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Bayes models and forecasts of Australian
macroeconomic time series

Peter C.B. Phillips"

This paper provides an empirical implementation of some recent work by the
author and Werner Ploberger on the development of Bayes models for time
series. The methods offer a new data-based approach to model selection, to
hypothesis testing and to forecast evaluation in the analysis of time series. A
particular advantage of the approach is that modelling issues such as lag order,
parameter constancy, and the presence of deterministic and stochastic trends all
come within the compass of the same statistical methodology, as do the
evaluation of forecasts from competing models. The paper shows how to build
parsimonious empirical Bayes models using the new approach and applies the
methodology to some Australian macroeconomic data. Bayes models are
constructed for thirteen quarterly Australian macroeconomic time series over the
period 1959(3)-1987(4). These models are compared with certain fixed format
models (like an AR(4) + linear trend) in terms of their forecasting performance
over the period 1988(1)-1991(4). The Bayes models are found to be superior+e 1n
these forecasting exercises fef-@u;g of the thirteen senies, while at the same time
being more parsimonious in form. * fe 1o

1. INTRODUCTION

Not all econometric models are designed as instruments for forecasting
Nevertheless, the capacity of one model to forecast adequately in comparison with
competing models is an important element in the evaluation of its overall

* All of the computations reparted in this paper were performed by the author on a 486-33 PC using
programs written in GAUSS-386i (Version 2.2). The author thanks Sam Quliaris for supplying the data, the
NSF for research support under Grant No. SES 9122142, and Glena Ames for her skill and effort in
keyboarding the manuscript.
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performance. Indeed, many of the procedures that are presently used to appraise a
model's performance involve summary statistics that depend in one way or another
on the model's within-sample and outside-sample tracking behaviour. Thus, in
spite of the multiplicity of objectives in econometric modelling, one common
characteristic is the attempt each model makes to explain the data, or certain
subsets of the data conditionally on other data. This attempted explanation often
leads directly, but sometimes indirectly, to a model's 'probability distribution of the
data'. Again, this may be a conditional distribution, and the statistical procedures
that are employed may mean that only certain characteristics of the distribution
rather than the full distribution are modelled. However, this common element of
econometric modelling provides a basis by which different models can be
compared. Thus, one model's explanation of the data can be compared with that of
another model in terms of their implied 'probability distributions of the data’. In a
similar way, one model's predictions can be compared with those of a competing
model! in terms of the respective 'probability distributions of the prediction errors'.

These ideas underlie some recent work by the author (1992) and by the author
and Werner Ploberger (1991, 1992) on the development of Bayes models for time
series. Bayes models are essentially location models conditional on the data that is
available to the latest observation. In these models, the location estimate or
systematic part of the model is nonlinear and time varying even when the
underlying 'true model' is linear in parameters and variables like an autoregression.
The location estimate is a predictor given by the current best estimate, using prior
information and the available data, of the value of the dependent variable in the
next period. The predictor is calculated as the conditional mean of the dependent
variable given data to the latest available observation. Here the conditional
expectation is taken with respect to the probability measure of the data implied by
the given model and the prior distribution of the parameters. We call this measure
the Bayes model measure. As more data accumulates, this Bayes model measure of
the data becomes independent of the prior and is therefore 'objective’ in the well
defined sense that it ultimately depends only on the form of the mode!l and the
observed data. Since the Bayes measure is distinct for different models, it may be
used as the basis for comparing competing models in terms of their implied
'probability distributions or predictive distributions of the data’, as discussed in the
last paragraph.

This paper implements the above ideas in an empirical study of Australian
macroeconomic data. Our purpose is to seek out the best Bayes models in a certain
generic class of time series models for each data set and then evaluate the
adequacy of these models against certain fixed format competitor models in terms
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of one-period ahead forecasts. The methodology is based on earlier work in
Phillips and Ploberger (1991, 1992) and Phillips (1992), which will be briefly
reviewed in section 2 of the paper.

2. MODEL AND FORECAST EVALUATION USING THE PIC
CRITERION

Our set up is the single equation stochastic linear regression model

y,=ﬂ'x,+£,, (f=1,2, ) (1)

where the dependent variable y, and the error g are real valued stochastic
processes on a probability space (Q, F, P). Accompanying y, is the filtration
FcFt=0,1,2,..) to which bothy, and &, are adapted. Usually it is convenient
to think of F, as the o-field generated by {¢, &.;, ... } and in the cases we consider
this will always be appropriate. The regressorsx, (k x1)in (1) are defined on the
same space and are assumed to have the property thatx, is F,_;-measurable. The
errors ¢, satisfy E{g|F,_;)=0, so that the conditional mean function in (1) is
correctly specified under the probability measure P.

