and, most recently, Jeganathan [8]
employed these methods to develop a general asymptotic theory of inference
in models that permit roots on the unit circle. Thus, the field has provided
a very active interface between statistics and econometrics.

There are many subjects of ongoing interest and development that seem
appropriate for a fertile exchange of ideas in this field. Foremost among
these at the present time is the question of Bayesian versus classical meth-
ods of inference concerning trends in time series. This is a topic on which
there is now active research [2,13,17,19,20] and yet there are still many issues
to be resolved, including the logical formulation of priors that properly
accommodate nonstationary time series models, Bayesian modeling that per-
mits general forms of weak dependence in time series, Bayesian asymptotics
that allow for nonstationary processes, Bayesian treatment of non-Gaussian
data, and computational issues. Also important, but only now under devel-
opment [5,14] is a classical theory of optimality in testing for the presence
of unit roots and cointegration.

This special-themed double-issue of Econometric Theory draws together
researchers from statistics, probability, and econometrics to address some of
these topics and provides a productive exchange of perspectives between
Bayesian and classical statistical methodologists.

2. THE YALE-NSF CONFERENCE SERIES

The papers included in this issue (with three exceptions) were all presented
at a conference on “Bayes Methods and Unit Roots” that was held at Yale
in the spring of 1992. All of the papers included are written by conference
participants. The conference was the first in a series at Yale on the general
theme of “Applications of Functional Limit Theory to Econometrics and Sta-
tistics.” The conference series, which at the time of writing is still ongoing,
is supported by a grant to Yale from the National Science Foundation, and
its intention is to foster the growing interaction between professional statis-
ticians and econometricians that is taking place in this general subject area.

The conference on “Bayes Methods and Unit Roots” was held over a two-
day period in April 1992 and was jointly organized by Peter Phillips and
Christopher Sims. The final program of this conference is printed at the end
of this series of papers. Twenty-three visitors from outside of Yale attended
the conference, which contained three invited lectures delivered by James
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Berger, Herman van Dijk, and Bruce Hill, and twelve contributed papers.
In preparing this symposium double-issue of ET, all of the papers have fol-
lowed our normal review process, and we thank the authors, conference par-
ticipants, and external referees for their assistance in making possible this
joint publication of the conference proceedings.

3. CONTENTS OF TVHIS SYMPOSIUM ISSUE

The papers brought together here are the direct response to our invitation to
contribute to the general subject of “Bayes Methods and Unit Roots.” We
did not lay down any preconceived notion of which topics were the most rel-
evant or important in this general subject area when we approached poten-
tial participants (although the original Yale proposal to the NFS did lay out
interesting ongoing themes as described in the Introduction). The grass-roots
response that we received from our contributors gave rise to the following
topics:

e the choice of a noninformative prior in the univariate and the multivariate auto-
regressive model (Berger and Yang; Kleibergen and van Dijk; Uhlig; Schotman);

¢ the importance of model parameterization, the choice of priors, and the effect
of initial values on posterior and predictive distributions (Kleibergen and van
Dijk; Schotman; Uhlig; Zivot);

o the effect of thick-tailed rather than Gaussian distributions on Bayes inference
(Geweke);

* the use of Markov switching principles to entertain dual specifications (trend-
and difference-stationarity) for each observation (McCulloch and Tsay);

» data-based model selection with posterior odds for possibly nonstationary time
series (Phillips and Ploberger);

* Bayesian forecasting for economic time series (Hill);

® classical pretest problems and Bayesian alternatives for inference when the order
of integration is unknown (Elliot and Stock);

¢ testing the null hypothesis of stationarity (Choi);

* Bayesian encompassing tests and unit roots (Florens, Larribeau, and Mouchart).

