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VECTOR AUTOREGRESSIONS AND CAUSALITY

By Hiro Y. Topa AND PeTER C. B. PHILLIPS!

This paper develops a limit theory for Wald tests of Granger causality in levels vector
autoregressions (VAR’s) and Johansen-type error correction models (ECM’s), allowing
for the presence of stochastic trends and cointegration. Earlier work by Sims, Stock, and
Watson (1990) on trivariate VAR systems is extended to the general case, thereby
formally characterizing the circumstances when these Wald tests are asymptotically valid
as x? criteria. Our results for inference from unrestricted levels VAR are not encourag-
ing. We show that without explicit information on the number of unit roots in the system
and the rank of certain submatrices in the cointegration space it is impossible to
determine the appropriate limit theory in advance; and, even when such information is
available, the limit theory often involves both nuisance parameters and nonstandard
distributions, a situation where there is no satisfactory statistical basis for mounting these
tests.

The situation with regard to the use of causality tests in ECM’s is also complex but
more encouraging. Granger causality tests in ECM’s also suffer from nuisance parameter
dependencies asymptotically and, in some cases that we make explicit, nonstandard limit
theory. Both these results are somewhat surprising in the light of earlier research on the
validity of asymptotic x? criteria in such systems. In spite of these difficulties, Johansen-
type ECM’s do offer a sound basis for empirical testing of the rank of the cointegration
space and the rank of key submatrices that influence the asymptotics.

Keyworps: Error correction model, exogeneity, Granger causality, maximum likeli-
hood, nonstandard limit theory, nuisance parameters, vector autoregression, Wald test.

1. INTRODUCTION

ONE OF THE MAJOR POTENTIAL APPLICATIONS of unrestricted estimation in
systems of stochastic difference equations is to test for causality between subsets
of the variables. Such tests have become common in the empirical literature
following their use in Sims (1980) to test the block exogeneity of the real sector
in vector autoregressions (VAR’s) fitted with real and monetary variables for
both Germany and the U.S.A. Such tests are routinely performed using Wald
criteria that are thought to be asymptotically chi-squared, as indeed they are in
stationary or trend stationary systems. In recent work, Phillips and Durlauf
(1986), Park and Phillips (1988, 1989), and Sims, Stock, and Watson (1990)
(hereafter SSW) have all shown that the asymptotic theory of Wald tests is
typically much more complex in systems that involve variables with stochastic
trends. In general, one can expect the limit theory to involve nuisance parame-
ters and nonstandard distributions both of which substantially complicate infer-
ence procedures, as originally pointed out in the Phillips-Durlauf paper.

In their analysis of causality tests, SSW look specifically at trivariate systems
and conclude that the Wald test has a limiting chi-squared distribution if the
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time series are cointegrated and if the long run relationship involves the
variable that is excluded under the null hypothesis (SSW, p. 135, paragraph 3
and footnote 3). Given the important empirical role of causality tests in levels
VAR’s, it seems reasonable to us to ask the following questions: to what extent
are the conclusions of SSW generally valid; what form do the qualifications on
the nature of cointegration that apply in trivariate systems take in the general
case; are there other special cases of interest that are worthy of mention?

One object of the present paper is to explicitly address these questions. We
extend the treatment in SSW of causality tests to the case of general VAR
systems with an arbitrary number of cointegrating vectors. In particular, we are
able to characterize those special cases where the limit theory is indeed y2. We
also provide a breakdown of the general case where the limit theory has x? and
nonstandard components and may depend on nuisance parameters. We point to
other special cases where the limit theory has nonstandard components but is
free of nuisance parameters. We show that without explicit information about
the number of unit roots in the system and the rank of certain submatrices in
the cointegration space it is impossible to determine the appropriate limit
theory in advance. Such information is typically unavailable a priori in much
empirical work, more especially in empirical work conducted with VAR’s where
the emphasis is on unrestricted estimation unfettered by prior identifying
information (Sims (1980)). But, even if this information is available, the limit
theory in VAR estimation will still often involve nuisance parameters and then
no satisfactory basis for mounting a statistical test of causality applies.

A second object of the present paper is to develop an asymptotic theory for
causality tests in error correction models (ECM’s) estimated by maximum
likelihood. In keeping with our earlier theme of VAR estimation, we propose an
asymptotic theory for Wald tests of causality in ECM’s formulated as VAR’s in
differences with levels as additional regressor variables. Our framework is the
same as Johansen (1988, 1991) and therefore has the advantage that pretests
can be performed relating to key elements that drive the asymptotics, such as
the dimension of the cointegration space and the rank of certain submatrices of
the cointegrating matrix. In general, tests for causality in ECM’s also suffer from
nuisance parameter dependencies asymptotically. Moreover, in certain impor-
tant cases, the limit theory of Wald tests for causality is also nonstandard and
can be characterized in terms of nonlinear functions of x? variates. Both these
results may seem surprising given the assumed general validity of x? asymp-
totics for Wald tests in such models. However, the situation is not as severe as it
is in levels VAR estimation. In important subcases (where either the loading
coefficient submatrices or the submatrices of cointegrating coefficients that are
relevant under the null are of full rank) it is shown that the limit theory of Wald
tests for causality is y2.

The plan of the paper is as follows. Section 2 details the models we shall
consider, our notation, and some theoretical preliminaries. Section 3 studies
Wald tests for causality in levels VAR estimation and Section 4 extends this
analysis to Johansen-type ECM’s estimated by maximum likelihood under
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Gaussian assumptions. Section 5 concludes the paper and an Appendix contains
many of the mathematical derivations.

A summary word on notation. We use vec(A4) to stack the rows of a matrix A
into a column vector, [x] to denote the largest integer <x, and R(A) and
R(A)* to signify the range space and its orthogonal complement, respectively,
of a matrix 4. We use the symbols “ 4, o “5 »and “="” to signify conver-
gence in distribution, convergence in probability, and equality in distribution,
respectively. The inequality “ > 0” denotes positive definite (p.d.) when applied
to matrices. We use I(d) to signify a time series that is integrated of order
d, BM((2) to denote a vector Brownian motion with covariance matrix 2. We
write integrals with respect to Lebesgue measure such as [y B(s) ds more simply
as [B to achieve notational economy. (All integrals in this paper are from 0 to
1.) Finally all limits given in this paper are taken as the sample size T tends
to .

2. THE MODEL, NOTATION, AND OTHER PRELIMINARIES

Consider the n-vector time series {y,} generated by the kth order VAR
model
(1) yt=J(L)yt41+ut
where J(L)=X¥*_ ,J.L'"! and {u,} is an iid sequence of n dimensional random
vectors with mean zero and covariance matrix 3, > 0, such that E|u,|*"® <o
for some 8 >0 (i=1,...,n). We shall initialize (1) at t= —k + 1,...,0. Since
the initial values {yy, ¥ _{,..., ¥ _x .} do not affect asymptotics, we can let them
be any random vectors including constants. But we will give them a certain
distribution as specified below to facilitate our analysis. In setting up a likeli-
hood function for data generated from (1) it is, of course, most convenient to
take the initial values to be constant, as in Johansen (1988, 1991).