An example of (1) that is frequently empirically relevant is the
'ARMA (p,q) + trend(r)' model. This model can be written in difference format as

i=1

1 r
Ay, =hy_ + i Py, +i WiE+ 0 6%+ 2)
) j=1 k=0

which is especially convenient because it accommodates an autoregressive unit
root under the simple restriction # = 0. We call the parameter g = 1+h the 'long
run autoregressive coefficient' since this parameter is instrumental in determining
the shape of the spectrum of y, at the origin — see Phillips (1991) for elaboration
on this point.

In (2) there are k = p + ¢ + r + 1 parameters. When ¢ > 0, some of the
regressors, viz. the g, ;, are not observed. Recursive techniques are then required,
either to construct the likelihood as in the use of the Kalman filteg or in repeated
linear regressions that involve the construction of estimates of the lagged errors
£.; as in the Hannan and Rissanen (1982, 1983) recursion. When ¢ = 0 in (2) the
model is an 'AR(p) + trend (r)'. When r = -1 there is no intercept in the model,
when » = 0 there is a fitted intercept, and when r = 1 there is a fitted linear trend.
These are the specialisations of (2) that are of primary interest in empirical
applications.
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The order parameters p, ¢ and r in (2) are-not known in practical applications
and the mode! is in any event best regarded as just an approximate generating
mechanism. Various methodologies for dealing with this complication are avail-
able. Those that concern us here are based on formal statistical order selection
methods such as the commonly used criteria AICand BIC. These criteria and their
statistical properties in stationary systems are discussed in detail in the recent book
by Hannan and Deistler (1988). When the system is potentially nonstationary as in
(2) with A = 0 the properties of these criteria are less well understood although
they have been studied, notably by Paulsen (1984), Tsay (1984) and Potscher
(1989).

Our approach to the order selection problem is based on the analysis in Phillips
and Ploberger (1992) and is closely related to the principle underlying the BIC
criterion of Schwarz (1978), viz. to select the model with the highest a posteriori
probability. This approach has a compelling advantage over AIC and BIC in that
it naturally accommodates models of nonstationary time series and has generally
superior sampling performance (see Phillips and Ploberger (1992) for simulation
evidence on this point). The probability measure used to determine our criterion is
the measure associated with the Bayes model corresponding to (1). This model is
formally derived for the case of Gaussian errors g, = iid N(0, 02) in (1) and has the
form

Yo = Bi-ix; +v,, where v|£., =N(0,f) (3)
with
{
fi= 0’2{1+x,’ ,‘_llx,}, A =Zx,x§ 4
1

and where ,3,_, is the least squares estimate of f based on information in F_,.

The Phillips and Ploberger analysis shows that, under a uniform prior on 8 and
a Gaussian likelihood the passage via Bayes rule to the posterior density of B
implies the replacement of the model (1) by the time varying parameter model (3).
We therefore call (3) the Bayes model corresponding to (1). Note that the
systematic part of (3), ;?;-lx,, is the best estimate or predictor of the location ofy,
given information in F,_;. This location estimate is identical to the maximum
likelihood estimate of the best predictor of the next period observation, i.e. it is
precisely the predictor we would use in classical inference. Thus, the Bayes model
is identical to the classical model that is actually used to make predictions (in place
of (1)). From this perspective there is no difference between the Bayesian and
classical approaches. However, we can go further in our approach and find the
probability measure associated with the Bayes model (3). This is a forward
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looking measure that can be described by its conditional density givenF,_;. This
density is given by the Radon Nikodym (RN) derivative of the measure at 7 (say
Q,) with respect to the measure at#~1 (Q,_)), ie.

dQ:/dQ,_, = pdfp(vlF-1)

5

=Q7) " exp{~(2/ W7} = N(O,f), t=k+1, k+2, ... ®)
We use the notation pde(-) here to signify that this is the density corresponding to
QO-measure. Note that it is defined as soon as there are enough observations in a
trajectory to estimate the k-vector . Thus, (3), (4) and (5) are defined for > k+1.
The measure Q, that appears in (5) is called the Bayes model measure, ie. the
measure corresponding to the Bayes model (3). This measure is o-finite and, as
shown in Phillips and Ploberger (1992), can also be defined in terms of the
following RN derivative

dg, /P, =|(1/o?) 4| " expl(V202)Bia B} ©)

which is taken with respect to the reference measure P, for the model (1) in which
B =0 (i.e. the probability measure of the N(0, 021,) distribution).