Berger and Yang study and compare various approaches to the construc-
tion of a noninformative prior for the AR(1) model. They show that the “ref-
erence prior” approach works satisfactorily for the stationary case but not
for the explosive case. To address the difficulties that are encountered in the
explosive region of the parameter space, they develop and recommend a sym-
metric version of the stationary reference prior. Simulations show that the
symmetrized reference prior works reasonably well in terms of the implied
sampling properties of the posterior mean and Bayes confidence sets.
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Hill puts forward a modeling procedure that is based on Bayesian princi-
ples for forecasting economic time series. The idea is that future observations
can be predicted by taking a weighted average of the optimal predictions of
two competing models in which the weights are delivered by the Bayesian
posterior probabilities of the models. An illustration is provided where one
model is a simple random walk and the alternative is an external shock (or
significant real-world event) that frees the data from its past behavior. This
approach to forecasting is related to the multiprocess modeling ideas sug-
gested by Harrison and Stevens [7] and exposited in West and Harrison [22].
In effect, the predictions are generated by averaging over models and thereby
incorporate different ways of representing the past data.

Kleibergen and van Dijk introduce a cointegration model in which cointe-
gration may be tested by a variable addition procedure. By using flat priors,
they show that the marginal posteriors of the cointegration vectors are ill-
behaved when certain parameters become nonidentified, which occurs when
the model is difference-stationary. They propose the Jeffreys prior, which
is proportional to the square root of the determinant of the information
matrix, and discuss different cases of the Jeffreys prior. Special attention is
given to the effect of the initial values in a multivariate autoregressive frame-
work. Kleibergen and van Dijk’s methods need to be applied to other eco-
nomic examples to assess the empirical value of their work.

Zivot considers the unobserved components representation of an autore-
gressive model. The issue here is that in the presence of a unit root compo-
nent the location parameter of a deterministic trend is no longer identified.
The use of improper priors yields improper posteriors in such cases. By ana-
lyzing carefully the effect of the initial observation, Zivot presents a solution
to this difficulty in which the posteriors are proper and posterior odds anal-
ysis is possible.

Schotman studies the effect of different parameterizations and prior
dependence between parameters in an AR(1) model with an intercept or sup-
plementary regressor. By working with an error correction model formula-
tion, Schotman gives a prior density whose limiting forms (as certain
parameters approach the limits of their domain of definition) include the uni-
form and the Jeffreys density. Schotman shows that the posterior density can
be very sensitive to the degree of prior dependence between the parameters.
In the case of an AR(1) with an intercept or an unconditional mean, the
weaker the prior dependence between the mean and the autoregressive coef-
ficient, the more the posterior of the autoregressive parameter is shifted
toward a unit root. As in the case of the study by Zivot, this conclusion is
affected by the local identification problem that occurs for the intercept when
the AR parameter is unity.

McCulloch and Tsay treat trend- and difference-stationary models as two
competing hypotheses for each observation and introduce a Markov switch-
ing scheme to estimate the probability of the appropriate state for each obser-
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vation. A Gibbs sampling procedure is introduced as a computational
procedure. The proposed method allows the researcher to monitor the evo-
lution of the two competing hypotheses over time. An empirical- illustration
of the technique shows that postwar U.S. monthly industrial production is
generally well modeled as difference-stationary except for the latter part of
the series where the classification is less clear.

Geweke relaxes the assumption of normally distributed disturbances to the
case of Student-f distributed disturbances in an autoregressive model repre-
sentation, where the prior density on the autoregressive parameter depends
on the sampling interval of the time series. By using a Gibbs sampling tech-
nique, Geweke obtains posterior results of the parameters of interest. His
empirical findings suggest that the move from normally distributed to
Student-# distributed disturbances is important in many cases. This confirms
parallel research of Kleibergen and van Dijk [9] who concluded that the step
from homoskedastic to heteroskedastic disturbances is less important than
the step from normal to Student-¢ disturbances.

Uhlig calculates the Jeffreys prior for an AR(1) process by using the exact
likelihood. The latter is computed under the assumption that the process
started up at some distant but finite date from the first recorded observation
(¥0). Uhlig compares the form and properties of Jeffreys prior constructed
from this schema with the Jeffreys prior that is derived from the data-density
conditional on ¥,, as in Phillips [13]. His results in this analysis support the
use of a flat prior in the nonexplosive region, as used in Sims and Uhlig [19]
only when yg = 0 and there is no constant or trend. In other cases, there are
major differences between the Jeffreys prior and a flat prior.

