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ABSTRACT

This paper provides a theoretical overview of Wald tests for Granger causal-
ity in levels vector autoregressions (VAR’s) and Johansen-type error correction
models (ECM’s). The theory is based on results in Toda and Phillips (1991a)
and allows for stochastic and deterministic trends as well as arbitrary degrees
of cointegration. We recommend some operational procedures for conducting
Granger causality tests that are based on the Gaussian maximum likelihood es-
timation of ECM’s. These procedures are applicable in the important practical
case of testing the causal effects of one variable on another group of variables
and vice versa. This paper also investigates the sampling properties of these
testing procedures through simulation exercises. Three sequential causality tests
in ECM’s are compared with conventional causality tests in levels and differences
VAR’s.
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1. INTRODUCTION

This paper provides a theoretical overview of Wald tests for Granger causal-
ity in levels vector autoregressions (VAR's) and Johansen-type error correction
models (ECM’s). The theory is based on results in Toda and Phillips (1991a)
and allows for stochastic and deterministic trends as well as arbitrary degrees of
cointegration. For VAR models the theory extends earlier work by Sims, Stock
and Watson (1990) on trivariate systems. In such models the results for inference
are not encouraging. Explicit information on the number of unit roots in the sys-
tem and the rank of a certain submatrix in the cointegrating space is needed to
determine the appropriate limit theory in advance. Pretesting these conditions
involves major complications in levels VAR’s. But, even were the information to
be available, the limit theory would frequently involve both nuisance parameters
and nonstandard limit distributions, a situation where there is no satisfactory
statistical basis for mounting the tests.

Granger causality tests in ECM’s also suffer from nuisance parameter depen-
dencies asymptotically and, in some cases, nonstandard limit theory. Both these
results are somewhat surprising in the light of earlier research on the validity
of asymptotic chi-square criteria in such systems. But, in spite of these diffi-
culties Johansen-type ECM’s do offer a sound basis for empirical testing of the
rank of the cointegration space and the rank of key submatrices that influence
the asymptotics. In consequence, we recommend some operational procedures
for conducting Granger causality tests in the important practical case of testing
the causal effects of one variable on another group of variables and vice versa.
This paper also investigates the sampling properties of these testing procedures
for Granger causality through simulation exercises. Three sequential causality
tests In ECM’s are compared with conventional causality tests based on VAR’s
in levels and in differences.

The plan of the paper is as follows. Section 2 reviews the theoretical results
of Toda and Phillips (1991a). Section 3 introduces the sequential causality tests
and explains our experimental design for the Monte Carlo simulation. Section 4
reports the simulation results. Some concluding remarks are made in Section 5.
A summary word on notation. We use vec(M ) to stack the rows of a matrix M.
We use “ =5 ” and “ = " to signify convergence in distribution and equality
in distribution, respectively. The inequality “ > 0 ” denotes positive definite
when applied to matrices. BM({2) denotes a multivariate Brownian motion with
covariance matrix {2. We write integrals with respect to Lebesgue measure such



VECTOR AUTOREGRESSION AND CAUSALITY 261

as [l W(s)ds more simply as [; W to achieve notational economy. All limits
given in this paper are taken as the sample size T' — 0.

2. THEORETICAL OVERVIEW OF CAUSALITY TESTS

In this section we shall summarize the theoretical results of Toda and Phillips
(1991a). Consider the n-vector time series {y:} generated by the k-th order VAR
mode]

ye = J(L)ye-1 + ue t=—-k+1,...,T (1)

where J(L) = Y5, J.L*! and

1=1
(A1) {u: = (u1r,...,un)’} is an iid. sequence of n dimensional

random vectors with mean zero and covariance matrix £, > 0 such
that E|uy|**® < oo for some § > 0.

For simplicity of exposition, we discuss in detail the case where there is no
constant term. If a VAR has a constant term, y; may have a deterministic time
trend, and it affects the asymptotics for causality tests in levels VAR’s. We will
briefly discuss the results for such a case after the results for the model (1) are
presented. We shall initialize (1) at t = —k+1,...,0 and allow the initial values
{Y=k+1,---,Y0} to be any random vectors including constants. Define

k—~1 k
)= JL7' with  Jr=— Y Jh

i=1 h=i41

We assume:
(A2) |I, — J(z)z| = 0 implies |z] > 1 or z=1.
(A3) J(1) — I, = T A’ where I' and A are n X r matrices of full
column rank r, 0 < r < n —1. (If r = 0, there is no I or A, and
JW)=1,)
(A4) T' (J*(1) — I,)A. is nonsingular, where 'y and A, are n x
(n — r) matrices of full column rank such that I',I' =0 = 4} A. (If
r=0,wetake A}, =1,=T,.)

Under the above conditions y; is CI(1,1) with r cointegrating vectors (if r > 1) in
the terminology of Engle and Granger (1987). Condition (A2) precludes explosive
processes but allows for the model (1) to have some unit roots. Condition (A3)
defines the cointegrating space to be of rank r and A is a matrix whose columns
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span this space. Condition (A4) ensures that Ay, is stationary. (See Theorem
4.1 of Johansen, 1991) The iid assumption (A1) is not, of course, necessary for
y: to be CI(1,1). In Section 3 we will discuss some cases where the u; are MA(1)
processes. Now, we can write (1) in the equivalent ECM format

Ay = J(L)Ayry + TAys1 + us. (2)
Further, we need an additional assumption:
(A5) Ezyzy, > 0 where z;, = (Ay;_q,.. ., AY_irr, (A'yee1)')

Note that Ezj,2{, is the covariance matrix of the stationary component in the
system, so this is a standard assumption.

Suppose that we want to test if there are causal effects from the last ns
elements of y; to the first n; elements of this vector, and accordingly partition
y; into three sub-vectors.

Y1t 1
Yt =1 Yt Ny
Yae ng

Next, we introduce the selector matrices which will be used below:
| In [0
51—( 0 ) and S;:,—(In3 )
We first summarize the asymptotic results for causality tests in levels VAR's.

2.1. Causality Tests in Levels VAR’s

The null hypothesis of noncausality can be formulated based on the model
(1) as

H:Jjps==Jrz=0 (3
where Ji3(L) = Zf;l Ji13L*! is the ny X ng upper-right submatrix of J(L).
!
Define z; = (yé_l, ceey yg_k) which is an nk-vector, and write (1) as y; = Iz, +u,

where Il = (Jy,...,Jx). Then the Wald statistic for noncausality can be written
as

F=tr [sgﬁS[S'(X'x)*‘S]"S'ﬁ's,(s; $.5, )*1]

where IT and £, are the least squares estimators of II and Lo, X' = (21,...,27),
and S = I; ® S;. In this subsection the circumflex signifies the least squares
estimator of the corresponding parameter.
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Asymptotic distributions for levels VAR causality tests are given by the fol-
lowing theorem. (Proofs of all theorems and corollaries in the present paper are
given in the companion paper Toda and Phillips, 1991a.) Let A; denote the last
n3 rows of the matrix of cointegrating vectors A.

