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Frequency domain tests for the presence of a unit root are developed. Their limit distributions are
derived under the assumption of weakly stationary errors and are free of nuisance parameters.
Results on test consistency are also reported. Monte Carlo simulations are performed to study the
size and power of the proposed tests in finite samples. The computations indicate that the frequency
domain tests have stable size and good power in finite samples for a variety of error-generating
mechanisms. We conclude that the frequency domain tests have some good performance character-
istics in relation to time domain procedures, although they are also susceptible to size distortion
when there is negative serial correlation in the errors.

1. Introduction

Testing for the presence of a unit root in autoregressive time series models has
been a popular topic in both the recent econometric and statistical literature.
The testing procedures outlined in Fuller (1976) and Dickey and Fuller (1979)
under iid errors have become standard and have been employed in various
empirical applications. Recent articles by Fuller (1984) and Dickey, Bell, and
Miller (1986) review the literature in the field up to around 1985. Since then
there has been a large and growing literature on time series with a unit root, and
many new tests have been developed.
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Said and Dickey (1984), extending the t-ratio method of Dickey and Fuller
(1979, 1981), proposed a test for the presence of a unit root in models with
ARMA errors of an unknown order based on long autoregression. The same
authors (1985) also applied the maximum likelihood method to develop tests for
a unit root in ARIMA models of a known order and reported some simulations
results. Phillips (1987) and Phillips and Perron (1988) took a semiparametric
approach and developed unit root test statistics that were applicable to models
with quite general weakly dependent errors. The relative performance of the
Phillips-Perron and Said-Dickey (1984) test statistics are studied in Schwert
(1987) and Phillips and Perron (1988). Asymptotic results favor the Z(&) proce-
dure of Phillips and Perron, but simulation results indicate that this method
suffers size distortions in finite samples when there is negative serial correlation
in the errors. Unfortunately, the Said-Dickey test also suffers size distortions
and has lower power than the Phillips-Perron test when the errors follow
moving average processes. Therefore there is a need for new procedures which
overcome these deficiencies of existing tests.

The present paper adopts a frequency domain approach to develop tests for
a unit root. The frequency domain (or spectral regression) approach has been
used in the past to efficiently estimate the parameters in regression models with
fixed or strictly exogenous regressors. Hannan’s (1963) efficient estimator is the
cornerstone of subsequent work. The rationale for the approach is that only
minimal assumptions like stationarity and weak dependence are required for the
theory to apply. Engle and Gardner (1976) took advantage of this feature to
estimate a coefficient parameter in a standard regression model under various
dynamic specifications for the errors. It was found that the frequency domain
estimator performs quite well at moderate sample sizes. The spectral regression
method was also applied to regression models with dynamic regression in
Espasa and Sargan (1977) and Engle (1980). Readers are referred to Granger and
Engle (1985) for a review of related applications. Recently, Phillips (1991) has
shown that spectral regression methods may be successfully used in models with
nonstationary regressors. In that paper the Hannan efficient estimator is used to
obtain consistent and asymptotically efficient estimators of long-run equilib-
rium parameters in error correction models. We shall demonstrate that a similar
approach works well in the present context of unit root tests.

The merits of frequency domain methods are numerous. First, the non-
parametric treatment of the errors means that it is not necessary to be explicit
about the dynamic specification of the errors. Second, the limit distributions of
the frequency domain test statistics have no nuisance parameters since the
problem of temporal dependence becomes one of heteroskedasticity in the
frequency domain and this is eliminated by the GLS transform. Third, we may
test the hypothesis of a root on the unit circle at zero frequency. Both full-band
and limited-band spectral estimators can be employed for this purpose. Fourth,
simulation results, which we will report in section 6, show that the full-band
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frequency domain tests display good power and stable size for various errors
specifications. But like the Z (&) and Said-Dickey tests, the new tests also suffer
size distortion when there is negative serial correlation in the errors.

This paper is organized as follows. Section 2 introduces our models and
assumptions. Section 3 defines the tests in the frequency domain. Section
4 develops the limiting distribution theory. Section 5 considers consistency of
the tests. Section 6 reports simulation results concerning the power and size of
the new test statistics in finite samples. Section 7 concludes the paper. Appendix
1 explains how to calculate the Hannan efficient estimator, and appendix
2 contains proofs.

A few words on our notation: All the limits are taken as T — o0 unless
otherwise specified. W denotes a standard Brownian motion; W, W, j'(’)rd W,
forW. [oW?2, [oW, and [ WAW are understood to be W(r), W(1), [srd W(r),
forW(r), [oW2(r)dr, [oW(r)dr, and [, W(r)dW(r), respectively. Brownian
motion with variance {? is written as BM({?). Z:T=1 is denoted simply as ),
unless otherwise specified. The symbol = signifies weak convergence, and the
symbols = stands for equality in distribution.

2. Preliminaries

The univariate time series models that concern us are

V=ay-1+u, =12, ..,T, (1
h=p+ oy +u, (2)
Ve=u+Pr+oay +u. (3)

The error process {u, } is stationary with continuous spectral density f,,(4) > 0
over — 1 < 4 < m. We shall take an interest in testing for the presence of a unit
root in models (1), (2), and (3} against the alternative of stationarity, so that the
null and alternative hypotheses are Hy: o« = 1 and H;:|a| < 1.