In a second paper, Uhlig gives a personal view and discussion from a
Bayesian perspective of some rules he argues are useful for applied research-
ers and macroeconomists who are analyzing nonstationary economic time
series. Next, he discusses the consequences of the presence of unit roots for
medium-term forecasting, again from a Bayesian point of view. By taking
parameter uncertainty into account, he obtains predictive distributions that
are asymmetric and have tails that are sensitive to the prior treatment of
explosive roots.

Elliot and Stock consider a bivariate regression model where the regres-
sor may be 7(0) or I(1). Their focus of interest is inference on the regres-
sion coefficient, and they show the size distortions that can arise from either
ignoring potential nonstationarity or using unit root pretest procedures to
determine the appropriate asymptotics. They propose an alternative mixture
approximation to the limit distribution of the usual regression ¢-test that is
a mixture of the two conditional asymptotic distributions corresponding to
the 7(0) and I(1) possibilities. The mixture itself relies on a statistic that
effectively selects the class of the regressor as the sample size gets large and
thereby has the correct asymptotic size.

DeJong and Whiteman conduct a Bayesian analysis of the validity of the
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restrictions that the present-value model imposes on a vector autoregressive
model. They compute a weighted average of the conditional probability of
restrictions given trend- and difference-stationarity where the weights are
given by the prior probabilities of the two states. Given a tight prior, which
is popular in forecasting, the present-value model is not favored by the data,
while allowing for more prior uncertainty yields a more favorable outcome
for the present value model.

Choi develops classical tests for the null hypothesis of level- and trend-
stationarity by using the LM principle. The idea is similar to the LM test for
stationarity in Kwiatkowski et al. [10] and the LM test for an MA unit root
in Saikkonen and Luukkonen [15]. The limit distributions of the tests are
nonstandard functionals of Brownian motion, but Choi gives alternative
exact expressions for them in terms of chi-square statistics and the Gauss-
ian error function. Application of this procedure and conventional unit root
tests to U.S. macroeconomic time series gives mixed results: for some series,
the inferences concerning stationarity unit roots are compatible; for many
series they are not, indicating that the discriminatory power of the data is not
strong, at least through the medium of these tests.

Florens, Larribeau, and Mouchart illustrate the Bayesian approach to
encompassing by using the simple Gaussian AR (1) model with a known vari-
ance. The model with and without a unit root is considered, and an encom-
passing procedure is mounted to test whether the root is unity. The procedure
involves the computation of a Bayesian pseudotrue value, which permits the
extension of the null model (here the Gaussian random walk) to the alterna-
tive (the Gaussian AR(1)). Inference on the “autoregressive parameter” is
then possible within the extended null model and the posterior distribution
so derived can be compared with that from the alternative model. The
authors provide details of the numerical procedures, including simulation-
based integrations, that are needed to execute the steps in this procedure.

Kim studies an AR(1) model driven by errors that are not necessarily
Gaussian. He shows that the posterior distribution of the autoregressive coef-
ficient is asymptotically normal under quite general conditions that allow for
the presence of a unit root in the true data-generating process. This result is
important to practitioners because it means that large sample Bayesian infer-
ence may be conducted in a consistent way irrespective of the presence of a
unit root in the generating mechanism. Unlike classical asymptotics, nonstan-
dard limit distributions are not required. Kim’s work is related to other recent
work on this topic by Sims [18] and Phillips and Ploberger [14].

Phillips and Ploberger develop Bayesian inference and model-selection pro-
cedures for the stochastic linear regression model with Gaussian errors.
Under a uniform prior, the Bayesian data density is shown to belong to the
exponential family. Even though this measure is improper, martingale prop-
erties still apply and, in particular, both the maximum likelihood estimator
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and the posterior distribution are local martingales under this measure. The
measure also leads to a new model-selection criterion called “PIC” (a pos-
terior information criterion), which allows for nonstationary data. PIC is
asymptotically equivalent in stationary systems to the commonly used
Schwarz [16] criterion BIC. The theory is applied to ARMA models with
deterministic trends and used for automated order selection of the stochas-
tic regressors and the trend degree. Simulations show that the procedure
works well in practice both for nonstationary and stationary systems. An
empirical implementation of these methods to the Nelson-Plosser [11] series
is given to illustrate their use in practice. Only three of the series (unemploy-
ment, industrial production, and the money stock) are found to be level or
trend-stationary and the remaining series are found to have unit roots.
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