Associated with every Bayes model of the form (3) is a o-finite measure (),
Different models of the same data may be compared in terms of the Bayes model
measures that are associated with them. The natural mechanism for making such
comparisons is the likelihood ratio. Suppose, for example, that we have two
models of the form given in (3), one with k parameters and the other withX 2 k
parameters. Indexing the variables in (3) by the number of parameters we now
have two Bayes models of the data: one with k parameters that we write as

H(OF )yt = Br(k) tnar (k) + Va1 (K);

and the second, more complex model with X parameters

H(Qf ):yml = ;Bn(K)’ Xpel (K) +Vayy (K)

The likelihood ratio of the measures associated with H(Q,f ) and H(Qf ) is given by
the RN derivative dQ,’,‘ / de . This quantity can be calculated by taking the ratio
of the RN derivatives that define Q% and Q¥ in terms of the reference measure P,,
i.e. the ratio of the corresponding expressions given by (6) for each model. Thus,
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dg} [dgy = (dgk jap,)/(aQy /ar,)
= 4,0 ", 00 expf (22 B8 4,08, 0~ B0 4, 008,00 .

This likelihood ratio measures the support in the data for the more restrictive
model H(Q,f) against that of the more complex model H(QX). When we assign
equal prior odds to the two competing models our decision criterion is to accept
H(QF) in favour of H(QX) when dQ% /dQX >1.

Since ¢® in (7) is usually unknown we must supply an estimate of this scale
parameter before the criterion can be used in practice. Phillips and Ploberger
(1992) suggests the use of &i, the least squares estimate of o from the more
complex model H(Q,f ). Our order estimator is then given by

k = argmin, PIC, (8)
where

PIC, =(dQx /dQs )(6%)- ©)

Observe that £ maximises 1/PIC; = dQ* /d0X (&%) and thereby selects the model
most favoured over H(Qf ) according to the density of the data.

An alternative form of the PIC criterion (9) that is given in Phillips and
Ploberger (1992) is based on the predictive densities of the competing Bayes
models, i.e. H(Q,f ) and H(Q,f ). By comparing the densities for these models over
the same subsample of data, say n > X, we have

X
dQ" K+1 K+

k noo. a n - ~
PICF, = 922 (52 ) 5, = [1(7%/ )" exp{ > [ 27X -y,(k)Z/Zf,*]} (10)

7= a}(l+x,(k)’A,_,(k)"x,(k)), 7K = &}(1+x,(1<)’ 4 (K" x,(K))',
v (k)= y, = By (8)' x,(K), vi(K) =y, = By (K) x,(K).

Note that (10) differs from (9) only to the extent that in (10) the density ratio is
conditional on data in Fx. In effect, the initialisation in (9) is at /= 0 on the field
Fo, whereas in (10) the initialisation is at ¢ = K on the field Fx where there is
enough sample data to estimate both models H(Q,") and H(Q,K ). Both criteria PIC
and PICF are scale invariant because of the presence of the error variance estimate
&% in their definitions. Note, however, that PICF is invariant to linear
transformations of the regressors x{k) and x(X) in the two models H(Q,") and
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H(QK ), whereas PIC is not. Use of PIC therefore presumes that there is some
natural form of the regressor variables, as there is for example in AR and ARMA
models with deterministic time trends. This is the class of model that will be used
in the application of our methods that is reported below.

As indicated earlier, our approach is related to the principle underlying the BIC
criterion, which leads to the order estimator

argmin, [BIC, = In&} +kIn(n)/n}

When the data are stationary and ergodic it is easily shown that our criterion PIC is
asymptotically equivalent to BIC (see Phillips and Ploberger, 1992). However,
when the data are nonstationary the criterion PIC imposes a greater penalty than
BIC on the presence of additional nonstationary regressors. The simulations in
Phillips and Ploberger (1991) show that PIC generally outperforms BIC as an
order estimator criterion for both stationary and nonstationary data, at least in
Gaussian models.

The PIC and PICF criteria are also related to the MDL and PMDL criteria of
Rissanen (1986, 1987q, 19875), viz.

argmink[MDLk =In6f +1nj4, (k)l/n], argmink[PMDLk = Zn:{ln&b &2, /6% }}

=K+l

(see e.g. Mills and Prasad, 1992, for these formulae). Clearly, the MDL criterion
is closely related to PIC in that the penalty term Inl4,,(k)//n involves the data rather
than simply a parameter count as in the BIC criterion penaity k In(n)/n. Note,
however, that the PIC penalty involves the term |4,(k)/6%| and is therefore scale
invariant. In the Rissanen predictive criterion PMDL, &, and &7, are defined by

1 -
é12+l = Z(}’jﬂ _xj+l(k)lﬂr)2a
j=0
and
~ N2
& =3 (n-uwh)
J=
Writing

exp-0PMDL,} = [10/6 ) expl- 2 /252 )

we see that PMDL is related in form to our PICF. The criteria differ, however,

because (i) PICF employs the recursive one step ahead squared forecast errors

v2(k) = (¥ — x;(k)' Bi—1)? rather than the sum of squared predictive errors &2, as
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in PMDL; and (ii) PICF employs the forecast error variance f;" rather than the
error variance estimator &7, as in PMDL.