Theorem 1 Suppose assumptions (A1) - (A5) are satisfied. Ifrank(A3) = g(<
n3), then under the null hypothesis (3)

1 1 -1
F = ey +or | [ aiws ([ ) [ woaw]

where
W, (s) = Wa(s) /IWW’(/IWW’)—IW()
Xra - alS o : 344 o b¥¥y (8).
and
Wi(s) L, Q, b
Wa.(s) | = BM(Q) with Q=| Qu I,,_, 0 .
W(s) Dy 0 Iner)—(ne—g)

In the above theorem, 1., and §2;; in general depend on the long-run covariance
matrix of the process (u}, (A, Ay;)’)’, i.e., the limit distributions typically involve
nuisance parameters. (For the precise form of the dependence, see Theorem 1
of Toda and Phillips, 1991a.) We have, however, two special cases that are
noteworthy.

Corollary 1 Suppose assumptions (A1) - (A5) are satisfied. If rank(A;) = ng,
then under the null hypothesis (3), F —2» X2, .

Corollary 1 is a generalization of Sims, Stock and Watson’s (1990) result from
their analysis of trivariate VAR(k) systems with one cointegrating vector. Sup-
pose that n; = n, = n3 = 1 and the causal effect of y3 on y; is being tested.
Then, they conclude that if there is a linear combination involving y, which is
stationary, the F-test will have an asymptotic x%/k distribution. In their exam-
ple A3 is nonzero scalar and rank(A;) = 1 = n3. So our Corollary 1 applies.
But It should perhaps be noted that in view of Corollary 1 the situation con-
cerning validity of chi-square asymptotics is more complex than their analysis of
the trivariate example might suggest. For instance, if we wish to test the causal
effects of two variables, say y, and y3, on another, say y;, then finding a coin-
tegrating vector with nonzero coeflicients for both y; and y; does not guarantee
the usual chi-square asymptotics. Indeed, unless there are two cointegrating re-
lations that involve y, and y3, the limit distribution will be nonstandard. Loosely
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put, we need “sufficient cointegration” with respect to the variables whose causal
effects are being examined. Meanwhile, if there is no cointegration, we have non-
standard but nuisance parameter free limit distributions:

Corollary 2 Suppose assumptions (A1) - (A5) are satisfied. If y; is not coin-
tegrated, i.e., r = 0, then under the null hypothesis (3)

1 1 -1 1
F = Koy + 1o [ Wity ([ waws) [ woaw]
0

where
Wo(s) = Walo) = [ wawi ([ waw;) " wis)

Wa(s) n .
( Wi(s) ) n?‘*'nz = BM(L),

and Wy(s) is the first ny elements of W,(s).

Corollary 1 is extended in a straightforward way to the case where the true
model and the estimated equation have a constant term, while Corollary 2 is not.
If the true model has a nonzero constant term and there is no cointegration in the
system, then y; contains a deterministic trend component. In order to obtain a
nuisance parameter free limit distribution in such a case, we need to eliminate the
deterministic trend by including not only a constant but also time as regressors in
the estimated equation. Then, the limit distribution component corresponding
to the second term in Corollary 2 will be free of nuisance parameters; but the
Brownian motions will be replaced with “detrended Brownian motions”. For
example, W,(s) will be replaced by Wo(s) = Wa(s) — fo W,r' (fol 7'1")_11-(5)
where 7(s) = (1,s)’. (For further discussion see Section 3 of Toda and Phillips,
1991a.)

Given Theorem 1 and Corollaries 1 and 2 above, there are, of course, situa-
tions where levels causality tests can lead to correct inferential decisions. Con-
sider, for example, a trivariate VAR(k) model in which the variables are known
to be I(1) and the causal effect of y; on y; is to be tested. There are three
possibilities: (a) there is a cointegrating relation that involves ys; (b) there is a
cointegrating relation that involves only y; and y,; and (c) there is no cointegra-
tion. But suppose that the value of the Wald statistic for noncausality computed
from levels estimation is less than a x%_, critical value. Then, noncausality can
be “accepted” without knowing which of (a)-(c) is relevant for the trivariate
model.
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However, the levels VAR approach does not, in general, provide a sound
statistical basis for causal inferences if the variables are I(1) and may be coin-
tegrated. Based on the foregoing theory, the conclusions of Toda and Phillips
(1991a) can be summarized as follows:

(1) Causality tests are valid asymptotically as chi-square criteria
only when there is sufficient cointegration with respect to the vari-
ables whose causal effects are being tested. The precise condition for
sufficiency involves a rank condition on a submatrix of the cointe-
grating matrix. Since the estimates of such matrices in levels VAR’s
suffer from simultaneous equation bias (as shown in Phillips, 1991),
there is no valid statistical basis in VAR’s for determining whether
the required sufficient condition applies.

(i) When the rank condition for sufficiency fails, the limit distri-
bution is more complex and involves a mixture of a chi-square dis-
tribution and a nonstandard distribution, which generally involves
nuisance parameters. The precise form of the distribution depends
on the actual rank of a submatrix of the cointegrating matrix and
again no valid statistical basis for mounting a Wald test of causality
applies.

(1)  If there is no cointegration, the Wald test statistic for causal-
ity has a nonstandard but nuisance parameter free limit distribution
provided that the estimated equation is appropriately specified with
regard to the presence of a deterministic time trend. This distribu-
tion could conceivably be used for tests when it is known that there
are stochastic trends but no cointegration in the system.

2.2. Causality Tests in ECM’s

Next, we discuss the asymptotics for causality tests in Johansen-type ECM’s.
The null hypothesis of noncausality can be formulated based on the model (2)
as

H:Jipa==Ji113=0 and T14;=0 (4)

where J33(L) = £12) Ji13L7! is the ny X ng upper-right submatrix of J*(L), and
I’y is the first n, rows of the loading coefficient matrix I'. It might be convenient
to refer to the first half of the hypothesis (4) as “short run noncausality” and the

second half as “long run noncausality.” “Long run noncausality” is sometimes
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called “neutrality” in the macroeconomic literature since 'y A5 = Tk Jits (see
(1) and assumption (A3)). It is the testing for “long run noncausality” that gives
rise to difficulties in testing causality when the variables are nonstationary.

To test the hypothesis (4) we shall construct a Wald statistic. But before
doing so, we need to introduce some more notation. First, let A denote the
Gaussian maximum likelihood (ML) estimator of A, i.e., the eigenvectors corre-
sponding to the r largest eigenvalues that solve equation (9) of Johansen (1988)
and let A, be the eigenvectors corresponding to the n — r smallest eigenvalues.
(These n — r eigenvectors do not provide a consistent estimator of the space
spanned by A;. But we call them A, since their role in the derivation of the
asymptotic distribution is the same as that of 4;.) All the eigenvectors are nor-
malized in the manner prescribed by Johansen (1988, p.235). Then the estimator
of (J3,...,J5_,I') is given by

(J5, o din D) =AY 2y (2120
where Z} = (311, ..., %17) with 2}, = (Ayl_,,. .- JAY 1> (A'%e21)). In this sub-
section the circumflex signifies the Gaussian ML estimator of the corresponding

parameter. Also define Zé = (221,..., Zo7) With 25 = /i’Lyt..l. Furthermore, let
. be the Gaussian ML estimator of X, l.e.,

£, =T [AY'AY - AY'Z(22:)7 Z,AY ]
where AY’ = (Ayy,...,Ayr), and let Q. = (f"i;’f‘)'l. Then we define

=(Ik_1®sg®51| o | o )

K 0 IA3®Si|E®f‘1

where Aj, 121_L3, and T'; are the last ny rows of A, the last n; rows of A, and the
first ny rows of [, respectively, and let

ne(Bkronhl o )
) 0 [(Z:2:) 09 )

Now we consider the following Wald statistic for testing the hypothesis (4)

F = vec($L) (BO.P) ™ vec(d)) (5)
where &, = (jf,lav - ,j;_l_ls,f'lzzl’a) with JA,-"l3 being the estimates for J;; (i =
1,...,k —1). We cannot exclude the possibility that 13.@.]3: is singular—even
in the limit. But we ignore this problem here because the conditions given in
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Theorem 2 below ensure its nonsingularity in the limit and we will be interested
only in such a situation. We have the following asymptotic result for the Wald
statistic F*.