We shall assume that the partial sum process S, =Y., u; satisfies the
invariance principle

T~Y281,, = B(r) = BM({?), 0O<r<i, (4)
where {? = 2nf,,(0) > 0 is the ‘long-run’ variance of u,. We decompose {? as

P=0+2y,
where

6% = E(ud), y= Z E(uguy) , ()

k=1
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and we define & = o2 + 7. The series that defines y in (5) is assumed to converge
absolutely so that the spectrum f,,(/4) is uniformly continuous over [ — &, n].
Under condition (4), we have the following weak convergence of the sample
covariance between S, and u,, viz.

T 'Y Su = [(BdB+6. (6)

The conditions under which (4) holds are quite weak. They involve rather mild

moment and weak dependence requirements which are satisfied by a wide class

of time series, including stationary ARMA models whose innovations have finite -
variance. These conditions are discussed in detail in earlier work {see Phillips

(1987), and Phillips (1988) for a review].

3. Frequency domain estimators and unit root tests

The spectral estimates have the same general form:

- 1 M .
Jan(A) = '2— Z < ) Ca(n)e™™,

where
T-n
Cop(n) = T™! Z abiyy,
t=1
and where the convergence factor or lag window k(x) is a bounded even
function with k(0) = 1, vanishing outside the domain [ ~ 1, 1]. Using this
general form, the frequency domain estimates of o for the regression models (1),

(2), and (3) are defined as in Phillips (1991) and Hannan (1963) as follows,
respectively:

=Yy s/ Xy s 7
@=(X11Y,,~ X0, Y0,)/(X0: X,,,, — X1,) (8)
= (X1 Xy, — X1y, Xo) Viy — (X 11 Xy, — X1, X10) Y,y
+ (X1 X = X3 Y (X1 Xu Xy + X1 X, X3y,

+ le‘_XIIXl)’L—Xl)’LX!lxl)’L_ Xlzy,_Xll X)’L)’LX ) (9)
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1 L 7 -
XYoo=y L Fulepfue).
Xom e 3 o foutey) !
“_2Mj=—M+1 1\ Juu\ W j ’
1 M . -
Xy, = j )7
1y, 2Mj=_zhl+lfl}’l_(wl)f;‘“(wj)
1 M 7 ; 1
X, =— It j)Juu i) >
# 2Mj=—z;‘4+1fr(wj)f @)
1

M
Xy, = 2_M _=_zl:,l+1fm(wj)fuu(wj)—l s

J

M

XYL}’L = 2—1M—j=—ZM+ lf‘:y:.yL((‘Uj)f";m((‘uj)—1 )
1 M » -

Y, = W,-: _z}:,“l Siy(w;) fuulw)™h,

M ~ -~

Yy = M i ;A:H lfry(wj)fuu(wj)—l )
oM )

Yy, = mF _%Hfm(wj)ﬁu(w,-)'l .
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Note that the subscript ‘1’ denotes a unit vector and ‘t” a vector of linear time

trend.

Because our main concern lies in estimating the autoregressive coefficient and
testing for a unit root, we may define the estimates of the autoregressive
coefficient using detrended models. That is, we transform models (2) and (3) as

where

Y=oy + i,

yE=ayt +uf,

yt=)~)0+;’ta

ye="Fo + 91t + y¥.

@2y
Gy
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Using these models, we may define the frequency domain estimates of a as
follows:

dpr = Y53/ X5,5, (10)
abr = Yyppe/ Xypyr s (11

where the spectral density estimates are defined in the same way as before using
the transformed variables j, and y¥. One merit of these estimators is that the
number of estimated spectral densities is substantially reduced relative to the
estimators & and a*.

Under the null hypothesis the spectral density of y, is

fyy('i) = ’1 e e—i).l—Z uu()*') s

which has a pole at the origin (4 = 0) characterized by the local behavior
Siy(A) ~ [?/2rA% as A — 0. The singularity of f,,(4) at 2 =0 is of course the
manifestation in the frequency domain of the nonstationarity in y, under the
null. Interestingly, although f,(4) is undefined at A = 0, we may still construct
conventional spectral estimates at the origin. Upon restandardization, the
estimate f,,(0) is meaningful and converges weakly, but not in probability, to
well-defined random elements. Correspondingly, we define

fyu('l) = [1 - eil:l*lfuu('l) ’
Soon (A =12 £,(2) = £,,(2)
Sl 2) = €*£,(2) .
None of these are defined at 1 =0, but the conventional spectral estimates
likewise converge weakly to well-defined random elements upon suitable stand-
ardization.
In (7), (8), (9), (10), and (11), we use the fundamental frequencies
(1))=7r]/M, '=—M+l"--’Ms
for M integer. The spectral estimates that appear in these formulae may then be

regarded as applying within a band of width n/M centered on w;. Thus, to
obtain f,.(w;) we may use the smoothed periodogram estimate

. M
Julw)) = = T k@A wa( 2%
#j



1. Choi and P.C.B. Phillips, Frequency domain testing for a unit root 269

where k(w;) is a lag window, w,(4) = (2nT)~ "2} u,e"*, and the summation is
over A, e #; = (w; — n/2M, w; + n/2M). Then f,,,,(w,-) is, in effect, a weighted
average of m = [T/M] neighboring periodogram ordinates around the fre-
quency wj, as interpreted in Hannan (1970, p. 274). As usual, we shall require the
bandwidth parameter M — oo, butin sucha waythat M = o(TV*)as T —
[as in Hannan (1970, p. 489)].

