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This paper analyzes whether inclusion of a statistically independent random walk in a vector
autoregression can result in spurious inference. The problem was raised originally by Ohanian (1988).
In a Monte Carlo simulation based on the VAR’s estimated by Sims (1980, 1982), Ohanian found that
‘block exogeneity’ of the genuine variables with respect to an artificially generated random walk
variable was rejected too often. In the present paper we attempt a full analytical study of this problem.
It can be shown that if the genuine variables are nonstationary, the Wald statistic for testing the ‘block
exogeneity’ hypothesis does not have the usual asymptotic chi-square distribution. The derived
asymptotic distribution is free of nuisance parameters so that we can unambiguously determine the
effect of including the random walk. Some simulated critical values for the asymptotic distribution
are reported. Interestingly, it can also be shown that if the genuine variables of the model are
stationary, the asymptotic distribution is still chi-square in spite of the inclusion of the random walk.

1. Introduction

Vector autoregressions (VAR’s) have been used in a wide variety of econo-
metric applications. Although most economic time series are believed to be
nonstationary and difficulties in dealing with levels of such time series are well
known [e.g., Granger and Newbold (1974) and Phillips (1986)], several recent
studies in this field have analyzed potentially nonstationary data without
detrending or differencing. Some prominent examples are Lawrence and Siow
(1985), Litterman and Weiss (1985), and Sims (1980, 1982).
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Ohanian (1988) questioned whether the use of nonstationary data in VAR’s
can result in spurious inferences, and he conducted a simulation study based on
the empirical VAR’s estimated in Sims (1980, 1982). Ohanian added an artifi-
cially generated random walk (RW) variable to the Sims’ VAR model of money,
real output, aggregate prices, and interest rate, and estimated the resulting five-
veriable VAR. Ohanian’s simulations showed that ‘block exogeneity’ of the
genuine variables with respect to the independent RW was rejected too often.
This study uses actual data in conjunction with the generated RW and therefore
suffers from two potential drawbacks: (i) The model is not necessarily the true
data-generating mechanism; and (i) the observed effects are conditioned on the.
particular realization of the empirical time series.

A general asymptotic theory for inference in multiple linear regressions with
integrated processes (ie., processes generated by ARIMA type models) has
recently been developed by Park and Phillips (1988, 1989), Sims, Stock, and
Watson (1990), and Tsay and Tiao (1990) among others. [See Phillips (1988) for
a review of methods and results on this topic.] Sims, Stock, and Watson (1990)
concentrated on VAR’s and derived, as an example, a nonstandard asymptotic
distribution of the Wald test statistic for a Granger noncausality hypothesis in
a trivariate VAR model. Though it is closely related to Ohanian’s problem, their
expression for the distribution is complex and involves nuisance parameters in
general so that we cannot see either the direction or size of the bias caused by
nonstationarity from their results.

This paper provides a full analytical study of the problem raised by Ohanian
(1988) using the methodology developed by Park and Phillips (1988, 1989). In fact,
it can be shown that the Wald statistic that is of central interest in testing ‘block
exogeneity’ has an asymptotic distribution which is free of nuisance parameters.
This distribution can be computed numerically and the effect of the generated
RW on inference can be determined unambiguously. For illustration, we report
some percentage points of the distribution based on computer simulation.

The plan of this paper is as follows. In section 2 the model for analyzing the
Ohanian’s ‘exogeneity test’ is presented. We consider two cases: (i) the case in
which the genuine variables are I(1), .., integrated of order one, and (ii) the case
1n which they are [(0), i.e., stationary. The derivation of the asymptotic distribu-
tion of the Wald statistic is given in section 3. The required treatment and the
results will differ in each of the above cases. In section 4 we discuss the results
obtained and make some concluding remarks. Proofs of the lemmas we need in
the body of the paper are given in appendix A.

2. The model

Following Ohanian (1988), consider the n-vector time series { y, } generated by
the pth-order VAR model

ye=a+ AWL)y-1 + u,, (1
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where A(L) = Y 7_1A;L77 Y, {u, = (uy,, ... . u,)'} is an iid. sequence of n-dimen-
sional random vectors with mean zero and covariance matrix X, such that
E|u;,|**? < oo for some d > 0. Z, is assumed to be a positive definite matrix. y,
may be 1(0) or I{1), and if I(1), it may be cointegrated. Let {&,} be a RW!
generated by

&L=& 1+ e, (2

where {¢,} is a sequence of i.i.d. random variables with mean zero and variance
o? such that E|¢,|**? < oo for some d > 0.2 {¢,} is assumed to be independent
of {u,}.