Theorem 2 If assumptions (A1) - (A5) are satisfied, and if rank(T,) = n; or
rank(As) = na, then under the null hypothesis (4), F* - X2 nak-

As shown in Johansen (1991), the asymptotic distribution of the Gaussian ML
estimator of A differs depending on whether the model has a constant term
or not, whether y; actually contains a deterministic trend or not (2 nonzero
constant term does not always produce a deterministic trend if the system is
cointegrated), and whether the presence or absence of the deterministic trend
is taken into account in the estimation. But if one of the rank conditions in
Theorem 2 is satisfied, Wald tests for causality will have asymptotic chi-square
distributions irrespective of such differences (provided that the Wald statistic (5)
1s appropriately modified in obvious ways). _

Theorem 2 shows that, as in levels VAR’s, causality tests in ECM’s are not in
general valid asymptotic chi-square criteria since the conditions that guarantee
the usual chi-square asymptotics do not always hold under the null. ‘Suppose,
for example, that there is only one cointegrating vector in a VAR(1) system,
ny = n3 = 1, and A; = I'; = 0. Then, as proved in Example 3 of Toda and
Phillips (1991a), the Wald statistic for the noncausality hypothesis that I'; A3 = 0
has a limit distribution which is a nonlinear function of two independent chi-
square variates, say Y. and xp, viz., F* N XaXb/(Xa + Xb)- The density of this
distribution is more concentrated near the origin and has a thinner tail than x?,
which is the limit distribution that we would obtain if either I'; or A3 is nonzero.
(Figure 1 in Toda and Phillips, 1991a)

Problems of both nuisance parameter dependencies and nonstandard distri-
butions enter the limit theory in the general case. (Example 4 in Toda and
Phillips (1991a) illustrates nuisance parameter dependencies of the Wald tests.)
These problems compromise the validity of conventional theory, and may be con-
sidered surprising and deserving of some emphasis in view of the fact that other
types of Wald test in ECM’s are known to be asymptotically valid chi-square
tests. Thus, before we apply conventional asymptotic chi-square tests to non-
causality hypotheses, we would have to test empirically whether rank(l';) = n,
or rank(A;) = n3 unless perhaps economic theory were to imply that one of
them is of full row rank. Unlike the levels VAR approach, these conditions can,
in principle, be tested using the Gaussian ML estimates of the submatrices of I';
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and As. Specifically, in the special but important case of testing causal effects of
a group of variables on another variable and vice versa, the conditions can easily
be tested. In the next section we discuss some operational procedures for testing
causality in such cases. The following results as well as Theorem 2 provide the
statistical basis for those sequential procedures.
Define
F} = vec(As) [A3L(Z;ZQ)_1AQL ® QC} - vec(As),

A

Fy = vec(T'}) (S;ius, ® 2_,)—1 vee(T))

where 3., is the r x r lower-right block of (Z Z1)~" which is in fact equal to T-11,
due to the normalization imposed by Johansen (1988, p.135),

a - N -1 N
Fy = vec(®;) [$15u81 ® (Lier @ S3)E4(1eer @ Ss)] vee(y)

where &) = (J7,3,...,J}_1 15) and Ty is the n(k — 1) x n(k — 1) upper-left block
of (Z!2;)™}, and

F;S = UCC(f‘y‘ig)’ [Siﬁusl ® A;;g-ylig + f‘lﬁcf; ® /ig_j_(ZA;Zz)_l/igJ_]—l Uec(f‘l./ig).
Then:

Proposition 1 Suppose assumptions (A1) - (A5) are satisfied.

(a) Under the null hypothesis that Ay = 0, F} —%» X2,

(b) Under the null hypothesis that Ty = 0, Fy =% X2 .

(c) Under the null hypothesis that J 3 = --- =J{_;13 =0, F} -, X2 ns (k=1)-
(d) Under the null hypothesis that I'1A; = 0, if rank(T;) = ny or rank(4;) =

d
* 2
ng, Fi3 — Xnyna*

Proof: (a) follows from Lemma 4 of Toda and Phillips (1991a) noting that As;
is of full row rank if A3 = 0. (b) follows immediately from the same Lemma. (c)

and (d) are just restatements of Theorem 1 above. u]

3. SEQUENTIAL CAUSALITY TESTS AND
EXPERIMENTAL DESIGN

According to Theorem 2, asymptotic chi-square criteria are applicable to
causality tests based on (5) in ECM’s only if (i) T'; has full row rank or (ii)
A3 has full row rahk. Hence we need to test these conditions empirically. But
condition (1) or (ii) can easily be tested if n; = 1 or if n3 = 1, respectively, since
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condition (i) is equivalent to y; # 0 if n; = 1, and condition (ii) is equivalent
to az # 0 if n3 = 1. (In this section we use lower case letters to denote scalars
and vectors, e.g., 71 1s an r dimensional row vector and corresponds to I'; in the
last section.) For example, let n3 = 1 and k > 1. Suppose that the likelihood
ratio (LR) test proposed by Johansen (1988, 1991) about the dimension of the
cointegrating space, which we will use in our simulation study, has produced
the estimate . Then, Theorem 2 suggests that we first test whether (an 7
dimensional row vector) as = 0. If this is rejected, we may test noncausality
using the Wald statistic (5). If it is accepted, we have only to test whether
Ji13 == Ji_;13 = 0 since a3 being zero implies that v,a3 = 0. When n; =1,
we can proceed with a similar procedure. But if both n; and n3 are equal to one,
a different testing strategy is also possible. Since in that case we can easily test
both the hypotheses that 4; = 0 and that a3 = 0, it would also be reasonable
to proceed as follows. Begin with testing whether Ji,3 = --- = J;_, ;3 = 0.
Suppose this is accepted. Then, we test whether a3 = 0 and whether 4, = 0.
We accept the null of noncausality unless both are rejected. If both are rejected
and ¥ = 1, then reject the null of noncausality. Otherwise test further whether
nay =0.

To introduce the sequential procedures formally it is convenient to label each
sub-hypothesis that appears in the sequential procedures. Let

H;‘ f,13="'=J1:—1,13=0
Hi:m=0
Hg:(!3=0

Hiz:mez =0
and as in (4)

H. :J;'13="'= J’:-—l.]3=0 and ’Ylaé:O‘
Now the sequential testing procedures to be considered in this paper are the
following. (The descriptions below assume that £ > 1. If £k = 1, obvious modifi-
cations should be made.)

(P1) Test H:. { If H} is rejected, test H* using a xZ ; critical value.