The estimators we have defined are conventional spectral regression estimates
and follow from formulae given in Hannan (1963). In popular parlance, they are
the Hannan efficient estimates. What does differ from convention is the autgre-
gressive context in which the estitnates are being used and the asymptotic theory
that applies to them. The autoregressive context is of importance since y,_, and
u, are in general coherent series, due to the temporal dependence in u,. This is
a major departure from the regression model context in which spectral regres-
sion estimators were first developed.

We may also formulate band spectrum estimators that employ only the zero
frequency estimates. For instance, the band spectrum estimator for model (1) is
simply

&0 =j;’L)’(0)/j;LYL(O) :
Test statistics based on &, may also be constructed. They are T(d&, — 1) and the
spectral analogue of the t-ratio, t(do) = T(do — 1)/{Tf,,,(0)” ' £ (0)} /2 As we
will show in section §, these tests, in fact, do not possess good properties.
The test statistics we shall use are based on the full-band spectral estimates.
They are T(& — 1), T(& — 1), T(o* — 1), T(dpr — 1), and T(a¥y — 1). We also
consider the spectral analogues of the regression t-statistics associated with &, g,
o*, dpr, and abr. These are given by
(&)= T(a — DATX,; ;)%
t(@)=T(@ - 1)/{T(X, X,,,, — X%yL)_IXu}l/z )
t{a*) = T(&* - 1)/{T(X11X"Xy,_yL + XerryLleL
+ leLXuXryL - le,,XnXIyL - thy,_Xll
- XyLyLX%r)_l (Xan - X%r)}1/29
t(apr) = T(@pr — DATX ;3 )2,

tlapr) = Tlapr — DATX ;330"
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The variance estimates implicit in these t-ratios are based on the usual formulae
for the estimated asymptotic variances of the spectral estimates. For instance,
the variance estimate of & is

{1 Mo A i
T[E'MJ_Z fm(w,-m(w,-)} ,

-M+1

as in Hannan (1970, p. 442).

4. Asymptotic theory

Our attention will concentrate on the test statistics 7(¢ — 1), T(x — 1),
T(a* — 1), T(apr — 1), T(apr — 1), t(&), t(a), t(a*), t(&pr), and t(apr).

Theorem 1. Suppose that the assumptions made in section 2 hold.

(@) For the regression model (1), under a = 1,

() T@E-1) =f WdW/f w?,
) () =J WdW/U Wz]
0

(b) For the regression model (2), under (u, o) = (0, 1),

() T@E-=1),Tpr—1) = fi de/f1 w2,
0 0

1 1 2
() (@), t(ap,) = f WdW/[f WZ:I .
0 )

{c) For the regression model (3), under (B, o) = (0, 1),

()  T(*—1), T(alr— 1) = fl W*dW/ fl AER
0 4]

1 1 1/2
(i) t(a*),t(a,";,):f W*dW/U W*Z] ,
0 0

1
=W—f W,
0
1 1 1 1
W*=W—4<J W—%f rW>+6r<f W—2J rW).
V] 0 V] V]

where
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Remarks

(1) The limit distributions given by (a)-(c) in the above theorem are all free of
nuisance parameters. So no serial correlation corrections such as those
employed in the tests of Phillips (1987) and Phillips and Perron (1988) are
needed. The serial dependence in the error process u, is, of course, automati-
cally taken care of by the Fourier transformation of the data. What is of
additional interest is that no correction is needed for the fact that y,_, and
u, are coherent and even contemporaneously correlated when there is serial
dependence in u,. This is, as usual, explained by the fact that y,_, is an
integrated process and the signal that it imparts is correspondingly an order
of magnitude larger (in 7'/?) than the covariance of y,_, and u,.

(i) For the estimates analyzed above, we need to estimate the error spectrum
Ju(4). Moreover, we use estimates of this spectrum at the 2M frequencies
{wj:j= —M+1,...,M}. This is to be distinguished from the time do-
main procedures in earlier work [see Phillips (1987) and Phillips and Perron
(1988)] where spectral estimates are required only at the origin to achieve
the appropriate semiparametric corrections. The regression leading to the
estimates above is, of course, a weighted regression across frequencies and
the heterogeneity in the spectrum over the frequencies {w; } is used to obtain
efficient estimates in conventional weighted regression for stationary time
series.

5. Test consistency

Under H,, y, is stationary and it is of interest to examine the behavior of the
power functions of the tests as T — oc. It is simplest to work with the band
spectral tests S(dy) and t(d,). We start by observing that under stationarity

F0) 5 £,(0) = £ (0)/(1 — a?
and
a0 D £, (0) = £y (0) = fuul0)/(1 — ) .

Then

P

Go = + £ (0)/f, 0) > a+(1 —a)=1.