The PICF criterion (10) has a very interesting interpretation as a form of
encompassing test statistic. For, if d0%/d0X(6%)r >1 the evidence in the
sample suggests that the density for the model with k parameters exceeds the
density of the model with X parameters when both are evaluated at the sample
data. This is equivalent to saying that the model with k parameters encompasses
the model with K parameters in terms of their respective probability densities.
Thus, when dQ¥/dQ¥ (5% )| e >1, the Bayes model H(Q}) encompasses the Bayes
model H(QX) in terms of the probability distribution of the sample data over the
period + = K+1, ... ,n. This might be called distributional encompassing for r e
[K+1, n].

Obvious extensions of this principle apply for subperiods of the overall sample.
Moreover, the principle can be extended to evaluate the forecasts from competing
models. For instance, H(Q¥) and H(QX) can be compared in terms of their
respective performance in one-period ahead forecasts over the period 7 = n+1, ...,
N. The Bayes model forecast encompassing test statistic for this period is

N

dgk [dgk (6(6)) 5 = Ili(gf J2t)" exp{~{1/262(K)gk o (k)? + (282 (KgF (KD
(11

Note that in this formulation the variance estimate 67(K) evolves recursively over
the forecast period. Again, H(QY) encompasses H(QF) in terms of forecast
performance over the period [n+1, N] when d0%/dQX (6%)| e > 1.

Bayes models like H( Q,’,‘) may be permitted to evolve in a natural way as more
observations become available. Thus, period by period we may employ the PIC
criterion (8) to select the appropriate value, 12,, of k for the sample data up to
observation #~I, prior to making the one-period ahead forecast of the value of y,.
This leads to an evolving sequence of best Bayes models

H(Q,B):_}’p = )‘Bt—l (]2;-] )I x,(le,_l ) + v,(];,_l)

which are determined recursively using the PIC criterion (8) period after period.
It is then possible to compare the best Bayes model sequence H(Q,B ) with a fixed
format Bayes model sequence H(QF ) that employs a fixed number of parameters
(F). The comparison can be made in terms of their respective predictive densities
over a forecast horizon such as ¢ € [#+1, N]. In this case the forecast-
encompassing test statistic is
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do /agf (6*(E))
- T (e /) enpf {1252 (g ) + (/252 el 7 h02)

tmn+l

We would favour the best Bayes model sequence {H(Q)} ., over the sequence of

fixed format models {H(QF)} V., if

do? (gl (5% (k) > 1. (13)

that is, if the sequence H(Q,B ) generates forecasts over t = n+l, ..., N that
encompass the forecasts of the fixed format sequence of models H(Q] ). Note that
in (12) and (13) we use recursive estimates of the error variance from the best
Bayes model sequence, since these are consistent for o when (1) is the actual
generating mechanism.

The most important property of H(QB ) is that this sequence of models adapt to
the data, When fewer parameters are needed to model the data the sequence will
respond by eliminating unnecessary parameters. When more are needed, the
sequence adapts by enlarging the model, either by adding more lags or by adding
deterministic trend polynomial regressors, as appropriate. Since the PIC criterion
can also be used to test for the presence of a unit autoregressive root the best Bayes
model sequence H(Q,B ) can also be designed to include unit roots whenever these
are supported by the data, '

In general, we may expect H(Q,B ) to have fewer parameters than H(Qf )
especially when F incorporates a Jinear trend and several lags. Reasonable choices
for H(QF) depend on the time interval of observation. Thus, for annual data a
fixed format model of the type 'AR(3) + linear trend’ may seem a sensible baseline
competitor. For seasonally adjusted quarterly data an 'AR(4) + linear trend' may
be reasonable and for monthly data one might choose models with longer lag
lengths including an 'AR(12) + linear trend' as a baseline competitor. Some of
these alternatives will be used in the empirical work that follows.

3. AUSTRALIAN MACROECONOMIC DATA

The data we use are quarterly and monthly Australian macroeconomic time series.
The quarterly series cover the period 1959(3)-1991(4) and the monthly series
cover the periods 1959(1)-1991(12) and 1967(7)-1991(12). All variables except
interest rates and stock prices are seasonably adjusted. Table 1 givés details of the
thirteen series that we use and the variable notation that we employ.