We assume that model (1) does not have a constant term, u, say, since this
simplifies considerably the presentation and derivation of our results. Of course,
the basic idea in the derivation of the asymptotics is the same whether p = 0 or
w # 0, and since the effects of deterministic trends have been investigated rather
fully in the recent literature on regression with integrated processes, it is easy to
see how the asymptotic distributions derived in the next two sections should be
modified if p + 0.

We can write (1) in the equivalent ECM format

(2) Ay, =J*(L) Ay, +J*y,_ 1 +u,
where J* =J(1) —I,, and
k—1

k
JH(L)y= Y J*LY with JF=- Y U, (i=1,...,k—=1).

i=1 I=i+1



1370 H. Y. TODA AND P. C. B. PHILLIPS

We assume that:
(3a) |I,—J(L)L|=0 implies |L|>1 or L=1.
(3b) J¥=IA

where I' and A4 are n X r matrices of full column rank r, 0<r<n—1. (If
J* =0, then r =0 and there is no I" or A.)

(3¢) I" (J*(1) —1,)A_ is nonsingular,

where I') and A, are n X (n—r) matrices of full column rank such that
I'I'=0=A4 A (f r=0,thenwe take I' | =A4 =1,.)

Under the above conditions {y,} is 1(1), and is cointegrated with r cointegrat-
ing vectors if r > 1. Condition (3a) precludes explosive processes but allows for
the model (1) to have some unit roots. Condition (3b) defines the cointegration
space to be of rank r and A4 is a matrix whose columns span this space.
Condition (3¢) ensures that the Granger representation theorem applies, so that
Ay, is stationary with a Wold representation, A'y, is stationary, and y, is an
I(1) process.

Suppose that we are interested in whether the first n; elements of y, are
“caused by” the last n, elements of this vector. Write

. 7 7 7 ’
y,—(yl,, Y2 y3t)
ny n, n,

and partition J(L) conformably with y,. Then the null hypothesis of noncausal-
ity can be formulated based on the model (1) as
(4) Ao Jiz= 0 =J3=0

where J(L)=XF J, 3L)7" is the n, X ns upper-right submatrix of J(L).
Equivalently, the noncausality null can be formulated as
(5) ATy = =T 13=0 and J5=0
based on the ECM format (2), where J#(L)=Xf2\\J*;L'~" and J§ are the
n, X ny upper-right submatrix of J*(L) and J*, respectively.

To prepare for the analysis in the following sections we introduce some

further notation and a couple of lemmas. Define x,=(y,_y,...,y;_,) and we
can write (1) as

(6) v, =®x,+u,

where @ =[J,,...,J;]. Define an nk X nk nonsingular matrix H=[H,, H,]
with

H,=[D®I,e ®A],
and
H,=¢,04,

where I, is an n Xn identity matrix, e, is a k-dimensional unit vector, iLe.,
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(1,0,...,0Y, and D is a k X (k — 1) matrix such that

1 00 0 0

-1 10 0 0

D=1 0 =L L .. 0.9
0 0 0 11

0 0 0 0 -1

Then define z} =(z,, z5,) = (H'x,) where
zy=Hix,=(Ay,_1,o s Ayl (Ay,2y))

which is an m, = n(k — 1) + r dimensional vector, and
2 =Hyx, =A y,_,

which is an m, =n — r dimensional vector. These variates z,, and z,, are the
basic components that will appear in the large sample asymptotics developed in
the next two sections. With this notation we now specify the distribution of the
initial values x, = (yy,..., ¥ 4., of system (1) in a convenient way for our
analysis. Note that if z, = (2}, z},) is specified, so is x, through x, =H'"'z,.
Our initialization assigns to z;; the stationary distribution of the process
defined by (A1) in the Appendix, while the component z,, can be any random
vector.
We can write (2) as

(7 Ay,=V¥z,, +u,

where ¥ =[JF,..., J¥_,, I']. Furthermore, since Ay, is I(0), we have the Wold
representation

(8) Ay,=C(L)u, where C(L)= ) CL' with Cy,=1I,.
i=0
(See (A6) in the Appendix for the explicit form of C(L).)
Now write w, = (u), z{,, Az},) and define for any ¢

3 =Eww,,
A=) Eww,,j,
j=1
and
N=3+A+A,
We partition {2, 3, and A conformably with w,. For instance, we write
2y, 2y O
N=10, 0O 0O
Oy Oy O,

with indices “0”, “1”, and “2” corresponding to the components of w,. Then,
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we have the following lemma.

LemMma 1:
R By(s)
o | TE o [P0)- |20
1 T 3 B,(s)
Wtz“l(zug)ut) &

where B(s) = (By(sY, B(sY, BJs)Y is an (n + m, + m,)-vector Brownian motion
with covariance matrix (2, ¢ is an nm -dimensional normal random vector with
mean zero and covariance matrix %, ® 3, and B(s) and ¢ are independent.

(ii) By(s) =A' C(1) Bo(s)-
(iii) 0,=3,=3,, 3, and Q, are positive definite, and A,y =2,,=0.

The next lemma follows from Lemma 1 above and Lemma 2.1 of Park and
Phillips (1989).

LeMMA 2:

. 1 T p
(1)(3) s Zzltzrlt ’El;
T,

1 T
()(b) —ﬁZzltu;i)No where vec(N,) = &;
t=1

.. 1 I d

(i)(2) = Lz, [B,dBy;
t=1

. 1z d

(ii)(b) T Y 25,20, fBz dB| + 3,5 + Ay;
t=1

1z , d ,

(iii) T2 222,22,—>‘/‘BZBZ.
t=1

Joint convergence of all the above also applies.

Now we are ready to analyze the asymptotic distribution of the Wald statistic
for testing the hypothesis (4) (or (5)).
3. CAUSALITY TESTS BASED ON LEVELS VAR ESTIMATION

Suppose we estimate the levels VAR model (1) by OLS. The estimated
equation is

(9) Yt=@x1+ﬁ; (t=1,...,T),
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where in this section “" 7 signifies estimation by OLS. The noncausality hypoth-
esis (4) can be written as

(10) Ny S1PS=0 or (S;XS)vec(P)=0

where
0
Then the Wald statistic for testing (10) can be written

ny 01in, +n,

and S=I1,®S5; with S3=[

ny+n; ns 103

Fr=vec($) (5,0 8)[(sie5)[3, 0 (xx)](s,@5)]
X (8 ® 8")vec(d)
=tr[s;<1‘>s[s'(X'X)‘1S]‘IS'@'sl(sgﬁusl)’l]
where 3, is the OLS estimator of 3, and X’=(x,,..., x;). Under the null

hypothesis §,6S = $,U’'X(X'X)~'S where U’ = (u,,...,u;), and we therefore
have

- — -1
FLS=tr[s;U'X(X'X) 's[s(xx)7's]

XS'(X'X) ™' X'US( ;ﬁusl)—l]

1
2

=tr[(S'12uS1) SiU'z(zz) 'R[R(zZ)"'R]”

><R(Z’Z)"1Z’US1(S’12uSl)_%]
where R=S'H and Z' =(z,,..., z;). We write R=[R,, R,] with
R/ =SH =[D®S}, e, ®A4,]
and
R,=SH,=¢,8A4 ;
where A, and A | ; are the last n; rows of 4 and A |, respectively.