Thus, &, tends to unity even under the alternative hypothesis. This suggests that
the S(d0) and (&) tests are unlikely to have good power.
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As T — oo, the power properties depend on the behavior of the spectral
estimates f,,,(0) and f, ,,(0). Define the matrix of spectral estimates

gzﬁmA@@]
d fVL“(O) f;uh(o) ’

and, under H,, set

=Vm>mw]
f;’L“(O) f;’L )’L(O)

and
v = 2T/Mf k(x)* dx,

where M is the bandwidth parameter and k() is the lag window employed in the
spectral estimates in gr. Then, from the asymptotic theory of spectral estimates
for stationary time series [e.g., Hannan (1970, p. 289)], we have the following
limit theory:

vl/z(gT - g) = N(Oa V) s

V= (Jw k(x) dx)g@g .

Now we obtain

where

v (Go — 1) = (1/£;,1,(0) Aor — (£, (0)/( .5, (0)*) A1

1_ 2
Jﬂguwm—m@,

(12)

where

We deduce that

T'(do — 1) = Ol(M'?),
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under H;. It follows that a two-sided test of H, using the statistic 7(&, — 1) is
consistent as T — oo . But, in view of the symmetry of the limit distribution (12)
about the origin, the power of a one-sided test of H, based on T(&, — 1) tends to
0.50. So this test of Hy is inconsistent.

In a similar way we find that

t(do) = O(M '),

under H;. The power properties of the t-ratio test t(d,) would therefore seem to
be worse than those of the coefficient-based test T(&, — 1). For example, when
M = O(T'®), which is a bandwidth choice that minimizes a mean squared error
criterion [see Bartlett (1966, p. 368)], we have T(do — 1) = O,(T*°) and
t(do) = O,(TY'%) under H;.

Given these asymptotic results, neither T(d, — 1) nor t(&,) can be expected to
yield good power for the usual one-sided tests of a unit root against stationary
alternatives. Moreover, t(&,) can be expected to have even lower power than
T(&y — 1).

The behavior of the full-band spectral tests is more complicated. Here we
investigate the behavior of the statistics 7(& — 1) and 1(&). Analysis of the other
estimators follows analogously. The results depend on the manner of estimation
of the error spectrum f,,(w) as employed in 4. If we use differences u, = Ay,
in constructing f,,(w), then it is easy to see that, under the stationary
aiternative H,,

Fapay(©) 5 0. (13)

This means that the ; = 0 term (i.e., j = 0) dominates both the numerator and
denominator of & Multiplying through the f,,a,(®) in both numerator and
denominator then shows that, under H,,

8~ £,,,(0)/ £, (0) = do ,

as T — 0. Thus, when the differences of y, are used to estimate f,,, we find that
& is asymptotically equivalent to dy. Then the tests 7(& — 1) and ¢(d) behave like
T(&o — 1) and t(d,), respectively, and are therefore inconsistent.

However, when the error spectrum f,, is estimated using regression residuals
#i, = y, — dors ¥, -1, the results are quite different because (13) no longer applies.
In general, because of serial dependence in the error process u,, we ﬁnd that the
least squares coefficient &y, is not consistent for a, and hence f,.(w) is not
consistent for f,,(w). In fact, under the alternative for stationary and ergodic y,,
we have

A p - -
dors = E(nyi-1)/E(yH) =a(lal < 1),
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and then

Ful@) S 11 = Ge 2 f,(0) = ful) .

Intuitively, the spectral regression in this case amounts to estimating « in the
regression equation

V=Yg + U .

Since f,,,,(w) is a consistent estimator of the spectral density f,.(w) for
u, =y, — ay,-, it is easy to find, by using the same methods as in the proof of

P _ .
Lemma A.1, that & — & (J«| < 1) under the alternative. Hence, we find that the
tests based on T(& — 1) and t(&) are consistent.

6. Experimental evidence

In this section, we report some simulation results investigating the power and
size of frequency domain tests. The data were generated by models (1), (2), and
(3) with the ARMA errors and with the initial value e, = 0. The sequence {e,}
was generated as iid N(0, 1) by the IMSL subroutine RNNOA. The sample size
is T= 100, and 1,000 iterations were made to calculate the empirical power of
the test statistics in one-sided tests. The nominal size was set to be 5%. Critical
values at T = 100 were taken from Fuller (1976, pp. 371, 373). It is assumed that
u = 0 for model (2) and (g, B) = (0, 0) for model (3) both under the null and
alternative.

Computation involved the following steps:

a) Run an OLS regression in the time domain and compute residuals.

b) Using the OLS residuals from step (a), calculate f,,(4).

c¢) Detrend the series by regression on time polynomials, as necessary.

d) Compute f,,,(4) and f,,, (4) using the original series or the detrended
series form step (c).

(e) Calculate the test statistics using the spectral density estimates from steps

(b) and (d).

(
(
(
(

Note that step (c) is skipped for model (1). The IMSL subroutines SSWD and
CSSWD were used to compute the spectral density estimates. The use of these
subroutines and the calculation of Hannan’s efficient estimates are explained in
detail in appendix 1.
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The frequency domain test statistics we consider are SC, = T(4 — 1),
ST, =1t(d), SCy=T(apr—1), ST,=1t(Epr), SC3=T(a}r—1), and
ST, = t(a}r). The tests based on & and a* are asymptotically equivalent to
those based on dpr and a¥r. However, the tests using detrended series are more
convenient in terms of computation, since we do not need to estimate as many
spectral densities in computing these tests. We used the Tukey-Hanning win-
dow to estimate the spectral densities. We chose M = ﬁ /2. As is discussed in
Hannan (1970), we need M/T — 0 and M = O(T ). The above rule satisfies
these conditions. Hence, for sample size 7 = 100, we set M = 5. Obviously, it
would also be of interest to consider the performance of various data-based
choices of M. But this is left for subsequent work.