62 Peter C. B. Phillips

Table 1: Macroeconomic Variable Notation and Description

Variable Description Frequency Sample Forecast
Period Period
C Aggregate private final consumption Quarterly 1959(3)- 1988(1)-
expenditure ($m; sa) 1987(4) 1991(4)
RC Aggregate real private final v " "
consumption exp. ($m average 1984/5
prices; sa)
GDP Gross domestic product ($m; sa) " " "
RGDP  Real gross domestic product ($m " " "
average 1984/5 prices; sa)
PGDP Implicit price deflator for GDP (sa) " " "
CPI Consumer price index (1981 = 100; sa) " " "
U Unemployment rate (%, sa) " " "
WR Wage rate: Average earnings of non- " " "
farm wage and salary earners ($/week)
RWR Real wage rate (= WR/PGDP) " " "
SP500 Australian share price index: all monthly  1959(1)- 1988(1)-
ordinaries (31 December 1979 = 500) 1987(12) 1991(12)
Intl Money market 13 week Treasury Notes " 1969(7) "
(% pa, yield) 1987(12)
Int2 Capital market 2 year Treasury Bonds " " "
(% pa, yield)
Int3 Capital market 10 year Treasury Bonds " " "
(% pa, yield)

All of the series except interest rates are lagged. Interest rates are taken in
levels (% pa) and reciprocals of levels. The latter transformation (i.e. x—1/x) is
variance stabilising and reduces the volatility in the series that tends to occur at
higher interest rate levels. The reciprocal transformation was found to work well
for US bond yields in Phillips (1992) and is therefore used again here. All of the
series are graphed in Figures 1(a)-13(a). Figure 11'(a), for instance, shows the
short term interest rate, Intl, over the period 1969(7)-1991(12). The increased
volatility in this series at higher levels of Intl is apparent. Figure 11(a) graphs the
series in reciprocals, i.e. 1/Intl, over the same period. The effects of stabilising
the volatility in this case are quite clear from the two figures. This feature of
interest rate data is less apparent for the intermediate rate, Int2, and the long term
rate, Int3. However, the transformation is used for both these series as well and
the graphs are shown in Figures 12(a), 12'(a) and 13(a), 13'(a), respectively.
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4. BAYES MODELS FOR THE DATA

Using the PIC model selection criterion we set out to find the best Bayes model for
the time series described in the last section. Two classes of models were
considered. The first was the 'ARMA(p,q) + trend(r)' model given in (2) and the
second was the simpler 'AR(p) + trend(r)' model.

The algorithm for determining the trend degree and lag orders of the ARMA
modet! is the one given in Phillips and Ploberger (1992). This algorithm involves
the following steps:

Step 1. Set maximum orders for the AR, MA and trend components.

Step 2. Run 2 long autoregression with maximum trend degree and use PIC or
BIC to select the AR order (p).

Step3.  Select the trend degree (7 ) in the model chosen in Step 2 using PIC or
BIC. Calculate the residuals £, from this regression.

Step4.  Run an array of ARMA(p,q) + trend(7 ) regressions using &,_; in place
of ¢,_; for the MA variable. Choose the orders ( 2,g) using either PIC
or BIC.

StepS5. If p > 0, compare the Bayes model selected in Steps 14, viz.
'ARMA(p,§) + trend(r ) with a Bayes model of the same order having
a unit autoregressive root. Choose the restricted 'ARMA(p,§) with unit
root + trend(# )" model if the posterior odds criterion PIC favours this
model (i.e. is greater than unity) over the reference model '"ARMA(p,7)
+ trend(F). If p = 0, then there is no autoregressive component and
hence no autoregressive unit root.

The algorithm for selecting the best Bayes model in the 'AR(p) + trend(r)' class
is the same as the above, but simply omits the MA component and hence Step 4.
One of our interests is to discover whether this simpler class of models is adequate
for most economic time series.

These algorithms of model selection were applied to the thirteen Australian
macroeconomic time series described earlier. The empirical results are shown in
Table 2. All of these series are found to be stochastically nonstationary. Twelve
of the series have a unit autoregressive root while one series, GDP, has 2 mildly
explosive long-run autoregressive coefficient of 1.001 that is preferred to a
competing model with a unit root.