LeEmMa 3: Let rank (A3) =g <ns. Then, there exists a nonsingular n3k X nzk
matrix K, such that

K;R=R,/T,
with
y R 0 B
lim R,=| " _ |=
Tow 0 R22

where Ty = diag(\/flml, TL,.), Ry, and R,, are (ny(k—1)+g)xXm, and (n;—
g) X m, matrices, both of which are of full row rank.
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Using Lemma 3 we have

F g=tr [(S;fusl)_%S’lU’Z(Z'Z) “'RE,|KyR(2'Z) “R'IET] !

xK'TR(z'Z)‘1Z'Usl(s;2,,sl)"7]

-1
z

={r [(S’lfusl) S’IU’ZTT—l(TT“IZ’ZTT—l)—l

- - 1 ~ -1
xRy Ro(17'2277) 7 Ry |
-RT(T;1Z'ZT;1)‘1T;lz'Usl(s;2usl)“5].
Using Lemma 2 and taking into account the consistency of ﬁu (see Park and

Phillips (1989) for the consistency of the OLS estimator), the continuous
mapping theorem gives

d
Fis— FLS(]) + FLS(Z)

where

' AT S - 117 53 ~1p/ 15 - ’ -1
FLS(I) =1r [SINOEI lRll(Rllzl 1R11) Rllzl IN()Sl(SlEusl) ’

-1
(515,50 7'5, [ s, By [ .5

-1

FLS(Z) =tr

-1
xR Rl [B,81) R

-1
'Rzz(_/-BzB,z) fBz dB(r)Sl( S;Eusl) —{l-

Note that F, g, and F;g, are independent because N, is independent of
(By(s), By(sYY by Lemma 1(). 3 3

Since vec (R, 37'N,S) = (R 37! ® S})vec (Ny) = N(O, R;; 37 'R}, ®
$13,S,), by Lemma 2(iXb), we see that

. A w18 ) -1 o
Fpsny=vec(RySTNS ) [RyST'Ryy © 515,8:]  vee (R, 37N S,)

=2
= Xny(ny(k—1)+g1*

On the other hand, F, g, component has a nonstandard distribution and
depends on nuisance parameters in general.

There are, however, two special cases that are noteworthy. First, note that if
rank (A4;) = n;, we may take K, =1I, and there is no K, in the proof of Lemma
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3. Hence R=(R,,,0) with R, of full row rank n,. Therefore, there is no Fi 5
component in this case. That is, we have the usual chi-square asymptotics.

Tueorem 1. If y, is cointegrated and rank (A;) = n,, then under the null
hypotheses (4), F, % X2 ok

This theorem generalizes the SSW’s (1990) result from their analysis of
trivariate VAR (p) systems with one cointegrating vector—if there is a linear
combination involving X,, which is stationary,” then “the F-test will have an
asymptotic le/p distribution” (SSW, 1990, p. 135, paragraph 3 and footnote 3).

Next, we investigate the other extreme case where there is no cointegration.
In this case, it will be shown that the limit distribution of the F, g statistic is
nonstandard but free of nuisance parameters. If y, is not cointegrated, there is
no A and we may take A | =1 . Hence we have R, =D ®§; and R, =¢, ® Sj.
Obviously we can set K,=D® I, and K,=i,® I, in the proof of Lemma 3 so
that we have R,; =D’'D ® S} and R,, = S;. We shall rotate coordinates and cast
F} 52y into a canonical form that eliminates nuisance parameters.

Define §1,,= (1, ,,,,0) and let

Ba(s) =Rzsz(5) = 83B,(s),
By(s) =81,,B,(5),

and
Wi(s) = (81%,5,) T2S1By(s5)

which is a standard Brownian motion since £, =3, by Lemma 1(iii). Then we
can write Fj g, as

(11) FLs<z>=tr[ [ aw, @;( / M;)_l /B, dW{]

where

(1) B9 =Bs) - B[ [BB) B,

The covariance matrix of the m,-vector Brownian motion (B,(sY, B,(s)) is £2,,
which is p.d. by Lemma 1(iii). We partition this as

'Qb ‘Qba
‘Qab ‘Qa

conformably with (B,(s), B ,(s)Y. Then define
Ba~b(s) = Ba(s) - ‘Qab‘ob_le(s)



1376 H. Y. TODA AND P. C. B. PHILLIPS

which is a Brownian motion independent of B,(s). Substituting B,(s) =B,,.,(s)
+ 0,,02;, 'B,(s) into (12) gives

1
BAS) = Boo() ~ [BooBi{ [BoB) Bi(o).
Furthermore, define
VVa(S) = (‘Qa - ‘Qab‘()b_l‘()ba)_iBwb(s) = ‘QcJ—-IEBwb(S)’
Wy(s) ='Qb‘%Bb(s)>

where W,(s) and W,(s) are standard Brownian motions independent of each
other. Then we can reduce (11) to the canonical form

FLsm=tr[de1 H’;(fﬂ’a _v_V;)_lf_m dW{}

where

1
(13)  W(s) = W) = [Was{ [ W) wis).
Moreover, we have Lemma 4.

LemMa 4: W((s) may be taken as the first n, elements of W,(s).

Therefore we have obtained the following theorem.

TuroRreM 2: If y, is not cointegrated, then under the null hypothesis (4)

L)
Frs = Ximg-1p Tt

[ aw, _v_V;(fm v_V;)_lfm dW{]

where the first and the second terms are independent,

W,(5) = Ws) = [ [ Wat).
W (s) | ns _
[Wb(s) n,tn, =BM(L),

and W(s) is the vector of the first n, elements of W,(s).

Theorem 2 shows that if processes are not cointegrated, causality tests in
levels VAR’s are asymptotically similar, and therefore the critical values for the
tests can be tabulated conveniently. Once the critical values have been com-
puted, the tests can easily be implemented in practice. Of course, if it is known
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that the system is J(1) with no cointegration, causality tests based on differences
VAR’s are also valid, and in these tests the usual chi-square critical values are
employed. Hence, an interesting question is the following: which causality test
should be implemented in empirical work if it is known that the process is I(1)
with no cointegration. To provide some insight into this matter, we consider the
situation where the null hypothesis (4) is false.

For this purpose it is convenient to consider the equivalent formulation (5) of
the null hypothesis (4). The alternative hypothesis corresponding to (5) is:

¥ T3 # 0 for some i (i=1,....,k—-1).