In addition to the frequency domain tests, we report the empirical size and
power of the Dickey-Fuller tests in table 5, which is based on 2,000 iterations.
The finite sample performance of the frequency domain tests will be compared
with that of the Dickey-Fuller tests with iid errors by using the computation
results reported in table 5. More comprehensive simulation results are reported
in Dickey, Bell, and Miller (1986).

In table 1(1), the size and power of the SC, and ST, tests under first-
order moving average errors are reported. The nominal size is well maintained
except when the moving average coefficients are negative, and the power
is essentially the same as that of the Dickey-Fuller tests with iid errors (see
table 5 for this). The experiments are extended to ARMA errors in parts (2), (3),
and (4) of table 1. We observe that the nominal size is again well maintained
except when the moving average coefficients are negative, or when the value
of the AR coefficient of the error process is — 0.6. The power is essentially
the same as that of the Dickey-Fuller tests with iid errors as in part (1).
We also report simulation results for the Said-Dickey (1984) t-test in table 2
to compare this with our frequency domain tests. The simulation results are
based on 2,000 iterations. We find that the frequency domain tests are more
powerful than the Said-Dickey test in general. However, the Said-Dickey
test displays more stable size when the MA coefficient takes negative values.
In table 3, we report the size and power of the SC, and ST, test. Again,
we find that the power and size are virtually equivalent to those of the
Dickey-Fuller tests with iid errors, and that there are size distortions when
the moving average coeflicients are negative. We may use 7(& — 1) and ¢(&)
instead SC, and ST7,, but simulations (not reported here) showed these tests
to be more susceptible to size distortions. In table 4, we report the performance
of the SC; and ST test. When the errors follow a first-order moving average
process, we find that the power and size are almost equivalent to those of
the Dickey-Fuller tests with iid errors, though again there are size distortions
with zero and negative moving average coefficients. Also, we observe that the
SC; and ST; become less powerful as the moving average coefficient takes larger
positive values. When the errors follow an autoregressive process, we observe
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Table 1
Monte Carlo power of SC, and ST, at T= 100 and M = 5.

Model: y, =ay,_, + u,

0 0385 1.00

(1) uy=e, + Oe,_,

05 SC, 0910 0.032

D ST, 0.899 0.034

0 SC 0.956 0.050

2 ST, 0.947 0.048

0.0 SC, 0.978 0.067

: ST, 0.975 0.070
—-05 SC, 1.000 0.300
DS, 1.000 0.295
_08 SC, 1.000 0.871
S st 1.000 0.870

(2) uy=02u,_, +e +0e,_,

05 SC 0.819 0.021

D sT, 0811 0.025

0 SC 0.879 0.026

2 sT, 0.876 0.028
_os  SC 1.000 0.185
D ST, 1.000 0.191
_os 5SS 1.000 0.759
: ST, 1.000 0.753

B)u= —02u_, +e +0e_,

05 S8C, 0.956 0.050

D ST, 0.948 0.049
02 3G 0.978 0.067

) ST, 0.975 0.070
_os  SG 1.000 0.426
> sT, 1.000 0.424
oz SG 1.000 0942

ST, 1.000 0.936
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Table 1 (continued)
a
0 0.85 1.00
@) uy= — 0.6u,_, + e + fe,_,
05 SC, 0.981 0.074
’ ST, 0.980 0.073
02 SC, 0.997 0.120
) ST, 0.994 0.116
—os G 1.000 0.715
) ST, 1.000 0.700
—08 SC, 1.000 1.000
’ ST, 1.000 0.999
Table 2
Monte Carlo power of the Said-Dickey s-test at T = 100.
Model: y, = ay,-; + 1,
Size Power
0 =1 I=2 I=35 =7 I=1 =2 =5 =7
(1) u,=02u,_{ + ¢ + Oe,_,
0.5 0236 0.023 0.039 0.039 1.000 0.90t 0.616 0.358
0.2 0.125 0.033 0.038 0.040 0.996 0.862 0.441 0.264
- 05 0.205 0.068 0.040 0.040 0.992 0.542 0.163 0.107
- 08 0.825 0431 0.163 0.097 0.994 0.986 0.471 0.236
2) uy= —02u,_, +e + e,
05 0.100 0.032 0.037 0.039 0.989 0.662 0.365 0.214
0.2 0.045 0.038 0.036 0.039 0.870 0.570 0.259 0.172
—-05 0.673 0.112 0.045 0.038 0.994 0.592 0.123 0.078
- 08 0.992 0.576 0.209 0.122 0.994 0.994 0.553 0.259
(3) uy= — 0.6u,_, + e, + Oe,_,
0.5 0.047 0.041 0.038 0.040 0.833 0.562 0.233 0.156
0.2 0.209 0.043 0.039 0.042 0.979 0.403 0.175 0.124
- 05 0.982 0.145 0.046 0.035 0.994 0.659 0.111 0.066
—-08 0.994 0.654 0.235 0.128 0.999 0.994 0.599 0.270
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Table 3
Monte Carlo power of SC, and ST, at T= 100 and M = 5.