Otherwise, test Hj.
. J If M3 is rejected, test H* using a x2 ; critical value.
(P2) Test H;. { Otherwise, test Hj.
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(If H; is rejected, reject the null
hypothesis of noncausality.
If both are rejected,
(P3) Test M;. test Hi, if £ > 1,
Otherwise, test H} and Hj3. or reject the null if 7 = 1.
Otherwise, accept the null
of noncausality.

where all the sub-hypotheses can be tested based on Theorem 2 and Proposition
1 in the last section. As stated above, (P3) differs from (P1) and (P2) because
it takes advantage of the fact that both n; and n; are equal to one (i.e., both
Hj; and H} are tested in the second step). Thus, (P1), for example, is applicable
when n; = 1 but n3 > 1, while (P3) is applicable only when n; = n3 = 1. Note
that in (P3) it does not make any difference whether we start by testing M} or
by testing H; and Hj (and Hj; if # > 1), i.e., the results should be unchanged
even though the order of testing is the other way around.

In the simulation experiment below, we set the nominal size of each sub-test
to be 5 % in (P1) and (P2). But in (P3) the nominal size of each sub-test is
25 % if k > 1 and 5 % if £ = 1. Though exact control of the overall size
(i.e., the mazimal probability of rejecting the null hypothesis under the null)
of causality tests is not feasible, a heuristic analysis suggests these choices of
the size for each sub-test, and the overall size is expected to be approximately
5 % at least asymptotically. (Since the null of noncausality is consistent with
different specifications of & and + as we will see in (N1) - (N3) below, we cannot
avoid relatively large distortions in such a case as (N3) to keep the overall size
of causality tests approximately at 5 % level. See Section 4 below for more
discussion.)

Now we explain our experimental design for investigating the sampling prop-
erties of the sequential test procedures introduced above. The prototype model
for our simulation experiment is the trivariate VAR(1):

Yt = 1y + (6)
or in its equivalent ECM format
Ay = ya'yey + uy. ()

where y; = (yltsthayat)la o= (011,012,013)' and v = (m1,7v2,73)" are 3 x 1 vectors.
We shall later choose & and + so as to satisfy conditions (A2) ~ (A4) of the last
section.
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We consider two different error processes {u;} in (7). Let
U = € — B¢y (8)
where ¢; = 121dN (0, Z,), and we consider the following O’s:

(Ul) ©=0

05 0 0
(U2) e=( 0 0.5 0).

03 0 0.5

Some remarks are necessary about the error processes. First, (U2) appears to
be inconsistent with our assumption (Al) in the last section. But since (8) is
an invertible MA process when (U2) is employed as ©, we can rewrite (7) as an
ECM that has an infinite order AR lag polynomial:

Ay = J(L)Ayiy + 5 yi1 + € (9)

where J? = — 102, Ji with J, = O*1(J; - 0) (,h=1,2,...) and ¥ = (I3 —
©)~14. In view of this alternative expression (9) of the model (7), assumption
(A1) is approximately satisfied at least when & is large enough. Since in practice
there 1s rarely any reason to assume that lag lengths in VAR’s are finite, it is of
interest to examine the performance of our tests in the case of (U2). Second, note
that if & and v are chosen so that 4¢3 = 0, then there is no causal effect from y3
to y; in (9) since the (1,3) element of Jj, is equal to 2'~*y,03 and 103 = 2y103.
Third, simulations were run for different values of #,3 and X.. But the results
were qualitatively the same in all cases except one, which we will discuss later.
Therefore, in this paper we report mainly the results for 6,3 = 1 with &, = I5.
In the following, we shall refer to the © with 6,3 =1 as (U2a), i.e.,

05 0 0
(U2a) ©=| 0 05 o0 |.
1 0 05

Now we choose the values for o and v as follows. If we set J; = I3 + ¢/
for any o and v, condition (A3) in the last section is automatically satisfied.
Further, it is easy to show that if & and v satisfy —2 < &’y < 0, then condition
(A2) is satisfied and the characteristic equation |I3 — Jiz| = 0 has two unit roots
and one stable root equal to (1 + &’y)~!. Thus, in our experiment we shall use
the following values for @ and + :
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) (—0.5,1,0Y and ~=(1,0,1)
N2) a=(1,0.5,-1) and ~y=(0,1,1)
N3) a=(1,-0.5,0) and ~=(0,1,1)

o=

(L1) a«=(-0.5,1,0.1) and ~v=(1,0,1)
(L2) e«=(1,0.5,-1) and ~=(0.1,1,1)
(L3) «=(1,-0.5,-0.3) and ~=(0.3,1,1)

In (N1) — (N3) the values of & and v were selected so that the stable root of
the system is equal to 2. It is straightforward to show that each pair of @ and
v above satisfies condition (A4) also. Hence y, is CI(1,1) with one cointegrating
vector . Observe that when the parameter values (N1) - (N3) are employed,
there are no causal effects from y3 to y; in (7) if u, is iid, and in (9) if u, is
MA(1). Note also that (L1) - (L3) serve as corresponding “ local ” alternatives.

Next, in this study we concentrate on three different estimated equations
which have lag lengths & = 1,2, and 4, respectively. That is, the estimated

systems of equations considered here are

Ay, =T Ay + 4, (10)
if k=1, and
Ay, = j;Ayt-l +---+ j,:_lAyt—kH + f/i'ym + 4, (11)

if k=2 and 4. The lag lengths k¥ = 6 and 8 were also tried for the combination
of (N1) and (U2a), which we will discuss later.

In our experiment we start by estimating r using the LR test proposed by
Johansen (1988, 1991). Specifically, we apply his “trace test” and determine

0

the cointegrating rank r to be r* if the hypothesis » < r° is rejected for all

r®=0,...,7* — 1 and the hypothesis 7 < r* is accepted. This acceptance rule is
naturally implied by the asymptotic behavior of the “trace test”. Then, having
estimated 7, we proceed as follows. If # = 0, a VAR in differences is estimated
and causality is tested in the usual manner. If # = 3, the data are regarded as
stationary and causality is tested based on a levels VAR. If 0 < # < 3, we apply
the sequential testing procedures (P1) - (P3). In this case the null hypothesis of
noncausality is Hj, if £ =1 and H* if k£ > 1, where v; and o3 are # dimensional
vectors, and J;}3 (¢ = 1,...,k—1) are scalars. Note that even though v, and a3
are scalars in the true model (7), they are not necessarily so in Hj; and H".
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Several authors have conducted simulation studies on Johansen’s Gaussian
ML estimation method from different points of view. For example, Podivinsky
(1991) investigates the finite sample properties of the LR test for cointegrat-
ing ranks under possible misspecification of the variables that are involved in
the cointegrating relations. Gonzalo (1991) compares some alternative methods
for estimating cointegrating vectors, including the Gaussian ML method. The
author also examines the performance of that method when the errors u; are
non-normal or the lag lengths are incorrectly specified. Gregory (1991) evaluates
the finite sample performance of various tests for cointegration, including those
that have been proposed more recently in the literature. Specifically, the author
is concerned with tests for detecting a cointegrating relation under the class of
linear quadratic rational expectations models. He reports the performance of
Johansen’s “maximal eigenvalue test” as well as the “trace test.”

4. SIMULATION RESULTS

For each combination of «, v, ©, lag length (k) in estimated equations, and a
sample size (T'), 5000 series of T + k + 100 observations were generated according
to equation (6) with yo = 0. The innovation series {¢;} were generated by
the RNDN function of the GAUSS matrix programing language. The initial
100 observations were discarded, generating a series of length T + k, i.e., T
observations for the dependent variables Ay, in estimated equations (10) and
(11). For each of those samples, the sequential testing procedures (P1) - (P3)
described in the last section were applied and their performance was examined.