Suppose that an econometrician estimates the regression equation

Ve=8 4+ A(L)y—y + BULIE 1 + B 3)

where t=1,..., T, (L) =Y., B;L'"", and symbol ‘*’ signifies ‘estimated’.
The lag length (p) is assumed to be specified correctly. Suppose further that the
econometrician wants to know if y, is ‘block exogenous’ in the n + 1 variable
system (y;, £,)’ and tests the hypothesis

pr= - =p,=0. )

That is, the lagged &’s do not ‘cause’ y, in the Granger sense.’

Our question is whether this econometrician can correctly infer ‘block
exogeneity’ of y, with respect to &, by appealing to conventional asymptotics for
Wald tests. In order to answer this question, Ohanian generated £, by a Monte
Carlo simulation and used for y, the post-war U.S. data on money, real output,
price level, and interest rate. He found that the null hypothesis (4) was rejected
too often.* Here we shall provide an analytic study and derive an asymptotic
distribution of the Wald statistic® for testing the hypothesis (4).

1t does not change the results in this paper if we take {,} to be a general vector I(1) process with
innovations that are stochastically independent of u,. However, we shall assume &, to be a scalar,
independent RW following the Ohanian model.

2 Assumptions on the innovations u, and ¢ could be weakned by allowing for martingale
differences. Subsequent analysis would differ only in terms of the central limit theory we utilize in
our asymptotics.

3 Exogeneity is, of course, not equivalent to Granger noncausality. So, the term ‘exogeneity test’ is
not very appropriate. However, we use this term throughout the paper, following Ohanian and
others before him.

4 He also found a moderate effect on the system’s relative variance decomposition. But since the
least squares estimators of the coefficients and the covariance matrix in nonstationary regressions
are consistent, this observation is best interpreted as a small-sample or data-conditioning effect.

5 Ohanian used the likelihood ratio test statistic, which is asymptotically equivalent to the Wald
statistic that we consider in our setting.
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Define
Xe=(Vimtses YVieps Cimtsoevs fz—p),
which is an (n + 1)p-vector, and write (3) as
V=G + %, + i,
where Il = [A,, ..., 4,, B1, ..., B,). Then, the hypothesis (4) becomes
ITR=0 or (I,®R)vec(IT)=0, (5)

where I, is a g x g identity matrix for any integer g,

R=[°] (n+ 1)pxp,
IP

and vec(-) is the vectorization operator that stacks the rows of the argument
matrix. Since inclusion of constant terms in the regressions is equivalent to
demeaning the data prior to estimation, the Wald statistic of interest with
respect to testing (4) can be written as

% = vec(I1) (I, ® R)[(L, ® R)[Z, ® (X'Q,X) ' ](I,® R)] "
x (I, ® R')vec(T)
= tr[[IR[R'(X'Q,X)"*R]"'RITZ "],

where Q, = It — T igiy (i, is @ g-vector of ones for any integer g), 5, is the
least squares estimator of Z,, and X' = (x,, ..., X7).

The asymptotic distribution of the Wald statistic and its derivation will differ
depending on whether y, is I(1) or I(0). Thus, we need to consider the two cases®
separately:

1. |1, — A(L)L| = 0 has at least one unit root and the rest of the roots lie outside
the unit circle.
2. All of the roots of [I, — A(L)L| = 0 lie outside the unit circle.

Once the asymptotics for case 1 are derived, however, it is a straightforward task
to obtain the corresponding results for case 2. Hence, we shall discuss the former
in detail first and later give only a brief explanation for the latter case. Note that
case 1 allows for cointegration among the variables in the vector y, if n > 2.

¢ We exclude by assumption the possibility that |1, — A(L)L} = 0 has a root inside the unit circle.
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3. Large-sample asymptotics

3.1. The nonstationary case

In this subsection we assume that the sequence {y,} is I(1) and may be
cointegrated with k linearly independent cointegrating vectors where
0 < k<n~—1 Let C be an nx k matrix of the cointegrating vectors. Then, we
can write (1) in an error correction model format as

Ay, =a+ A*(L)Ay,- 1 + TC'y -y + uy, (6)
where
p—1 ) 14
AX¥L)= Y AYL7' with Af=— Y A4,
j=1 i=j+1

and I is an n x k matrix of full column rank such that I'C' = 4A(1) — I,. If k =0,
there is no C and {y,} has a VAR representation in first-order differences.