Note that J must be zero both under the null and alternative hypotheses since
J* =0 if the process, y,, is I{1) with no cointegration. Hence, if it is known that
there is no cointegration, the constraints J; =0 in (5) are redundant. That is,
tests of the noncausality hypothesis (4) in levels models contain redundant
parameter restrictions. On the other hand, causality tests in difference models
take account of the unit root constraint, J* = 0, and test the null hypothesis that
J¥= " =Jf 1 13=0. Therefore, causality tests in difference VAR’s are
likely to have higher power in finite samples.

The above two theorems show that in two extreme cases the asymptotic
distribution of the Wald test is free of nuisance parameters: (i) If there is
“sufficient cointegration with respect to y,,” in the sense that rank(A;) = n,,
then the asymptotic distribution is x; ,..; and (ii) if there is no cointegration,
the Wald test statistic converges to a nonstandard but nuisance parameter free
distribution. In the intermediate cases, however, the asymptotic distribution is
not only nonstandard but also dependent on nuisance parameters, i.e., if there
is cointegration but it is “insuflicient with respect to y;,” in the sense that
rank(A4,) <n,, then the asymptotic distribution depends on nuisance parame-
ters in a rather complicated manner. We illustrate this by an example. (The
reader is referred to Toda and Phillips (1991a) for the full development of the
asymptotics in the general case.)

ExampLE 1: Let the true model be the following trivariate system with one
cointegrating vector (given by the first equation) and error covariance matrix
3, = ("uiu,-):

Yie=Yar-1 T Uy

Y2r=Ya—1 T Uy,

Y3, = V31 T U
Suppose we set the lag length k=1 and J(L)=(b;) in (1), estimate an
unrestricted VAR(1), and test .#: b;; =0 (i.e., y; has no causal effect on y,)
using the statistic F;g. In this case we have A;=0 and g=0, so there is
insufficient cointegration with respect to y;.

Let us now define the correlation matrix (p,;) where p;; = ‘Tu,»uj/(‘fu,-u,»‘fuju,-)%-
Then, after a little manipulation we find the following limiting expression for
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the F, ¢ in terms of three scalar Brownian motions:

FLS_”L(deJ_Va)Z/jW

where W, (s) = W,(s) — [WW,([W2)W,(s),

Wi(s) 1 W1 Wy
W,(s) =BM(2,) with 0, =|w, 1 0|,
Wy(s) wp; 0 1

wa = (1= p33)” %(Psl = P3p3) = P13l = P%z)%a and w,; = py.

We deduce that the limit distribution of F, g is dependent on the nuisance
parameters p,, (the correlation between u,, and u,,) and p,;., (the partial
correlation between u,, and u,, given u,,).

In sum, to detect noncausality in a nonstationary VAR model like (1) we need
first to know if y, is cointegrated or not. If there is no cointegration, we may
formulate the model in terms of the first differences, or we can apply Theorem
2. If there is cointegration, we need further to know if the cointegration is
sufficient with respect to the variables whose causal effects are being tested. If it
is sufficient, we can apply Theorem 1. If the cointegration is insufficient,
however, it is necessary to know rank(A,), to estimate nuisance parameters,
and to simulate the asymptotic distribution that is relevant for the particular
model we have using estimated nuisance parameters. This procedure seems too
complicated and computationally demanding in practice besides having no
sound statistical basis. We conclude that causality tests based on OLS estima-
tion in levels VAR’s are not to be recommended in general. We shall therefore
propose an alternative and more promising procedure based on ML estimation
of the model in ECM format in Section 4.

But before proceeding to the next section we consider the extension of the
above theorems to the VAR model with a nonzero constant term, w, viz.

(14) y,=u+Px,+u,.

If (14) has some unit roots, the process y, may contain linear trends as well as
stochastic trends.? Effects on the asymptotics of the presence of deterministic
trends in I(1) regressors are discussed in Park and Phillips (1988) in a general
framework. Therefore, we report only the results very briefly.

Suppose the process y, is cointegrated. If (14) is estimated by OLS, the
asymptotic distribution of the Wald statistic for noncausality, in general, differs
depending on whether y, contains linear trends or not. But if the rank condition
of Theorem 1 is satisfied, the Wald statistic still has an asymptotic chi-square

21t I, n # 0, then linear trends are present, otherwise y, possesses only stochastic trends. See
Johansen (1991).
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distribution with the same degrees of freedom. However, if y, is not cointe-
grated and (14) is estimated, then the nuisance parameter independence of the
causality test no longer applies. This is because, if there is no cointegration, the
nonzero u in (14) produces linear trends in y,, which break the collinearity of
the Brownian motions in Lemma 4.

To obtain asymptotically similar tests for causality in the model with nonzero
u, we need to include a time trend term, ¢, as well as a constant term in the
estimated system. Then, the linear trend components in y, are eliminated since
including time as a regressor is equivalent to detrending the data prior to
estimation. Accordingly, the asymptotic distribution of the causality test be-
comes free of nuisance parameters if the process is not cointegrated. But the
Brownian motions in Theorem 2 must be replaced with “detrended Brownian
motions.” Of course, Theorem 1 continues to hold even if a time trend term (in
addition to a constant term) is included in the estimated equation.

4. CAUSALITY TESTS BASED ON ML ESTIMATION OF THE MODEL
IN ECM FORMAT

As we saw in the last section, causality tests based on OLS estimators of
unrestricted levels VAR'’s are not very useful in general because of uncertainties
regarding the relevant asymptotic theory and potential nuisance parameters in
the limit. In this section we consider an alternative way to test noncausality
hypotheses in cointegrated VAR’s. Our testing procedure is based on Johansen’s
(1988, 1991) ML method. This method has two advantages over the levels VAR
approach considered in the last section. First, the ML procedure gives estima-
tors of the system’s cointegrating vectors, A, and their weights I". Hence if the
asymptotic distribution of the tests depends on the structure of A (or I'), as in
the case of OLS based tests, then we may use these estimators to test relevant
hypotheses about the structure of A4 (or I'). Moreover, the ML estimators of the
cointegrating vectors are asymptotically median unbiased and have mixed nor-
mal limit distributions, unlike those that would be obtained from levels VAR
estimation, and they are therefore much better suited to perform inference.
Second, since ML methods take into account information on the presence of
unit roots in the system, we can avoid unit root asymptotics altogether, i.e., the
asymptotic distribution of the ML estimator of A will be mixed normal and
conventional normal asymptotics will apply to the estimators of the other
parameters. (See Phillips (1991).)

We deal with the ECM representation of the system given in (2), and estimate
the parameters Ji',...,J; |, I', and A. We continue to assume that the model
has no constant term. The asymptotic theory does differ if the model has a
constant term. However, our results on causality tests obtained below are not
affected by that difference.