Simulation results are reported in Tables I — VIII. Tables I - VI show the
performance of the causality tests under the null hypothesis in the case of iid
errors (Tables I — III) and MA(1) errors (Tables IV — VI). For each k, the first
column shows the results (%) of Johansen’s LR test about the dimension, r,
of the cointegrating space. The second through fourth columns show rejections
(%) of noncausality conditioned on the estimated r’s and in total replications.
These tables also show the performance of causality tests in levels VAR’s and
differences VAR’s, based on a common 5000 replications generated as above.
(But those series were generated independently of the series which were used for
the sequential procedures.) We note that testing causality in this conventional
fashion does not yield a valid asymptotic chi-square criterion for all pairs of «
and v that are consistent with the null of noncausality. (See below for further

discussion.)
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TABLE I
(N1) asg=0 =1 (Ul) ©=0 . =15
T I r l k=1 [ k=2 [ k=4
Sequential procedures in ECM’s
) Rejections Rejections Rejections
LR LR LR

Test (P1) (P2) (P3)| Test (P1) (P2) (P3)| Test (P1) (P2) (P3)
0 0.0 - - -1 09 956 956 95.6| 309 60.2 60.2 60.2
1 923 86 86 9.3[ 906 141 159 16.1| 58.0 28.9 336 36.1
50| 2 6.9 353 344 344| 75 296 30.1 29.3| 9.3 351 348 36.3
3 08 268 268 26.8] 1.0 250 25.0 25.0| 1.8 42.7 427 427
Total - 106 105 11.1 - 161 17.8 179 - 394 421 437
0 0.0 - - -l 00 - - -1 12 88.7 887 887

1 931 59 59 63| 926 86 109 9.3| 90.3 14.0 150 178
100§ 2 6.2 29.2 289 289 68 260 263 284 7.7 24.0 243 261
3 0.7 36.1 36.1 36.1] 0.5 154 154 154 0.7 162 162 16.2
Total - 76 76 79 - 99 120 106 - 15.7° 16.7 19.2
0 0.0 - - -1 0.0 - - -1 0.0 - - -
1 93.9 60 6.0 62 942 68 85 6.7] 933 80 90 95
2001 2 56 29.5 288 288 52 266 274 26.6| 6.2 249 246 278
3 0.6 207 207 20.7{ 06 226 226 226 0.6 10.7 10.7 10.7

Total - 74 73 75 - 79 96 79 - 91 99 1086
Rejections for VAR(k) in levels / VAR(k-1) in differences
50 ] - 137/ - 14.0 7 84.9 19.6 / 55.6
00| - 119/ - 11.1 / 98.9 13.7 / 85.6
200| - 121/ - 10.4 /100.0 10.1 / 99.7

We do not tabulate simulation results for the parameter values (L1) - (L3)
but will discuss the findings briefly in the text. (The simulation results for (L1)
- (L3) are found in the discussion paper version of this paper, viz., Toda and
Phillips, 1991b.)

Tables I - III show the simulation results of the tests under the null of non-
causality when {u.} is an iid sequence. Hence the correct specification of the
estimated equation is (10). The testing procedures (P1) - (P3) perform simi-
larly when k = 1, but (P3) appears to have less size distortion in (N2) and (N3)
compared to the other two when & > 1. If we compare (P1) and (P2) when
k > 1, (P1) seems better than (P2) in (N1) and (N3). All of (P1) - (P3) per-
form reasonably well when k is chosen correctly and/or the sample size is 100 or
greater, though the results are rather sensitive to the values of  and 4.

Although size distortion due to wrong estimation of r is an inevitable nature
of the sequential procedures, a case of notable size distortion under correct esti-
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TABLE II
(N2) ag=-1 =0 (Ul) =0 Z. =13
T r | k=1 [ k=2 [ k=4
Sequential procedures in ECM’s
Rejections Rejections Rejections
LR LR LR
Test (P1) (P2) (P3)| Test (P1) (P2) (P3)| Test (P1) (P2) (P3)

0 0.0 - - -{ 04 91 91 9.1} 288 116 116 11.6
1 928 54 54 54; 9.0 100 9.1 85{ 604 17.3 187 179
2 66 140 152 140/ 85 95 9.5 80 95 19.8 183 143
3 0.7 176 176 176 11 56 56 564 13 269 269 269
Total - 60 61 6.1 - 99 981 85 ~ 16.0 168 15.9
0 0.0 - -~ -1 0.0 - - -{ 1.0 38 38 38
1 93.2 54 54 54| 928 70 62 54 908 94 94 87
100 2 6.2 110 120 110, 64 69 75 62{ 71 101 104 64
3 06 32 32 32 07 81 81 81 1.0 40 40 4.0
Total - 58 58 58 - 70 63 5.5 - 94 93 85
0 0.0 - - -1 0.0 - - -{ 00 - - -
1 93.6 55 55 55| 937 61 56 46| 933 6.8 69 6.2
200 2 56 86 89 86| 58 69 69 48 61 101 105 85
3 08 184 184 184y 0.5 87 87 87| 06 100 10.0 10.0

50

Total - 58 58 58 - 61 57 47 - 70 71 64
Rejections for VAR(k) in levels / VAR(k-1) in differences
50| - Ve 88760 147 7 105
100 - 5.7 /- 6.4/52 94/82
200 - 6.4/ - 5.6 /5.2 6.9 /6.1

mation of r (i.e., # = 1) occurs when k =1 and the true values of a3 and v, are
both equal to zero (Table III). The distortions in (P3) are due to the fact that
we reject the null of noncausality only if the statistically independent sub-tests,
Hj and H3, each of which has 5 % nominal size, are both rejected. (4, and dj
have independent limit distributions by Lemma 4 of Toda and Phillips, 1991a)
Thus the probability of rejecting the null of noncausality conditioned on 7 =1 1s
expected to be about 0.25 %. If we chose 22 % critical values for those sub-tests,
then we would have approximately 5 % significance level for the overall causality
test in this particular case of parameter values, but of course we cannot do so
without allowing large upward size distortions in other cases where one of a3
and 7, is not equal to zero. The tests (P1) and (P2) have the same distortional
property in the case of (N3) with £ = 1, and in fact the distortions are worse in
(P1) and (P2) because in the case (N3) the limit distribution of the Wald test
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TABLE III
(N3) as=0 m =0 (Ul) 6=0 Z, =13
T] r | k=1 | k=2 | k=4
Sequential procedures in ECM’s
Rejections Rejections Rejections
LR LR LR
Test (P1) (P2) (P3)| Test (P1) (P2) (P3)| Test (Pl) (P2) (P3)

0 0.0 - - - 07 11.8 11.8 118 30.2 128 128 128
1 920 00 00 05| 92 67 74 50| 589 163 167 154
2

50 7.1 478 514 47.8) 8.1 496 496 452| 9.3 443 456 441
3 09 51.2 512 51.2| 1.0 429 429 429 16 415 415 415

Total - 39 41 43 - 106 11.2 87 - 18.3 186 17.7

0 0.0 - - -1 00 - - -l 16 85 85 85

1 93.0 00 00 03] 934 52 6.2 38| 8.7 73 75 59
100 2 6.4 46.4 498 464| 6.0 483 47.7 43.7| 7.6 42.1 424 453
3 0.6 39.3 393 39.3] 06 429 429 429| 1.0 30.6 30.6 30.6
Total - 32 34 35 - 80 89 64 - 10.2 104 9.2
0 0.0 - - -1 0.0 - - - 0.0 - - -
1 93.8 00 0.0 04| 933 44 52 32| 929 57 60 3.8
2001 2 5.7 52.7 55.8 52.7| 6.2 457 473 415 6.4 376 389 398
3 06 32.1 321 321 05 269 269 269 0.7 17.1 17.1 17.1

Total - 32 33 35 - 71 7.9 57 - 78 81 62
Rejections for VAR(k) in levels / VAR(k-1) in differences
50] - 178/ - 173 /59 227/ 11.2
100| - 172 / - 145 /55 15.9 / 7.3
200| - 164 / - 137 / 5.7 126 / 5.9

Fi3 1s highly concentrated near the origin (see Example 3 and Figure 1 in Toda
and Phillips, 1991a) and the sub-test H}; almost never rejects the null.