Only one of the series (the GDP price deflator) is found to have trend degree
r=1. Since the best Bayes model for this series also has a unit root, the implied
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Table 2: Best Bayes models for Australian Macro Time Series

Block A Block B
Model class= ARMA(p,q) + trend(r) Model class = AR(p) + trend(r)
Model selected Model selected

Series | Dynamics r  p° Odds® | Dynamies r p° 0das®
c ARMA@,1) -1 1.000 3313.723 AR(3) -1 1.000 102.212
RC AR(D) 0 0.994 11.221

GDP AR(2) -1 1.001 0.000

RGDP AR(1) 0 0992 8.936

PGDP | ARMA(2,1) 1 0.993 84.493 AR(4) -1 1001 255.238
CrI AR(4) -1 1.001 472.010

U AR(4) -1 1.005 117.851

WR AR(3) -1 1.002 3.998

RWR AR(1) 0 0.986 19.489

SP500 | ARMA(L,1) -1 1.001 174.232 AR(2) -1 1001 745.433
Intl ARMA(L,1) -1 0.992 78325 AR(2) -1 0999 52.635
Int2 AR(2) -1 0.997 196.366

Int3 AR(D) -1 0.99% 92.544

2 Long-run autoregressive coefficient; b posterior odds in favour of a unit root
Note: If the model selected in Block A is an AR(p), the Block B result is identical and hence not repeated

model for the series is a stochastic trend around a quadratic. Three of the series
(real consumption, real GDP and the real wage rate) are found to have trend
degree r =0, leading to a stochastic trend with drift as the best Bayes model for
these series.

The dynamics are generally well modelled by autoregressions. But for four
series (consumption, the GDP deflator, stock prices and the short term interest
rate) low order ARMA models are chosen in place of autoregressions. The choice
of dynamic model has no effect on the decision in favour of a unit root for these
series. Block B of Table 2 shows the mode! choice outcomes in the 'AR(p) +
trend(r)' class and these can be compared with the outcomes selected in the
'ARMA(p,q) + trend(r)' class given in Block A of the table. There is only one
important change from restricting the mode! class to be autoregressive. For the
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GDP deflator series an 'AR(4) + trend(-1)' process is selected as distinct from an
‘ARMA(2,1) + trend(1)' process when the model class is wider. Note that the long
run autoregressive coefficient is larger for the AR(4) model than the ARMA(2,1)
(1.001 as distinct from 0.993) but that a unit root Bayes model is chosen in each
case. Looking at the graph of this series in Figure 6(a), it is apparent that both
models can be rationalised in terms of the historical trajectory. The 'AR(4) +
trend(-1)' Bayes model with a unit root is, in fact, the more parsimonious of the
two (3 parameters as distinct from 4).

5. BAYES MODEL FORECAST PERFORMANCE

The four final years of the sample data (1988-1991) were used for an ex post
forecasting exercise. This involves sixteen observations for the quarterly series
and forty-eight observations for the monthly series. The best Bayes model
sequence {H(QF)}1%M47]? was determined recursively using the PIC criterion.
For the quarterly data an 'AR(p) + trend(r)' class was used withp < 5, r< 1. For
the monthly series the parameters were prescribed as p <12, r<1. The
autoregressive model class was chosen in place of the ARMA class because most
of the series seemed to be well modelled within this class as discussed in the
previous section. The best Bayes model sequence was compared with a fixed
format Bayes model sequence in terms of their respective one-period ahead
forecasting capabilities. For the quarterly data an 'AR(4) + linear trend' fixed
format model was used. For the monthly data series, we used both 'AR(4) + linear
trend' and 'AR(12) + linear trend' fixed format rules.

Figures 1-13 show the one-period ahead forecast performance of these Bayes
model sequences over the period 1988-1991 inclusive. For each series Figure (a)
displays the data and the relevant forecast period, and Figure (b) shows the period
by period forecast errors from the two rival models (the solid line is the Bayes
model error and the dashed line is the fixed model error while the origin is given
by a dotted line). Figure (c) gives details of the evolving form of the best Bayes
model. the solid line on the graph shows the autoregressive lag order selected (06
lags), the dashed line shows the trend degree (-1 = no intercept; 0= fitted
intercept; 1 = fitted linear trend), and the dotted line shows whether or not a unit
autoregressive root is selected (—I = yes, 0 = no). Figure (d) gives a recursive plot
of the forecast encompassing test statistic a'QB /a'QF over the forecast period.
Table 3 tabulates these details, gives the root mean squared error (RMSE) of
forecasts for the two models over the forecast period, and records the evolving
format of the best Bayes model.
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Figure 11'(a): INT1:1969(7)-1991(12)
Levels
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Figure 12'(a): INT2:1969(7)-1991(12)

Levels
19.63 —— - -— ——r oy
1549 1
INT2:1969(7)~1991(12)
13,34 }
10.20 |
705
5"3953 ‘9.7‘4 a;so 114935 1992
Figure 12'(b): Prediction errors
3.47 -r

Forecost RMSE's: Boyes model = 0.5197
an | Fixed model = 0.5470
(AR(4) + T(1))

094

Q33T

-1.80
~——————  Boyss muodel erTor
— - Flze¢ motel wiror
............. Origia
-2.86 — % z

N
1988 wee 1990 1991 1992



81

Bayes Models and Forecasts of Australian Macroeconomic Time Series

ool

0sel

eee!