Let G and S be nx(n— k) matrices of full column rank such that
R(G) = R(C)* and R(S) = R(I')*, where R(-) denotes the range space of the
argument matrix and R(-)* is its orthogonal complement. Define the n-vector
process {7,} as n, = y, — u — t, where

§=G[S{I,— A*(1)}G] 'S« (7
u:CF’[{I,,~A*(1)}5—oc], (8)

with C=C(C'C)"*and I' = I'(I" I')~!. [See Theorem 4.1 of Johansen (1991).]
Substituting Ay, = § + Ay, and C'y, = C'u + C'n, into (6), we have

Ang=a—{I,— A*()}6 + I'C'u+ A*(L)An, - + I C'yy—y + uy,
where

o —{I,— A*()}d + I'C'u=(l,—I'T")[a — {1, — A*(1)}6]
= 88[a — {I,— A*(1)}6] =0,
with § = S(S'S)~*. Therefore, y, may be written as
Ye=u+0ot+n, ©)
where 7, satisfies

An = A*(L)An,-; + TC'—y + uy. (10)
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Note from (9) and (10) that y, contains a linear time trend as well as stochastic
trend, unlessae R(I"). f a e R(I"), then 6 = 0 [see (7)] and y, has only a stochas-
tic trend as pointed out by Johansen (1991). In the following derivation of the
asymptotic distribution, we assume « ¢ R(I"), but the case aeR(I') will be
discussed later in this subsection.

Unlike regressions with stationary regressors, T’ “ZIT)Z,)Z; does not converge
to a positive definite matrix. Hence, we need the following transformation to
separate each component in X, of different stochastic order of magnitude, so that
the sample moment matrix converges properly when it is standardized appro-
priately. .

Since 6eR(G) [see (7)], there is an nx(n — k — 1) matrix G, such that .
R([Go,0]) = R(G) and 6'G, = 0. We define the matrices:

1 0
-1 1
-1 1
D= R s px(p—1),
-1 1
L O - 1]
| D®I, ,®Ci0
[P0k uecio)
i 0
H2=[f.”.§_g.95---j|, mxm,,
0 e
/5 -1
[ 22200 ] -

where m=(n+1)p, mi=n+Dp—-1)+k my=n—k e,=(10,..,0)
which is a p-vector, and H = [H,, H,, h;] is nonsingular.

-y

Next define Z, = H'X, = (@\,, z4%, 23.), €.,

i o+ An,—,y ]
O+ An_pey
= 'z ’ ’ g 22
Zy=Hix,={Cu+Chn_y |, 22,=H2X,=I: at}v
22
&1
8t-p+l
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where 2, = Got; -1 and 23y, = ¢,-1, and
23,=h’3)-C,=t— 1 +(5’5)_]5”71—-1~ (11)

Here we have used the fact that Gou =0, C'6 = 0,8 u = 0,and God = 0.[ See (7)
and (8).] We also define

’ ’ ’
zr“ = (A"7:~1, "'sA”I~p+1’ C rl!-—lagt—l’ "'agt—p+l)s

and z, = (z},, Z%» 23,). Note that 0,Z, =0,Z, where Z) = (245, ---»217)
and Z), =(%;5, ..., 2,7) Note also that in (11) the first term dominates
asymptotically. The variates z,,, z,, and zj are the basic components
that appear in the calculation of the asymptotic distribution of #”. We next
analyze the asymptotic behavior of these variates and their sample moment
matrices.

Define
U,
w,=1 Zy, |,
Az, |
and set

2 = Eww,
o«

A=Y Eww.;,
ji=1

Q=2+4+ 4" (12)

We partition 2, X, and A conformably with w,. For instance,

Qy Qo1 L,
Q=18 Ql 912
Qi L2y £

Let ¢ =4 signify ‘convergence in distribution’ and let [s] denote the integer part
of the real number s. Here and throughout the paper all limits are taken as
T tends to oo. We start our asymptotic analysis with the following preliminary
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lemma:

Lemma 1

1 I Bo(r) 1 n
—_ Z W,

ﬁm
\/‘ Z @, ®u,) ! v ot

where B(r) = (Bo(r), By(r), B;(r)) is an (n + m; 4+ my)-vector Brownian motion
with covariance matrix Q, v is an nm;-dimensional normal random vector with
mean zero and covariance matrix 2, ® 2, and B(r) is independent of v.