This kind of downward size distortion can also explain why the test (P3)
suffers from less size distortion in (N3) when & > 1. In fact, since we had to
choose the nominal size of each sub-test to be 2.5 % when k > 1, the probability
of rejecting the noncausality null conditioned on # = 1 in (N3) is expected to be
about 2.56 % if the sub-test H} were independent of H; and M3. Though H;
and Hj are correlated in general, this probability is likely to be less than 5 % and
it actually was for large samples as Table III shows. But, again, we cannot do
better in (N3) without allowing large upward distortions in the cases of (N1) and
(N2). Though, as Table III shows, this downward distortion of the conditional
probability happened to contribute to “seemingly” less size distortions of the test
(P3) in (N3), this might not be always the case. In (P1) and (P2), however, this
sort of downward bias does not occur if k¥ > 1 since the size of each sub-test can
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TABLE IV
(Nl) a3z = 0 7= 1 (UZa) 613 =1 Ee = ]3
I k=1 ] k=2 ] k=4
Sequential procedures in ECM’s
Rejections Rejections Rejections
LR LR LR
Test (P1) (P2) (P3)| Test (P1) (P2) (P3)| Test (P1) (P2) (P3)

0 0.0 - - -l 0.0 - - -1 0.2 90.0 90.0 900
1 877 53 53 58| 9.4 114 157 108| 878 15.9 19.0 15.7
2

50 116 296 206 29.6| 89 40.6 41.1 39.7| 105 404 408 44.8
3 0.6 258 258 25.8{ 0.7 40.5 405 40.5 1.5 48.6 48.6 48.6

Total - 82 82 87 - 142 181 136 - 19.1 219 194

0 0.0 - - -1 0.0 - - -1 0.0 - - -

1 87.7 38 38 4.1f 91.5 157 236 166f 914 93 105 7.8
100 2 11.6 25.7 257 25.7| 7.8 49.0 50.3 47.2] 7.7 346 346 404
3 0.7 41.7 41.7 417} 0.7 429 429 429| 09 39.1 391 39.1
Total - 66 66 6.9 - 185 25.8 192 - 115 126 10.6
0 0.0 - - -1 0.0 - - -{ 0.0 - - -
1 8.3 34 34 36 919 269 381 284 927 68 86 55
2001 2 13.8 269 266 26.6] 7.3 553 58.1 526| 6.7 387 39.0 46.4
3 09 283 283 28.3] 08 474 474 474| 05 444 444 444

Total - 68 68 7.0 - 29.1 39.7 303 - 9.1 109 84
Rejections for VAR(k) in levels / VAR(k-1) in differences
50| - 16.5 / - 22.9 / 85.9 225 / 90.2
100| - 16.4 / - 27.7 / 99.1 16.2 / 99.9
200| - 16.9 / - 39.8 / 100.0 14.3 / 100.0

be selected to be 5 % even in (N3) without causing additional distortions in such
cases as (N1) and (N2).

Note that in (N2) causality tests based on levels VAR’s are valid since the
cointegrating vector involves the variable y; whose causal effect is examined,
i.e., there is “sufficient cointegration” with respect to y; (Corollary 1). Further,
in (N2) and (N3) causality tests based on differences VAR’s are valid since if
1 = 0, then the first equation of the ECM (7) does not involve any level variables.
Moreover, even when causality tests based on levels VAR’s do not provide correct
asymptotic chi-square tests, we expect that the more lags we include in estimated
equations, the less serious the distortion becomes in general. This is because the
limit distribution of the Wald statistic for testing causal effect, say, from one
variable to another in levels VAR’s has the form: x?_, + ¢ by Theorem 1, where
the random variable ( has some unit root type distribution. Hence the relative
effect of the ¢ term is expected to become smaller as the lag length k increases.
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TABLE V
(N2) az=-1 71=0 (U2a) 6a=1 =, =5
T r | k=1 | k=2 | k=4
Sequential procedures in ECM’s
. Rejections Rejections Rejections
LR LR LR

Test (P1) (P2) (P3)| Test (P1) (P2) (P3)| Test (P1) (P2) (P3)
0 0.0 - - - 0.0 -~ - - 26 92 92 92
1 24.0 36.7 36.7 36.8| 620 228 184 18.8| 845 144 159 13.7
50 | 2 720 85 90 85| 358 15.0 144 120} 11.7 199 210 16.9
3 3.9 142 142 14.2] 22 135 135 135 1.1 158 158 158
Total - 155 158 15.5 - 19.8 16.8 16.2 - 15.0 163 14.0
0 0.0 - - - 00 - - -1 0.0 - - -

1 182 66.2 66.2 66.3] 56.3 31.2 243 25.7| 8.0 88 97 89
100} 2 77.9 162 169 16.2] 42.0 157 13,5 12.1) 111 126 125 112
3 39 275 275 275 17 81 81 81| 09 43 43 43
Total - 258 263 25.8 - 243 19.5 197 - 92 99 91
0 0.0 - - -1 0.0 - - -1 0.0 - - -
1 155 964 964 96.4| 54.1 50.6 420 454| 891 72 72 72
200] 2 80.7 449 45.0 449) 43.7 246 21.0 21.0f 104 7.1 77 54
3 38 56.8 568 56.8/ 22 358 358 358 06 107 107 10.7

Total - 53.3 534 53.3 - 389 327 346 - 72 73 170
Rejections for VAR(k) in levels / VAR(k-1) in differences
50 | - 142/ - 14.3 /108 14.6 7 11.1
100 - 2.5 / - 16.5 / 14.5 9.4 /7.7
200{ - 526 / - 29.7 / 21.7 72 /6.9

The figures in Tables I - III verify the above heuristic arguments. The per-
formance of our sequential tests (P1) — (P3) and the tests based on levels VAR’s
seem similar in the case of (N2). Furthermore, Table I shows that, as predicted
by the asymptotic theory, the advantage of the sequential procedures over the
levels VAR based tests becomes smaller as k increases and, in fact, the tests
(P1) - (P3) lose the advantage when k = 4 even in the sample size 200. Since
in practice econometricians probably tend to include more lags than the true
number of £ (if k is finite), this result could be interpreted as supporting the use
of levels VAR’s even when the system is subject to “insufficient” cointegration
with respect to the variable whose causality is tested. But Table I suggests that
the performance of the sequential tests (P1) — (P3) is significantly better than
that of the levels VAR based tests provided that the lag specification is correct.
Moreover, Table III shows that in the case of (N3) the sequential tests are much

better even when k = 4. Finally, the tests based on VAR’s in differences perform
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better than our testing procedures in the cases (N2) and (N3) especially if sample
sizes are small. However, the distortion in (N1) is enormous.