Although Johansen assumes normality of the innovation sequence {u,} in
addition to the assumptions we made in Section 2, it is obvious in view of our
Lemma 1 and Lemma 2 that all the asymptotic results in Johansen (1988)
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continue to hold without the extra assumption.® Thus, suppose that by
Johansen’s likelihood ratio test about the number of cointegrating vectors we
have decided that there are r > 1 cointegrating vectors. (If there is no cointegra-
tion, we can formulate the model in terms of first order differences {4y}, or we
may apply Theorem 2 in the last section.) Then the ML estimator Aof Ais
given by the eigenvectors corresponding to the r largest eigenvalues that solve
equation (9) of Johansen (1988). Also, let A , be the n—r eigenvectors*
corresponding to the n — r smallest eigenvalues and assume that all the eigen-
vectors are normalized in the manner prescribed by Johansen (1988, p. 235).
The estimator of ¥ =[J,...,JF ,, '] (see (7)) is given by

B=ay 2,(22,)"
where AY' =[A4y,,...,Ay;], and Z)=1[%,,..., 2] with 2, =
[AY,_ 1., AVl 4 1,(Ay,_,)]. In this section the symbol “"” on top of a
parameter signifies that the parameter is estimated by ML.
We shall construct a Wald test statistic based on these ML estimators to test
the noncausality hypothesis (5). But before proceeding further, we summarize

the limit behavior of the ML estimators and some sample moment matrices.
Define

and
R
where IT=A'A with 4 =(A'A)"'4’, and define
AL =AAlﬁ11’
where IT =A' A with 4, =(4, A )"'4, . The limit theory we need is

given in the following lemma, which is a consequence of results in Johansen
(1988).

LEMMA 5:

(i) T(A—A) &AL(IBZB’Z)leBdeg,

where B,(s) is the m, = n — r dimensional Brownian motion defined in Lemma 1,
B.s) is an r dimensional Brownian motion with covariance matrix (2, =

31f u, is not normally distributed, the estimators considered below are no longer ML estimators.
Nevertheless, we shall continue to refer to them as “ML estimators.”
These eigenvectors do not provide a consistent estimator of the space spanned by 4 | . But we
call them A4 | since their role in the derivation of the asymptotic distribution is the same as that of
A , . (See the Proof of Lemma 5.)
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('L '), and B,(s) and Bs) are independent.

(i) VT(F-¥)SN=[ N, ,N,],
n(k—=1) r

where vec(N') = N(0, 3{ ' ® 3,) which is independent of B,(s) and B (s).
i) 3,53,
where 3, =T WAY'AY — AY’ Z(Z!Z,)"'Z} AY) is the ML estimator of 3,.

(v)  Q.=(r2;T) ',
W T(#2) B3

where Zi = [Zy,..., 2,7 with 21, = [Ay, 1,..., Ay, ,(A'y, )]
(viXa) For a matrix M such that MA =0, M'A  =M'4

-1
= -1 d ,
CEEERCFARKAYENY
where Zyy =12y, ..., Eypl with 2,,=A |y, _,.
Now the null hypothesis of noncausality is given by (5). This can be written
alternatively as
(15) P, =851P*S=0 or vec(P})= (S5 ®S])vec(P*)=0

where @* =[JF,...,JF |, J*] and @ =[J{5,..., JF | 13, J15]. Note that (15)
involves some nonlinear restrictions, viz., Ji5 = I'' 45 = 0 where I'; denotes the
first n; rows of I'. Since

AA

FA-TA=TII"(IT"YY A ~TA=(F~T)4 +I'(4-4),
we have under the null hypothesis (15)
(16)  vec(d¥) = (S ®S;)vec(d* - &%) = Pj

vgherefﬁ* = [fl*, U F J*]with J*=T4, 5 =wec(¥ — V'Y, vec(d - A)Y,
P= (P, P,) with

B P - 0 nyna(k—1)

P o= oS e

' 0 Ay e8| g and
n*(k—1) nr
0 Vmny(k-1)

Py= |7

Sierl nyns

nr

and A, denotes the last n, rows of A.
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Given Lemma 5(i) and (ii), the expansion (16) motivates us to employ the
Wald statistic

(17) FML=Vec(@fg)’(ﬁﬁ’)—lvec(@’g)

where P is defined as P with A} and I} replaced by AA3 and I’ 1» respectively,
and

(2:2) 3, 0
0 A (%2) 4,80,

A3 and I, are the last n, rows of A and the first n, rows of r 1, and
= (F ’ﬁ 11)~1. Note that P and V can be constructed using the estimates
A I A ., and 2

It turns out that PPP’ might be smgular (even in the limit). However, we will
be interested in the case where PVP’ is nonsingular in the limit. In order to
guarantee this we need to assume that either I'; or A4 is of full row rank, and
consequently in the above formula of the Wald statistic it is assumed that
(PVP')~! exists. This problem arises due to the nonlinear restrictions I’ 1 A=0
involved in the noncausality hypothesis in ECM’s. In the case of a Wald test of a
nonlinear hypothesis f(8) = 0, say, in stationary models it is well known that the
Jacobian matrix, f(6) /06, evaluated at the true parameter value must have full
row rank for the Wald statistic to converge to a chi-square distribution with the
usual degrees of freedom. The same principle applies to the restriction I'; A =0
in our nonstationary model, and the rank conditions on I'} and A4, correspond
to the conditions on the Jacobian matrix, 4/(6) /36,

Let us first assume that rank (A4;) = g <n, and rank(I"}) = n, in the following
development of the asymptotics. The treatment of the case in which rank(A4,)
= n, and rank (1) <n, is easier and will be briefly discussed later.

Now it is convenient to rewrite the matrix form PVP’ as

(18)  PVP =PTVTPY,

Here

and P" = (P, P}) with

54 0
27 \4, 0T,

where A, is the last n5 rows of A, . It is straightforward to show the above
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equality (18) using the relations {4‘=~AAI'.7“~1, =11, and A, =A II;". For
instance, A (Z,Z2,)"'A' =4 (Z,Z,)"'4, .
To obtain the limit distribution of the F,,,, we need the next lemma.

LemmA 6: If rank(A;) =g <n; and rank(I') = n,, there exists an nnyk X
nynyk nonsingular matrix K3 such that

K#P=P, T},
KPPt = Pi1],

where Pp is an nynyk X (nm,+m) matrix, P} is an nnsk X (nm, + rm,)
matrix, Tf = diag(VT1,,,,TL,,), and T{ = diag(YT1,,,, , T1,, ). Moreover,

- P 0
» [fu
Pr= ( 0 P22)
where Py, is an nny(k — 1) + g) X nm, matrix of full row rank and P,, is an
nn; —g) X rm matrix, and

P, 0
0 P,

~

p
N

where P}, = P,,(A , ®1) is an nn, — g) X rm, matrix of full row rank.
Using (18) and Lemma 6 we have from (17)
Fyp = 7P (PVY) B
= ”’P’K?(K%’ﬁ*ﬁ*ﬁ*’K?)‘lKi’ISﬁ
=7 TP (PIT{VT{PY) .
From the last expression, we get by Lemma 5
Fyr <, FML(I) +F ML)
where

Y pr - ’ -1 !
Fyray=vec(N') P11[P11(21 ! ®2u)P11] Py vec(N'),
_1 ’
Fyp0 = vec ((fBZB’z) /B, dB;) PJ;[PJZ(UBZB'Z)

-1
|
-1
.pgzvec((szBg) fBde;),

and Fy;qy and Fy ;) are independent since N is independent of B,(s) and
B_(s) by Lemma 5(ii).