2061

" a A " s " A i " a

I A a N

1111}

1sDo910y |9poN sadog :(p)gt @inbiy

.._Ov\mov :o1siioys ise] buissodwooul

L1681 *[.11] [ 1) ae61
T T T T r v T T g T v Y T v 100~
(€ 1TFT SN i
4018 |9pOW peK|4 _ - —
ioue Japow sefeg 00°0-

(DL + ($)av)
£200°C = |9pow paxig
9200°0 = |apow sakog :8,3SNY }60D8.104

i A

900~

t0'¢

20'Q

sJolua uoyatpard :(q)gl eunbiy

1681 0661 (111} o] -
(oump sohmy-Yyoas yupy «oeirn
(1O L=mi)ansbop pues} © e — —
i (9"0=d)19ps0 wv L
b — e e e e e — e b=
Q
&
L 40 h
'
PR SR | — P VRURIT W VY DRV S b4
you Jo jusesaad jooy wun (I
sieypwouaod (J)puasl + (d)yv (1)
(spo ssApg 3seg buiajoa] :(o2)¢| sunbiy
[4.1.11 208561 o1 1 71 1} 898}
—r— T T T s00
: 4
4 800
4140
_uo_:.nw
L y8008.0 4 {svo
| 490
(Z1)1661-(£)6961:CINI
4 A A 1o

L —(S19497)

(Z1)1661—(L)B961L:CLINI :(P)gt ®inbiy



82 Peter C. B. Phillips

Figure 13'(a): INT3:1969(7)-1991(12)
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Table 3: Forecasting Exercises for Australian Macroeconomic
Time Series, 1988-91

Series | Forecast RMSE | Number Best Parameter Forecast
of model Bayes model  countratio  encompassing
Bayes  Fixed | changes Bayes model  test dQ%/dQ"
model model (date) /fixed model in 1991
c 0.0064  0.0080 0 ARG)™! 26 13.8880
RC 0.0071  0.0065 0 AR(1Y1+T(0) 1/6 0.5491
GDP 0.0189 0.0169 | 1('90(4)) AR(1); AR(2) 1/6; 2/6 0.0679
RGDP | 0.0116 0.0102 | 1(90(3)) AR(1); 1/6; 1/6 0.2006
AR(1)1+T(0)
PGDP | 0.0080 0.0094 0 AR(@4Y! 3/6 6.5094
CPI 0.0077  0.0082 0 AR(4)™ 3/6 2.1490
U 0.0512  0.0551 0 ARQ2)™ 1/6 1.7985
WR 0.0121 0.0141 0 AR(3)™! 26 5.3556
RWR | 00117 0.0121 | 1(88(2)) AR 0/6; 1/6 1.8320
AR(1)+T(0)
SP500 | 0.0409 0.0415 0 AR(2)™ 1/6 2.2081
0.0454° 1/14 31.1012
@nt)™| 0.0036 0.0057 0 AR 1/6 22.1763
Intl* | 0.5579 0.8461
@2y | 0.0043  0.0044 0 ARQ2)™ 1/6 2.9060
Int2® | 0.5197 0.5470
(Int3y | 0.0026 0.0027 0 ARQ)™! 0/6 7.1099
Int3* | 03815 0.3896

Notes: * forecasts for the 'Inti’ series were obtained from models for the series in reciprocals, i.e. ‘(Inti)"'
b forecast RMSE for fixed model of form 'AR(12) + T(1)'; AR(p)"! = AR(p) mode! with 2 unit root

autoregressive root is selected (-1 = yes, 0 = no). Figure (d) gives a recursive plot
of the forecast encompassing test statistic do? / dO” over the forecast period.
Tabie 3 tabulates these details, gives the root mean squared error (RMSE) of
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forecasts for the two models over the forecast period, and records the evolving
format of the best Bayes model.

The main outcomes from this empirical forecasting exercise are as follows:

(i) For none of the series and for no subperiod is the fixed format 'AR(4) +
trend(1) model a chosen Bayes model. Three series (real consumption, real wage
rate, real GDP) are chosen to have a unit root with drift. All series except for GDP
and real GDP show evidence of a unit root throughout the entire forecasting
period. Moreover, the best Bayes model for real GDP has a unit root from the
1990(3) quarter and, as noted in the discussion of Table 1, the Bayes model for
GDP has a mildly explosive long-run autoregressive coefficient. Thus, all series
are found to be stochastically nonstationary.