Although not reported, simulations were run for the parameter values (L1)
- (L3) to investigate the power of the tests under the “local” alternatives in the
case of iid errors (Ul). Again, the sequential tests (P1) - (P3) performed rather
similarly especially if k£ = 1, and the power of those tests significantly depended
on the true values of a and 7. We found that, at least for k¥ = 1, the sequential
procedures (P1) — (P3) have reasonable power and are in general more powerful
than the tests based on levels VAR’s. The comparison of the power among the
tests (P1) - (P3) does not reveal any superiority in any one of those sequential
tests uniformly over the specifications of e, 4, and k. Thus, we have no strong
reason to favor any particular one of (P1) — (P3) compared to the others in terms
of its power.

Tables IV — VI show the performance of the tests under the null when the error
is an MA(1) process with (U2a). In the present case the (approximately) correct
specification of the estimated equation is (11) with k = 4. As in the case of iid
errors (U1), our sequential testing procedures perform rather well if k is specified
“correctly” and the sample size is large. But they are not recommendable if the
sample size is less than 100. In (N1) and (N3) with k = 4 the test (P3) seems to
suffer from less size distortions than the tests (P1) and (P2). As we discussed in
the iid error case, the “seemingly” less size distortion of the test (P3) in (N3) can
be explained by the downward bias in the probability of rejecting the noncausality
null conditioned on # = 1. Comparing (P1) and (P2) when k = 4, (P1) seems to
perform better than (P2). Since the estimated equation with k = 4 in the case
of (U2a) is only an approximation of the true model, the test performance is, of
course, not as good as the iid case with k£ = 1.

Table V shows that when causality tests based on levels VAR’s are asymp-
totically valid (i.e., @ and - are chosen as (N2)), their performance with k =4 is
similar to that of the sequential testing procedures (P1) - (P3). But in (N1) and
(N3) with k£ = 4 they suffer from significantly more distortion compared to our
sequential tests (Tables IV and VI). When causality tests based on differences
VAR'’s are valid (Tables V and VI), they outperform the sequential procedures
(P1) ~ (P3), though the size distortion in the case of (N1) is enormous (Table
IV). These tendencies were also observed when the error is an iid sequence and
k>1. '

We ran simulations for the parameter values (L1) - (L3) with MA(1) errors
(U2a). Although the results are not reported in this paper, as in the case of iid



280 TODA AND PHILLIPS

TABLE VI
(N3) aa=0 =0 (U2) 613=1 Z,=1I3
Tl r [ k=1 I k=2 ] k=4
Sequential procedures in ECM’s
Rejections Rejections Rejections

LR LR LR
Test (P1) (P2) (P3)| Test (P1) (P2) (P3)| Test (P1) (P2) (P3)
0 0.0 - - -1 0.0 - - - 58 107 107 107
1 81.2 26 26 57; 913 74 79 54| 839 122 122 96
50 | 2 18.1 39.9 399 39.9] 80 455 455 42.0] 8.9 517 515 49.0
3 0.7 222 222 222| 07 459 459 459 14 458 458 458
Total - 95 95 120 - 107 11.2 87 - 16.1 16.1 13.7

0 0.0 - - -{ 0.0 - - -] 0.0 - - -
1 771 18 18 3.3) 911 55 7.0 40f 922 84 85 55
100| 2 216 39.0 39.0 39.0f 83 432 440 411} 7.0 416 419 444
3 1.3 143 143 143| 06 30.0 30.0 30.0/ 0.8 333 333 333
Total - 100 10.0 11.2 - 88 102 72 - 109 110 84
0 0.0 - - - 0.0 - - -{ 0.0 - - -
1 752 19 19 28| 9.7 52 75 52| 931 67 69 41
200 2 23.4 410 408 40.8) 8.7 439 439 419| 6.2 33.7 340 41.0
3 13 134 134 134 06 286 286 286 0.7 364 364 364

Total - 112 111 11.8 - 87 108 86 - 86 88 6.6
Rejections for VAR(K) in levels / VAR(k-1) in differences
50 | - 20.7 / - 16.8 / 6.8 228 /11.7
100 - 208 / - 16.1 /7.0 152 /1.8
200| - 20.8 / - 16.1 / 8.1 129 / 6.5

errors (U1), comparing them when k = 4 suggests that any one of these tests
does not outperform the others uniformly over the specifications of 4 and a, e.g.,
(P1) and (P2) seem more powerful than (P3) in (L2) and vice versa in (L3).

In n-variate VAR (and ECM) frameworks the number of parameters increases
by n? as the number of lags to be included in estimated equations increases by
one. Hence, we would expect that the estimator may deteriorate if “too many”
lags relative to the sample size are included in estimation. Moreover, as pointed
out earlier, the asymptotic theory implies that the size distortion from which the
tests in levels VAR'’s suffer becomes relatively small as k increases even though
they do not yield correct asymptotic chi-square criteria. Therefore, it is of some
interest to see how the test performances are affected by an increase in the
number of lags included in estimation. Thus, we ran simulations with & > 4 for
the combination of (N1) and (U2a). We chose (N1) rather than (N3) because
levels VAR’s are likely to perform better in (N1) than in (N3) though both
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TABLE VII
(Nl) Q3 = 0 Y1 = 1 (U23) 613 =1 E( = 13
Sequential procedures in ECM’s
Rejections Rejections Rejections

LR LR
Test (P1) (P2) (P3)| Test (P1) (P2) (P3)| Test (P1) (P2) (P3)

0 0.2 90.0 90.0 90.0{ 80 758 758 758 199 76.0 76.0 76.0
1 87.8 15.9 190 157 744 279 385 288| 580 485 60.9 46.1
2

50 10.5 40.4 40.8 44.4| 155 51.3 522 52.6| 182 65.6 66.0 63.2
3 015 486 486 486| 21 49.0 49.0 49.0/ 39 629 629 629

Total - 191 21.9 194 - 358 438 36.6 - 57.6 64.9 558

0 0.0 - - -} 0.0 100.0 100.0 100.0{ 1.8 91.3 91.3 913

1 91.4 9.3 105 7.8 89.5 143 186 14.6| 867 18.7 289 19.7
100 2 7.7 346 346 404| 93 348 351 41.9| 101 433 441 451
3 0.9 39.1 39.1 39.1 12 356 356 356] 13 369 36.9 369
Total - 115 12.6 10.6 - 16.5 204 17.8 - 227 317 238
0 0.0 - - -1 0.0 - - -{ 0.0 - - -
1 927 68 86 55| 925 89 100 85} 925 11.3 158 1238
200 2 6.7 387 39.0 464 6.7 303 30.0 411} 6.7 33.6 32.7 426
3 0.5 444 444 444) 08 244 244 244| 07 243 243 243

Total - 91 109 84 ~ 104 115 10.8 - 129 17.0 148
Rejections for VAR(k) in levels / VAR(k-1) in differences
50| - 2257 90.2 3427797 50.5 / 74.1
100 - 16.2 / 99.9 18.6 / 98.3 23.4 / 89.8
200 - 14.3 / 100.0 13.2 / 100.0 14.1 / 100.0

(N1) and (N3) are the case where levels VAR’s do not provide asymptotically
chi-square tests.