1
80,
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Because vec(N') = N(0, ;' ® 3), we easily see that Fy, EX31n3(k—1)+n1g'
As for Fy ), note that by the same argument as that of Lemma 5.1 of Park and
Phillips (1988)

sz((fBzB;)

= N(O’ 1"1("3—8))

since B,(s) and B.(s) are independent by Lemma 5(i). Hence, Fy; ) = X2 n, o)
Since Fy;qy and Fy; ) are independent, we deduce that

)
FML _——)ann3k :

1 —% -1
®0, Pg;;] szvec((fBzB;) szdB;)

To interpret the decomposition of the limiting distribution into the Fy;(,, and
Fyy1,2) components, consider testing the following hypotheses in ECM’s:

AT a= =1 3=0 and I'}=0

and
Aoy Az =0.

These are sufficient (but obviously not necessary) conditions for noncausality. It
follows easily from Lemma 5(ii) that under the null hypothesis the Wald statistic
for testing .#(}} converges to a chi-square distribution with n;ny(k —1) +n;r
degrees of freedom. It is also easy to see that under ./I/(z*) the Wald test for ./I/(z";
has an asymptotic chi-square distribution with n;r degrees of freedom by
Lemma 5(i). Moreover, these two Wald statistics are asymptotically independent
by Lemma 5(i) and (ii). The F,;,, and Fy,; , terms, to some extent, come from
testing #(}; and .43, respectively. However, the derivation of the asymptotic
distributions in the case of testing .#;* in (5) is much more complicated and
the ranks of the matrices I', and A; play an important role in the final result.

Next suppose that rank(A4;) = n; and rank(I")) < n,. In this case it is easy to
show that Lemma 6 holds with no P, viz, P, (P,,0) and P} 5 (P,,,0)
where Py, is an n,n;k X nm, matrix of full row rank. Therefore

Fy 5 vee (NP P37 ©3,)P)] ' Py vee (N')

which also has a y; , , distribution.
We summarize these results in our next theorem.

THEOREM 3: Suppose that in the model (2) (or equivalently (1)) y, is cointe-
grated. If rank ( A;) = ny or rank (I')) = n,, then under the null hypothesis (5) (or
equivalently (4), F,;, % Xoomske

Unfortunately, even the ML method does not always guarantee the usual
chi-square asymptotics because the rank condition in Theorem 3 is not always
satisfied under the null. To illustrate the problem that arises when there is rank
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deficiency both in A5 and I'; we provide the following example. (See Toda and
Phillips (1991a) for more details.)

ExamriE 2: Consider the trivariate cointegrated system
(19) Ayt='ya’yt—1+ut

where y, = (ylt’ Yar y3t)’ U, = (ultr Uy u3t)7 Y = (71’ Y2 73) =(0,1,1), and &' =
(aj,a,,a;)=(1, — 1,0). In this example we use lower case letters to signify
vectors and scalars. (For example, « corresponds to A4.)

Suppose that we want to test whether y;,_, causes y,,. Then the null
hypothesis is

(20) via;=0,
and the Wald statistic given by (17) becomes

Fyp = on (L PR
A2 A ’ A A A ’ 20
a30-u1(lel) + ‘YIwcaJ_S(ZZZZ) a,;
where o, =var(u,,) and Z} =(&'yg,...,&'y;_,). This can be rewritten as
1
Fyr=

T(212) 6, Toa,,(212)) '@, 6.

Uy

(T#)" (Ta,)’

because S3a =a,=0andhence @ , ;=534 | =534, =a , ; by Lemma 5(viXa).
Since by Lemma 5 6, Do,, 6, Do, T(Z\Z) ' Doyl TAZ,Z,) 'S
(/BB VT3, =VT(§, - v,) % NQ, 0,01, and Tdy=T(&; — as) 4
a , 5(/B,B})"'[B, dB,, we have

1
(21) FML‘d" 1 S XaXt
Xe TXp Xa T Xp

where each of y, and y, is distributed as chi-square with one degree of
freedom, and x, and x, are independent.

Thus, F,;; does not converge to a x? distribution but to a nonlinear function
of independent chi-square variates. This occurs because both of y, and a; are
zero. Under the null hypothesis (20), we can expand ¥,&, as

Y183 = a3(¥, — v1) + vi( @ —a3) + (1 —v1) (&; —as)

where 7, — v, = O(T™ ), & — ay = O,(T™ ), and (3, — y, Xd; — a3) = O(T~ ).
If a;+0, y,4, is asymptotically dominated by the first term. If a; =0 but
v; # 0, then ¥, &, is asymptotically dominated by the second term. In either case
the Wald statistic F,,, will have an asymptotic chi-square distribution with one
degree of freedom because V7T (7, — y,) is asymptotically normal and T(&, — a)
is asymptotically mixed normal. If a; =1y, =0, however, ¥,d; is equal to the
third term and therefore the usual chi-square asymptotics do not hold.




1386 H. Y. TODA AND P. C. B. PHILLIPS

6
-——— Limit density (21)
41 -—-— Chi-squared,
i
|
I
2 0
%
s |\
o I
i
1
i
2k
1
1
0
0.0

FiGURE 1

The density of the distribution in (21) is graphed in Figure 1 against that of a
x? variate. (The analytic form of this density is given in Toda and Phillips
(1991a).) As is apparent from the figure, the density of (21) is much more
concentrated near the origin and has a much thinner tail than the x{ distribu-
tion. If we were to test the null hypothesis (20) using a critical value obtained
from (21) for the Wald statistic in this case, the test would have much greater
power than a test that empioyed a nominal Xf critical value. In practice, of
course, we do not know that both vy, and a; are zero, and an investigator who
routinely employed a x7 critical value in this case would suffer from both the
size distortion and the resulting power loss.

In sum, if the system is subject to cointegration, causality tests based on ML
estimation may well collapse and not satisfy the usual chi-square asymptotics,
not because of failure to use information on unit roots (as in the levels VAR
estimation), but because of the nonlinear constraints I';. A = 0 that are neces-
sarily involved in the null hypothesis. Thus, we need to know whether the
condition that (i) rank (I",) = n, or that (ii) rank(A4;) = n; holds. Unless we have
a reason to believe a priori that either condition (i) or (i) holds, we have to test
the conditions empirically. This can, of course, be done using the ML estimates
of I'; and A;. In particular, condition (i) or (i) can easily be tested if n; =1 or
n, =1, respectively. A companion paper, Toda and Phillips (1991b) proposes
some sequential test procedures for causality that are applicable when n, =1
and/or n; = 1.
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In the above development of the asymptotics of causality tests, we ignored the
issue of the estimation of r. A natural question is how severe its impact on the
causality test can be in small or moderately sized samples. Furthermore, even if
r were known, some size distortion and loss of power are inevitable in the
causality test in ECM’s because of its sequential nature (i.e., verify the rank
condition and then test causality). To address these issues, Toda and Phillips
(1991b) conducted a simulation study which investigated the performance of the
causality tests in ECM’s when 7, = 1 or n; = 1, in comparison with conventional
causality tests in levels VAR’s and in difference VAR’s. These simulations
found some favorable evidence in support of the sequential causality test based
on the ECM formulation at least in relatively large samples (more than 100
observations) and showed that the sequential procedure generally outperforms
the conventional tests.