(ii) The best Bayes mode! sequence encompasses the forecasts of the fixed
model for all three of the series, these being real consumption, GDP and real GDP.
Note from the recursive graphs shown in Figures 2(d), 3(d) and 4(d) that the best
Bayes model forecasts encompass those of the fixed mode! for these series also in
the first half of the forecast period. For some series the forecast dominance of the
best Bayes model sequence is substantial and uniform over the forecast period.
This is especially notable for consumption, where do? / do" =13.888, the short
run interest rate (Intl) where dQB / dQ =22.1763, and the long run interest rate
(nt3) where d0°% /dQT = 7.1099.

(iii) From Table 3 it is clear that the best Bayes models have a substantial
advantage in parsimony over the fixed models. For all series the Bayes models
have at most 50 percent of the parameters of the fixed model and for ten of the
thirteen series the parameter ratio is at most 1/6, Note that the presence of a unit
root in the best Bayes models for the different series also plays a roie¢ in reducing
the parameter count. For the long-run interest rate (Int3), the parameter ratio is 0/6
yet the best Bayes model — here a martingale — uniformly dominates the fixed
model in terms of the forecast encompassing test.

(iv) Root mean squared errors (RMSEs) of forecasts over the period
1988-1991 are given in Table 3. In the graphs, Figure (b) for each series tracks
the forecast error generated by each model over the forecast period. By the
traditional RMSE criterion the best Bayes model is the superior model for ten of
the series (consumption, GDP deflator, CPl, unemployment rate, wage rate, real
wage rate, stock prices, and the three interest rates). For real consumption, GDP
and real GDP the best Bayes model! has a larger RMSE. For these same series, the
Bayes model forecasts do not encompass those of the fixed model. So the two
criteria reach the same conclusion on which model is superior for each of the
thirteen series.
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(v) It is worth noting that for some of the series the forecast performance of the
best Bayes model is quite remarkable given its economical form. Thus, for the
consumption series, the Bayes model reduces the RMSE of forecast by twenty
percent. Looking at Figure 1(b) it is apparent that the Bayes model forecasts are
substantially and almost uniformly better than those of the fixed model from
1989(3)-1991(4). The Bayes models also do very well for the GDP deflator and
CPI series. The most dramatic improvement in forecasts comes for the short run
interest rate series (Intl). For this series the Bayes mode! (an AR(2) with only one
fitted parameter) reduces the RMSE of the fixed model by thirty-six percent from
0.0057 to 0.0036. Figure 11(b) shows that for the subperiod 1990(1}-1991(4) the
Bayes model is uniformly superior to the fixed model, which consistently
underpredicts through this subperiod (leading to a persistently positive forecast
error). The reason for this underprediction by the fixed model is clear from the
graph of the series in Figure 11(a): a model with a linear trend, like the fixed
model, is misspecified. Even though the trend coefficient in the model is revised
each period with the latest observation this is not enough to prevent a serious and
persistent forecast error. The more parsimonious best Bayes model is more
flexible, adapts more quickly and convincingly outperforms the fixed model in this
case.

(vi) As discussed in section 3, models for the interest rate series are constructed
in reciprocals of levels to make the volatility of the series more homogeneous over
the sample. Forecasts for both reciprocals of levels and levels are then generated
for these series. The results are tabulated in Table 3 and shown in Figure 11', 12'
and 13'. In spite of their parsimony, the best Bayes models do exceedingly well
and dominate the fixed model for all three series both in levels and in reciprocals
of levels. In terms of forecasts the odds in favour of the best Bayes model are
22.18:1,2.91:1 and 7.11:1 for Intl, Int2 and Int3 respectively.

(vii) For the monthly series we also considered a fixed model with the format
'AR(12) + trend(1)' to allow for calendar year effects. In each case, this fixed
model performed worse than the 'AR(4) + trend(1) model. Resuits for this choice
of fixed model are shown only for stock prices — see Figures 10'(a)<d) and Table
3. The best Bayes model remains the same in this case and now does even better
than before in comparison with the fixed model.

6. CONCLUSION

This paper shows that best Bayes models of parsimonious form can be constructed
for Australian macroeconomic time series that do very well in competition with
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fixed format models. For ten out of the thirteen series considered here the Bayes
models not only improve on the forecasts of more richly parameterised models but
also éncompass those forecasts. In effect, the predictive distribution of the best
Bayes model explains the forecasts delivered by the rival model. According to our
Bayesian forecast-encompassing statistic and given the actual forecast history, the
posterior odds favour the Bayes models, sometimes by a factor as high as 30:1, as
in the case of the short-term interest rate series.

The models we have considered in this paper are scalar time series models.
However, all of the ideas we have employed extend in a natural way to
multivariate time series; the statistical theory for this extension will be provided in
a subsequent paper. And we hope to conduct some empirical exercises with these
multivariate methods on Australian macroeconomic data at a later date.
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