Model: y,=p-+ay-; +u,u=¢e=¢+ fe, -,

0 085 1.00
05  SC 0.515 0.020
' ST, 0.344 0.037
02 SC, 0.621 0.029
: ST, 0.468 0.044
005G 0.775 0.046
- ST, 0.627 0.052
0s  SC 1.000 0.404
e ST, 1.000 0.369
—og 3G 1.000 0978
‘ ST, 1.000 0.969

that the nominal size is not well maintained, and that the power is lower than it
is for moving average errors.

In summary, we find that the frequency domain tests show quite reasonable
finite-sample performance in comparison with previous parametric tests under
various error specifications. However, it needs to be borne in mind that the
performance of the frequency domain tests is sensitive to how the Hannan
efficient estimator is calculated. Different spectral windows (and different choi-
ces of bandwidth) will give different experimental results. Last, the SC, and ST
tests do not show good finite-sample performance when the errors follow an
autoregressive process, which seems to accord with many other unit root tests,
as the simulation results in DeJong, Nankervis, Savin, and Whiteman (1989)
indicate.

7. Conclusion

We have proposed tests for a unit root that use frequency domain methods.
The proposed test statistics do not involve nuisance parameters in their limiting
distributions, and quite general temporal dependence is permitted for the
errors. Simulation results show that the frequency domain tests have good
power and reasonable size characteristics in finite samples, although, like
previous parametric tests, there are size distortions under negative serially
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Table 4
Monte Carlo power of SC; and ST, at T=100and M = §.

Model: y,=p+ pr+ay-, +u,u=5=0

e 4

0 0.85 1.00
(1) u, = e, + Oe,—,

05 SC, 0.208 0.019
' ST, 0.174 0.035
02 SC, 0.333 0.038
’ ST, 0.281 0.051
0.0 SC, 0.516 0.068
: ST, 0.466 0.080
_05 SC, 0.997 0.611
’ ST, 0.997 0.589
_08 SC; 1.000 1.000
’ ST, 1.000 1.000

2) u=du,-, +e¢

05 5Cs 0.046 0.004

> ST, 0.033 0.015
02 SCs 0272 0.034

< ST, 0224 0.045
o5 5Gs 0971 0328
< ST, 0.959 0318
_og  5Cs 1.000 0.783
© ST, 1.000 0.754

correlated errors. The tests are also conveniently robust to a wide class of
dynamic specifications of the error terms, and hence can be used even when it is
difficult to identify a parametric structure of the error process. We conclude,
therefore, that the frequency domain tests have many convenient and appealing
properties in relation to existing test procedures like the Said—Dickey t-test and
the Phillips Z(a) and Z(t) tests. They also have some interesting multivariate
generalizations, which will be reported in later work.

Appendix 1: Calculating the Hannan efficient estimator

We used the IMSL subroutines SSWD and CSSWD to calculate spectral
densities. Following the notation of the IMSL Stat/Library, we report the values
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Table 5
Monte Carlo power of the Dickey~Fuller tests at T = 100.

o

0.85 1.00

(1) yi=ay,-1 +¢

T — 1) 0969 0.052
1(6) 0967 0049

2 yy=+p+ay-.,+e,u=0

T@ - 1) 0.792 0.048
1(d) 0.631 0.051

B)y=p+p+ay-,+e,pu=p=0

TG —1) 0.469 0.044
1(d) 0.402 0.049

of the major input parameters for the subroutines, which we used in order to
obtain the simulation results of section 6.

NOBS = 100, XCNTR = YCNTR =0, NPAD = NOB — 1,
IFSCAL =0,

NF =6, F=[0,n/5,2n/5 3n/5, 4n/5,n], TINT =1, ISWVER =4 ,
NM=1 M=5,

Programs interrupt due to overflow when we calculate the zero frequency
using the IMSL subroutines. This problem can be avoided by using the
IBM subroutine ERRSET (207, 251, ~ 1, 1), which suppresses interrupts due to
overflow.

After calculating the spectral densities at the fundamental frequencies, we
calculated the test statistics using eq. (7), (10), and (11) and the corresponding
definitions for the t-ratios. We exploited the symmetry of spectral densities to
calculate the test statistics, and hence calculating spectral densities at negative
frequencies is not required.
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Appendix 2: Proofs

Lemma A.1. Suppose that {u,} satisfies the conditions in Theorem 1. Then we
have

1

M . _§+1f1‘(wf)f«‘u‘<wf)~ 102,

(@)

1 A
b) T°2— ) fal (@) > 1/3(7),
(b) M. _L;mf(w)f (w;) = 1/(30%)

1

(c) T“mj _z;mﬁawj)fu;‘(wj) - 1/2¢%,

1

(d) 77172 fis,
2MJ——ZIW+1 1}

2M_1——M+1

1 .
f) T 12M Z »f;’L.vL f“"

j=—-M+1

€ T3 — : Z folo) f frW/g,

1

()T“ZzMJQ_zMHfM o)) fal (@) = WL,

1

1
—-1/2 p -
(h) T Y 2MJ _ZM+1f u(wj)fuul(wj) :L rdW/C )

1 . 1

(i Sl @5) fuu (@) =>J wdw .
2M_1 —ZM+1 > ! ! 0

Proof. The proof is closely related to the proof of Theorem 3.1 of Phillips

(1988a), and so we shall only give the essential details here. In addition, (d)-(h)

use the weak convergence results in Phillips and Perron (1988).