The results for the Wald test derived in this section are not affected by the
presence of a constant term in the true model and the inclusion of a constant
term (and a time trend term) in the estimated equation. The sequential test
suggested in Toda and Phillips (1991b) can also be implemented in such models.

5. CONCLUSION

This paper has studied the asymptotics of Granger causality tests in unre-
stricted levels VAR'’s and Johansen-type ECM’s. The results of our analysis are
not encouraging for these tests in levels VAR’s. Our main conclusions regarding
the use of Wald tests in levels VAR’s are as follows.

(i) Causality tests are valid asymptotically as y? criteria only when there is
sufficient cointegration with respect to the variables whose causal effects are
being tested. The precise condition for sufficiency involves a rank condition on a
submatrix of the cointegrating matrix. Since the estimates of such matrices in
levels VAR’s suffer from simultaneous equations bias (as shown in Phillips
(1991)) there is no valid statistical basis for determining whether the required
sufficient condition applies.

(ii) When the rank condition for sufficiency fails, the limit distribution is more
complex and involves a mixture of a y? and a nonstandard distribution, which
generally involves nuisance parameters. The precise form of the distribution
depends on the actual rank of a submatrix of the cointegrating matrix and again
no valid statistical basis for mounting a Wald test of causality applies.

In view of these results we conclude the empirical use of Granger causality
tests in levels VAR’s is not to be encouraged in general when there are
stochastic trends and the possibility of cointegration.

(iii) If there is no cointegration the Wald test statistic for causality has a
nonstandard but nuisance parameter free limit distribution. This distribution
could be used for tests when it is known that there are stochastic trends but no
cointegration in the system. ‘

Testing for causality in ECM’s is more promising than in levels VAR’s but it
* still involves some difficulties. Our main results are as follows.
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(iv) Wald tests for causality in ECM’s are not always valid asymptotic x?
criteria.

(v) Problems of nuisance parameter dependencies and nonstandard distribu-
tions enter the limit theory in the general case.

(vi) Sufficient rank conditions for causality tests to be asymptotically valid x>
tests are given. These rank conditions relate to submatrices of both the cointe-
grating matrix and the loading coefficient matrix. They can, in principle, be
tested empirically using the ML estimates of these submatrices.

Granger causality tests in systems of stochastic difference equations are
fraught with many complications when there are stochastic trends and cointe-
gration in the system. The results for causality tests in ECM’s are deserving of
some emphasis in view of the fact that other types of Wald tests in ECM’s are
known to be asymptotically valid y? tests. Since ML estimation of ECM’s
delivers optimal estimates of the cointegrating space, ECM’s provide a more
promising basis than VAR’s for the sequential inference procedures that are
needed to adequately test causality hypothesis in these models. Indeed, simula-
tion exercises reported in Toda and Phillips (1991b) indicate that the sequential
test in ECM’s works reasonably well in small systems (3 or 4 variables) and
moderately large sample sizes (more than 100 observations).
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APPENDIX

ProoF ofF LEmMa 1: (i) From (2) we have

(A1) zy,41= Gzy, +Fu,
where
JE, : JE : r ,
—————— T ST LT ®
G=| Ly + 0 1 0 and F [ek’l/ ”]
______ S A
ATE LT VATE TAT

Since z,, is 1(0) by assumption, the eigenvalues of G must be all less than unity. Hence we can
write (A1) as

(A2) 7, =O(L)Fu,_,

where @(L) = X7_00,L/ = T7_,G'L..
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Now by the same argument as that of Theorem 2.2 of Chan and Wei (1988), T™'X7_,z,,2, > 5,
and

1 [§]
— ) u, By(s)
ﬁ = 0
(A3) X i 4,
T Y (2, ®u,) £

f=1

where By(s) is an n-vector Brownian motion with covariance matrix 5, and £ is an nm;-dimen-
sional normal random vector with mean zero and covariance matrix 3, ® 3, with 5, = Ez,,z}, =
?:OGjFZuF’GjI. By(s) and ¢ are independent.
Since @(L) is the inverse of I— GL and |I— GL| =0 has only stable roots, we see from
Brillinger (1981, p. 77) that for all p > 0

Y 7ol <

j=1
where [0/, denotes the sum of the absolute value of the entries of @;. This in turn implies that

Y 2o’ <

j=1
where [0/l = tr(@i@;)%. Thus, by the multivariate extension of Theorem 3.4 of Phillips and Solo
(1992),
[Ts]

1
(A%) v Y 2, 5 @(1)FBy(s).

=1
Since Az,, =A'| Ay, ;, we also have from (7) and (A4)
1 (781 1 T 1 B8]

(A5) 7 Y AzZ,=A’llPﬁ 221,+A’lﬁl§1u,+op(l)

t=1 t=1
L 4 WO(1)FBy(s) + A, Bo(s) =A', [I, + #O(1)F|By(s).

Next, we set B(s) = @(1)FBy(s) and By(s) =A' [, + YO(1)F1B(s). Combining (A3), (A4), and
(A5) we have (i) as stated and the covariance matrix of B(s) = (By(sY, B{(s), B,(s)Y is given by (2.
(i1) Inserting (A2) into (7) gives

(A6) Ay, =WO(L)Fu, | +u,=[I,+¥O(L)FL]u,.
Hence, C(L)=1I, + YO(L)FL (cf. (8)), and C(1) = [, + ¥ O(1)F. Therefore, from (A5) we have
(A7) By(s)=A | C(1)By(s).
(iii) It is obvious that £2, =3, =%, which is p.d. by assumption. From (A7) we have
(A8) 2,=4,c()s,c(1y4 .,

which is also p.d. since R(C(1)) = R(4)* = R(4 ,). The positive definiteness of 3 is proved from
(A1) in the same way as Lemma 5.5.5 of Anderson (1971).

Since Az,,=A') Ay, ; is a function of the past history of the innovations {u,_,u,_,,...} we
have EAz,,u}, ;=0 for all j>0. Hence Xyy=A,,=0.

ProoF oF LEMMA 2: (i) was proved in Lemma 1(i). The rest of Lemma 2 immediately follows
from Lemma 1 and from Lemma 2.1 of Park and Phillips (1989) noting that ;= A,;=0.