The results are shown in Table VII. For T = 200, the procedures (P1) -
(P3) are still better than levels VAR’s when £ = 6, but when k = 8, only
(P1) outperforms the levels VAR based tests. The table shows that for the
sequential procedures, k£ = 4 provides the best results for all sample sizes and
as k increases the test performance deteriorates fairly quickly even though the
true model has an infinite lag polynomial. The tests in levels VAR’s reveal a
similar tendency. (But for T = 200 the performance begins to worsen only as k
exceeds 6.) However, in the sequential tests (P1) — (P3) this sort of deterioration
is expected to be and actually was more serious since the Johansen-type ML
method on which the sequential causality tests are based is more complicated
than ordinary VAR estimation.
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TABLE VIII
1.0 02 =05
(N) as=0 7, =1 (U2) fia=-1 (52) T, = ( 02 1.0 02 )
—0.5 02 1.0
T r k=1 k=2 k=4
Rejections Rejections Rejections
LR LR LR
Test (P1) (P2) (P3)|Test (P1) (P2) (P3)|Test (P1) (P2) (P3)
0 0.0 - - -1 0.3 92.3 923 92.3]28.1 442 442 442
1 249 31.1 311 326|652 420 471 457|611 50.2 523 565
50 2 72.2 56.4 56.4 56.4|32.7 221 221 112 97 203 203 18.1
3 29 462 462 462 18 198 198 19.8| 1.0 176 176 176
Total - 498 498 50.2 - 352 38.5 34.0 - 453 46.5 489
0 0.0 - - -1 0.0 - - -1 0.4 850 850 850
1 164 242 242 248|545 424 508 435|886 256 273 29.2
100 2 80.0 66.9 66.9 66.9|43.7 27.1 27.2 14.8(10.1 152 152 150
3 35 506 506 506(| 1.8 341 341 341f 08 7.1 7.1 7.1
Total - 59.3 59.3 59.4 - 355 402 30.8 - 246 26.1 278
0 0.0 - - -1 0.0 - - -1 0.0 - - -
1 120 21.2 21.2 215|511 552 65.6 559|887 164 183 177
200 2 |841 753 753 753|474 453 453 304|104 136 13.6 15.7
3 39 615 615 61.5| 1.5 355 355 355} 09 47 47 47
Total - 68.3 683 683 ~ 50.2 55.5 43.5 - 160 17.7 174
Rejections for VAR(k) in levels / VAR(k-1) in differences

50 | - 420/ - 20.2 / 70.7 180/ 40.1

00| - 55.6 / - 27.6 / 94.4 117 / 61.1

200| - 65.8 / - 43.9 7 99.9 11.3 / 90.6

One interesting observation on levels VAR’s which have been widely used in
the econometric literature is that causality tests begin to deteriorate as k exceeds

6 even for the sample size equal to 200, which is relatively large in practice. Since

k = 8, for example, is not too long a lag length to be used in some practical

studies, this finding is important for interpreting empirical work.

We also ran simulations for some parameter constellations of © and L, that

are consistent with noncausality other than reported in Tables I - VI. For exam-
ple, in addition to (U2a) the following © and %, were tried in the case (N1):

(U2b)

(S1)

C)

Z

0.6 0 O
0 05 O
-1 0 05

1.0 0.2 0.5
02 1.0 0.2
0.5 02 1.0

Xie

i

(52)

10 0.2 0.5
02 1.0 02
-0.5 02 1.0
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For each combination of © and ¥, taken from (U2a) - (U2b) and (S1) - (52),
the test performance was examined. The results were basically the same as in
Table IV in all combinations except one, that is, (U2b) and (52), as reported in
Table VIII. In this case levels VAR’s suffer significantly less size distortion than
the sequential tests (P1) - (P3). (But in the case of (N3) the sequential tests
still performed significantly better than levels VAR based tests even when (U2b)
and (S2) are used for the error process.) Note that for this combination of ©
and Z,, Johansen’s LR test does not work very well even for the sample size 200,
and more importantly that the size distortion when 7 = 1 is much larger than in
other tables, i.e., the ECM estimation provides poor estimates of the coefficients
even though r is correctly specified. This is obviously because the inclusion of
four lags in the estimated model could not remove the serial correlation in the
errors effectively enough for the Johansen method to work well in the present
case. Hence, we would have to include more lags in the estimated equations to
improve the test performance. But Table VII suggests that we must also have
larger samples in order to allow more lags in the estimated equations without
deteriorating the test performance.

5. CONCLUSION

This paper has provided a theoretical overview of Wald tests for Granger
causality in levels VAR’s and Johansen-type ECM’s. In the ECM framework
we have proposed some operational testing procedures that are applicable in the
important practical case of testing the causal effects of one variable on another
group of variables and vice versa. We have also investigated the finite sample
properties of these sequential causality tests through Monte Carlo simulations.
Since the data generating processes we employed in this study are simple, it
would be unwise to make strong general claims from this simulation study. But

our findings may be summarized as follows:

(1) The sequential testing procedures perform well at least in large
samples when the lag length is correctly specified.

(ii) The sequential tests outperform conventional VAR tests in the
sense that the former tests work reasonably well for all specifications
of cointegrating vectors and loading coefficients that are consistent
with the null of noncausality, while the latter tests suffer from signif-
icant size distortion in cases where tests are not valid asymptotically

as chi-square criteria.
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(iii) For some types of serially correlated error processes the Johansen
approach and hence our testing procedures that are based on it do

not work well.

(iv) The simulation results do not support the use of either our se-
quential procedures or conventional causality tests in samples smaller
than 100, at least if the system has three or more variables; and if
these testing procedures are to be used in practice it is desirable that
sample sizes be greater than 100 observations.

(v) Our simulations show the important role played by the choice of
lag length in the performance of these tests.

Comparisons among the sequential test procedures themselves show similar
performance and there is little evidence favoring any one of them. Hence it is
not clear which one should be used if all of them are applicable, i.e.,if n; = ny =
1. But one possible suggestion on this matter is the following. Since the null
hypothesis of noncausality is consistent with different combinations of values of
a and 4, it is impossible to choose the nominal size of each sub-test so that the
probability of rejecting the null of noncausality is always, say 5 %, independent of
the specifications of a3 and <, and hence we will not be able to avoid significant
distortions in some cases. Therefore, we might want to proceed with the testing
procedure for which the probability of rejecting the null depends on the true
parameter values the least. Though a rigorous analysis of this problem would be
very difficult, at least a heuristic analysis suggests that the tests (P1) and (P2)
are less vulnerable with respect to this kind of distortion than (P3) because they
have simpler structures than the test (P3). Thus, combining this observation
and the simulation result that (P3) did not necessarily perform better than the
others, it would seem reasonable to work with (P1) or (P2) rather than (P3).

If we exclude the test (P3), comparing the tests (P1) and (P2) when k£ > 1
shows that the test (P1) performs better than the test (P2). Furthermore, Table
7 suggests that the deterioration of the test performance associated with the
increase in k seems less serious in (P1). Since we expect k£ > 1 in most practi-
cal applications, the test (P1) could be regarded as a better testing procedure.
Therefore, if both n;, and nj are equal to one, we conclude that a reasonable
choice is to apply the sequential procedure (P1).
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