(a) Using the Fourier series f.'(4) = (1/2n) d,e*, we have

g= —x
1 M -
— . _1 .
2MJ _‘L;,l+1fll(wj)fuu (wj)
R T LU SRy VY
2n, =2, ML S

1 2 k4
_ [—} S 4,Cilpk(g/M)

2n | .2
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where g+2IM=g, — M+ 1<g<M for some integer /, and C;,(g) =
T-1YT°F1. We have

kig/M) - 1, (A.1)

for all fixed g as T — oo, and hence, M — co. From the Fourier series of f " (4),
we deduce that

1 2
[g] 2 dy=(nf,(0) =72 (A.2)

Since C,,(g) — 1 for any fixed g, (A.1) and (A.2) yield the required resulit.

(b) Writing

1
T72 — Jalw;) fa (w;)
2M_1——ZM+1t ! !
—rl T g T i
2ng=—w 92Mj=—M+1

1
- T" [h] S 4 Culglk(g/M),

g= -

and noting that 7~ 2C,(g) = T 33 7t(t + g) — 1. the result follows from
(A.1) and (A.2).

(c) We have
T > falo)fate)
j=—-M+1
ST T dyge > (/M)
g=—o© ji=—M+1

1
=T"[5~J S d,Cui(g)k(e/M) .

g=~wx

The result follows, because T~ C,,(g) = &.
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(d) We have

1 Mo
T Sk fu (@)
2Mj=_%ﬂ 1y \Y) b

1 © 1 M

g=-o

1 2 kel
=T‘”Z[Z] S 4,y (e)k(g/M).

g=-—

and T7'2C,, (g) = T™¥*Y yi-14+4 = {3 W. Hence the result follows.
(e) Simply note that T7*2C,, (g) = T 72Xty 14, = {forW.

(f) This follows from T7'C,,, (g) = ([ W2

(g) Note that T'2C,,(g) = (W(1).

(h) The result follows from T~Y2C,(g) = ([ rdW.

(i) Write
1

M n 1 o 1 M R .
Arg i 1 i) = — R Neligw;
M ;. —ZM+ 1fyL“(wj)fw (wj) 2n gzz.:w [2M = _§+1ﬁ‘“(w1)e ]dy

1 121 2
- [ZE] ?Fz_m Cyu(8)k(g/M)d, .

Now we have C,,(n)=T"'Y "y yu, = (2o WdW + A(n + 1), where
Am+ 1) =3 Euoltjynsr. Defining u; =Y . tpr14;d,, we have

1 2 «© 1 2 0 ©
[2_7[] Z A(g + l)dg = ['2‘;] Z [jgo Euoug+1+jildg

g=—a g=—®©

1

2 @
=[§;] S Euou;. (A.3)

g=-w
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But, using the inverse transform, we have the representation Eugu; =

-n

7 ¥ (A)d4 for all j, and

Jul2) = i fu(A)eT Vg = £ (1) 2nf,, (A1) = 2net .

g=—x

Thus,

E(uou;) = ZnJ efithidg

-r

{(2702, j= -1,

0, otherwise.

Using (A.3) and (A.4), we deduce that

'1"2 0
—| ¥ A+1)d,=0.

g=-

Also,

g=-o

Now the result follows using (A.1), (A.5), and (A.6).

Proof of Theorem I

-2 o 1 1
i Z ’? (f WdW)dg=J wdaw .
2n 0 0

(A.5)

For the estimators dpr, a}7 and the corresponding t-ratios, the stated results

follow using the weak convergence resuits

T-n+1 I
T? Z i!*lj)t—l+n=>czf Wz’

=1 o]

T-n 1
TV Y i,_xu,+"=>ézf WdW + A(n + 1),
t=1 0

T-n+1 1
T7? Z J’f~;y?*—x+,.=>C2J wxt,

t=1 0

T-n 1
T™' Y yiittsn =>sz WdWw + Ain+ 1),

t=1 0
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which we obtain working from Phillips (1988b, p. 85), and changing parts (f) and
(i) of Lemma A.1 in an analogous way. The rest of the results are proven in the
following;

(@) (i) As in Phillips (1988a) we have max,, |f,,,,(wj) — fuul@j)] s 0. Hence,
we may replace ﬁ,u(wj) with f,,(w;) for asymptotic analysis in what follows.
Write

T(& - 1) = Yy,_u/(T—IleL) s
where

T ox -
Yy,_u = m— i _.ZM.*,IALM((D])L“((DJ) .

The result follows from Lemma A.1.
(1) This follows from part (a)(i) immediately.

(b) (i) Simply note that
T(& - 1) = (Xll Yy,_u - le,_ Ylu)/{T_‘(XIIXy,_y,_ - X%y,_)} ’
and apply Lemma A.1. Here

Yu=eb S 7 @)
lu—z—MJ':_qu.lf‘u(wj)f““(wj) .