ProOOF OF LEMMA 3: Define an n; X g matrix K; with rank(K ) = g and an n; X (n; — g) matrix
K, with rank(K,) =n;—g such that R(X;) = R(A;) and R(K,)=R(4;)*, i.e., K5 A;=0. Let
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K;=IVTK,,TK,] with K, =[D ®1,,i, ® K] and K,=i,®K, where i, is a k-vector of ones.
Then, the required results hold with
. DD®S, e, ®A,
Rll = 1
0 KA,
and Ry, =K} A | 5.
Proor oF Lemma 4: If y, is not cointegrated, we have the VAR (k — 1) representation in first
order differences such that
JHR(L) (L) 0
Ay, = [JH(L) TH(L) TH(L) Ay, +u,.
(L) IH(L)  IH(L)
Since I, —J*(L)L is invertible, (8) becomes
Ay, =[I,~J*(L)L] 'u,, ie., C(LYy=[I,—J*(L)L] "
Hence from Lemma 1(ii) we have B,(s) =[1, —J*(1)]"B(s) since A , =1I,. Thus
B,(s)
B,(s)

since B,(s) = S5B,(s) and B,(s) =57 ,B,(s). Multiplying (§3,5,)” %S’l on both sides of this last
equation, we have

Wi(s) = L'Wy(s)

Bo(s) = [1, —J*(l)][

where Ly = (83,57 (1, —J#(D), —J5(1I2, 2. Note that Ly is of full row rank, and that
LyL,=1, since W(s) is a standard Brownian motion. Define a nonsingular matrix L =[L,, L,]
where L, is an (ny + n,) X n, matrix such that L, L, =0 and L1, =1,,. Then we can write

wi(s) =11,

ny’

0]LW,(s).
Notice that in (13) we may replace W,(s) with f,’Wb(s) which is also a standard Brownian motion

independent of W,(s). Therefore, redefining W,(s) as L'W,(s) gives the required result.

Proor oF Lemma 5: (i) This is proved in Lemma 8 of Johansen (1988). .
(ii)_Recall that z,, = Hix, where x, and H; were defined in Section 2. Define H;=[D ®1,,
e, ®A] Then Z;,=Hix, and
(A9) Z\Z, =HX'XH,
- [(#,-1) x +H x| [ X (A, - H,) + XH, ]
=212+ (H, ~H) X'Z + Z.X(H - H)) + (H - H) X'X(H, - H,)
where f?l —H =[0,¢,® (A - A= Op(T*I) by virtue of (i). By the same argument as (A5) and
(A7)

[Ts]
_ d
T2} Ay, — C(1)By(s).
t=1

Hence, by Lemma 2.1 of Park and Phillips (1989), X'Z; = O,(T) and X'X = Op(Tz). Therefore,
from (A9)

(A10) T ZZ, =T 'Z|Z, +0,(1) >3,
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by Lemma 2(i)(a). Also
(A1) (zi-2))Z,=(H, - H,) X'Z + (H —H) X'X(H, - H,) = 0,(1).
Furthermore U'Z, = U'Z, + U'X(H, — H) where U'X = O,(T). Hence, by Lemma 2(i)(b)
1
—=U'Z +0,(1)

VT

d i
— Ny

1
(A1)  —=UZ, =

VT

where Vec(NO) NGO, 3, ®3).
Now since ¥ = AY’Zl(Z Z )~ !, we have from (A10), (A11), and (A12)

JT T

where vec(N') = (37! ® I,)vec(Ny) = N0, 57 * ® 3,). Furthermore, N is independent of
(By(sY, B (s)) because Bz(s) and B,(s) are linear combinations of elements of By(s) (see Lemma
1 in Section 2 and Lemma 8 of Johansen (1988)) and N, is independent of By(s) by Lemma 1().

(iii) This is proved in Theorem 3 of Johansen (1988).

(iv) This follows immediately from (ii) and (iii).

(v) This was proved in (ii) above.

(vi) Write

-1 - -1
1 72z 1 (22 a
VI (#-¥)=—=U’ ( ‘) ﬁlp(zl—zl)z]( 1T‘) SNsT'=N

A, =AB+4 IT,
=4 A

where & =A'A | and H
of Johansen (1988),

. Since each column of A | is an eigenvector of the equation (9)

A | 810850 Su A | = A Sy A | -diag (Aay,en0A,)

=diag (A, 115....4,)

where S,(i, j=0,1) are the product moment matrices defined by (8) of Johansen (1988) with
k- lagged level variables replaced by one- lagged levels (i.e., Sy;, Sg, and Sy correspond to
Johansen S Sii> Soxs and S, respectively),’ (j =r+1,. ,n) are the elgenvalues correspondmg

to A | » and the last equality follows from the normallzatlon condition: A 1 SpA A =1, _,. Since A
¢ —r+1 .,n) are O,(T™1) by Lemma 6 of Johansen (1988), A, and hence 2 and I, are

0T~ 2)
Also from the normalization condition

A A~

I,_,=A SpA4,

—(Ba+11 4 )S(AE+4 1T,
—BAS AB+II A S AR+ BAS A I, +II" A, Sy A T,
Hence
ﬁlJ.A,LSIIA J.ﬁi. iln—r
since A'Sy; A = 0,(1) by Lemma 3 of Johansen (1988) and A'S;4 | = O,(1) similarly. Thus

det(I,)” det (A, Sy A, ) —1.

> Notice that we have the level variables y, ; in (2), while Johansen formulates the model so as
to have y,_, as the level variables. This difference, of course, does not affect the asymptotics.
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Since T~'4’, 1,4 , % [B, B} (in our notation) by Lemma 3 of Johansen (1988), it follows that
nt= Op(T%) and therefore

(A13)  EI1=0,).

(0 WA, ~MCAER 14 =t
(b) Substituting 4 | =ASFH 1 +4

1. . 1 . . an
Fz;zz= F(Azm1 +AL)YLY (AT +A L)
where Y’ ; =g, ..., ¥yr_1]. Hence
1"/~ 1 ’ 1 B-1\ 4y 1 ’ ' Zr7-1
718l = T T+ F(a T AYLY_ A4, + ALY Y ABIT
1 .

% [B,B;
by (A13) and Lemma 2.

Proor of LEMma 6: Define an 7113k X nyn;k matrix K =[yTK#, TK¥] with

I ®1 0
nay(k—1) ny % _ 0
0 K1®I,,‘) and KZ’(K2®L.I)

where K, and K, are defined in the proof of Lemma 3.
We give a proof of the result for PT. The result for P can be proved in an entirely analogous
manner. Now

K=

lghs

KB, T iK¥P} )
1.

K*/};"’ — . .
’ ( VTK¥P,  K¥Pj

Since A; 5 Aj, VTKyAs=VTKNXA;—A) 50, [, 5T, and Kyd,, =K585A4 , =KS5A4 =
K5 A5, by Lemma 5(i), (iD), and (viX(a), we have

]"3(k—1)®1't1 0 ) 2 (In3(k—1)®ln1 0

. =P,
0 KiA;8 5] 0 KiA;8 8] 1

K;k'};1=(

T-1k#P] 50,
VTK3'P, = (0,VTKyA; ® 57) 50,
and
Kf’ﬁzf=K'2"i¢3®f1'iK'2Au®F1=P§2

where P,; and P}, are full row rank matrices as required.
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