(11) This follows from part (b)(1).
(c) (1)) We have
Te*—1)={T 2 (X1 Xt,,— X1, X)) V1.~ T 3 X 11 Xy, — X1,, X 1) Y
+ T 35X 11 Xu—X31)Y,)
AT 3 X1 Xa X, + X1 Xy, X1y, + X1, X1 X4y,

- leLXnle,_ - X2

ty

XU - XyLy,_X%!)} »
where
1

M 3 > g
Ym = mj= ._ZM,;.‘ﬁ“(wj)ﬁ‘“(wj) “

The result is an easy consequence of Lemma A.1.
(ii) This follows straightforwardly from part (c)(i).



286 1. Choi and P.C.B. Phillips, Frequency domain testing for a unit root

References

Bartlett, M.S., 1966, Stochastic processes (Cambridge University Press, Cambridge).

Biilingsley, P., 1968, Convergence of probability measures (Wiley, New York, NY).

Billingsley, P., 1986, Probability and measure (Wiley, New York, NY).

Chan, N.H. and C.Z. Wei, 1988, Limiting distributions of least squares estimates of unstable
autoregressive processes, Annals of Statistics 16, 367-401.

DeJong, D.N., J.C. Nankervis, N.E. Savin, and C.H. Whiteman, 1989, Unit root tests or coin tosses
for time series with autoregressive errors?, Working paper no. 89-14 (University of Iowa, Jowa
City, 1A). :

Dickey, D.A. and W.A. Fuller, 1979, Distributions of estimators for autoregressive time series with
a unit root, Journal of the American Statistical Association 74, 427-431.

Dickey, D.A. and W.A. Fuller, 1981, Likelihood ratio statistics for autoregressive time series with
a unit root, Econometrica 49, 1057-1072. ’

Dickey, D.A,, W.R. Bell, and R.B. Miller, 1986, Unit roots in time series models: Tests and
implications, American Statistician 40, 12-26.

Engle, R.F., 1980, Exact maximum likelihood methods for dynamic regressions and band spectrum
regressions, International Economic Review 21, 391-407.

Engie, R.F. and R. Gardner, 1980, Some finite sample properties of spectral estimators of a linear
regression, Econometrica 44, 149-165.

Espasa, A. and J.D. Sargan, 1977, The spectral estimation of simultaneous equation systems with
lagged endogenous variables, International Economic Review 18, 583-605.

Fuller, W.A,, 1976, Introduction to statistical time series (Wiley, New York, NY).

Fuiler, W.A,, 1984, Nonstationary autoregressive time series, in: Handbook of statistics, Vol. 5
(North-Holland, Amsterdam) 1-23.

Granger, CW.J. and R.F. Engle, 1983, Application of spectral analysis in econometrics, in: Hand-
book of statistics, Vol. 3 (North-Holland, Amsterdam) 93-109.

Grenander, U. and M. Rosenblatt, 1957, Statistical analysis of stationary time series (Wiley, New
York, NY).

Hali, A., 1989, Testing for a unit root in the presence of moving average errors, Biometrika 76, 49-56.

Hall, P. and C.C. Heyde, 1980, Martingale limit theory and its application (Academic Press, New
York, NY).

Hannan, EJ., 1963, Regression for time series, in: M. Rosenblatt, ed., Time series analysis {Wiley,
New York, NY).

Hannan, E.J., 1970, Multiple time series (Wiley, New York, NY).

Hannan, E.J., 1973, The asymptotic theory of linear time series modeis, Journal of Applied
Probability 10, 130-145.

IMSL, 1989, Stat/Library (IMSL, Houston, TX).

Park, J.Y. and P.C.B. Phillips, 1989, Statistical inference in regressions with integrated processes:
Part 1, Econometric Theory 4, 468-497.

Phillips, P.C.B., 1987, Time series regression with a unit root, Econometrica 55, 277-301.

Phillips, P.C.B., 1988, Multiple regression with integrated time series, in: N.U. Prabhu, ed., Statis-
tical inference from stochastic processes, Contemporary Mathematics 80, 79-106.

Phillips, P.C.B., 1991, Spectral regression for cointegrated time series, in: W. Barnett, ed., Non-
parametric and semiparametric methods in economics and statistics (Cambridge University
Press, Cambridge).

Phillips, P.C.B. and S. Quliaris, 1990, Asymptotic properties of residual based tests for cointegration,
Econometrica 58, 165-193.

Phillips, P.C.B. and P. Perron, 1988, Testing for a unit root in time series regression, Biometrika 74,
535-547.

Priestiey, M.B,, 1981, Spectral analysis and time series, Vol. 2 (Academic Press, New York, NY).

Said, E.S. and D.A. Dickey, 1984, Testing for unit roots in autoregressive-moving average models of
unknown order, Biometrika 71, 599-607.

Said, E.S. and D.A. Dickey, 1985. Hypothesis testing in ARIMA (p, 1,¢) models, Journal of the
American Statistical Association 80, 369-374.

Schwert, W.G., 1987, Tests for unit roots: A Monte Carlo investigation, Journal of Business and
Economic Statistics 7, 147-160.