(i) Write
_ B,,(r) n—k—1
Ba(r) = I:sz("):l 1 '

Then B,,(r) is independent of (Bo(rY, Ba,(r)'Y, and B,,(r) = K'By(r) where K is
some nx(n — k — 1) matrix of full column rank.

(iii) Ayo=250=0, Qo= Xy =X, which is positive definite, and Q, and X,
are positive definite.

The next lemma follows from Lemma 1 above and Lemma 2.1 of Park and
Phillips (1989). Let ‘>, and ‘=’ denote ‘convergence in probability’ and
‘equivalence in distribution’, respectively.

Lemma 2
1 T

(1) (a) 7.. Z 1021 _’pzl,

i =>aN  where vec(N)=v=N(, R

i T
_\/_5_,!;1 Z1:ly
(11) ﬁ Z U, _’dJ\ dBO() BO(I)a

1 T 1
7—- _Z J dB,(n = B:i(1),
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1 T 1
(c) Z 22t 4 J; B,(ndr;

372
T 5

1
(iii) (a) 2ol —mf B,(r)dBo(r),

(o]

1=
M~

I
-

t

1 T 1
(b) T Z 222 _’d‘f By(r)dB;(r) + 221 + A2
t=1 ]
(iv) (a) TZ Z Z2:2% _’dJ B,(r)B,(ry dr;
1 T
v) (@) 37 Uy _’dJ rdBo(r)
1
(b) T3/2 Z 231211 _’dJ\ rdB
1
(0 52 Z Z3:Z% "Bz
5/

Joint convergence of all the above also applies. [
_Now we are ready to analyze the asymptotics of %" Since
H-nN=U0,X(X'Q0;X) ! where U =(uy, ...,u7) and Q,Z, = Q,Z,, we
have
=u[UQ, X(X'QX) ' R[IR(X'Q, X)"'R]™!
R(X'Q,X) ' X'QUE ]
=t[U'Q,2Z'0,2) 'P[PZ0,2)"'P]'P(ZQ,2) ' ZQ,UL; '],

where PP = R'H and Z' = (z,, ..., z7). Note that P' = [ P, P,,p;], where

P, =RH,=[0,D], pxmy,

P, =RH,=[0,¢,], pxmy,

p3=Rh3 =0, pxl
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Define further the matrices

- D I;’uf 12 0
P=|_ {P= ____i____s___ ,
i 0 {p5i0

where
Py, =DP,=[0,DD], (p—~1l)xm,
Pia=DPy=[0,¢,,], (p—1)xmy,
P =i,Py=(0,...,0,1), 1xm,,

and write

ﬁ&z(ﬁlZZsO)y lx(mz + 1)-
Note that each of ﬁ’“, P22, and p5 is of full row rank. Define also

TV, 0 0

T

T2, 0
Yr=| 0 Tl,, 0 and y*=[ Pt ]

0 0 T3 0 !

Then we have
¥ =ulUQ.Z(Z'0:Z) PV [P (20:2) ' PXE]™!
x3P(2'0,2)7'Z'Q\ UL '],

We need the following lemma:

Lemma 3
> 0
. 1 1 1
(i) T 20 2Y; *{0 3 Bz (NB,. (r)'dr}’
N
(ii) 7'ZQiU | 1 2 2k
.‘.o B,. (r)dBo(r)

(13)
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where

By (r) = By (r)—jl B,.(s)ds, B, (r)=|:Bz(r)] 0
4]

Now we have in (13):

YEP(Z'Q,Z) " PYt=Pr[Y;'ZQ,ZY;' 17 Py

ZI lﬁll 0
¢ 0 PoLfoBae(r)Byrydr]™ 5, '
by Lemma 3, where

< [ﬁal Py,/\/T 0}

0 P O

T=

Similarly,

YEP(2'0,2)7'Z'Q\U = Pr[Y;' ZQiZY; 17 Y71 ZQ,U

P ZTIN
p— ~ ~ ~ .
*| B> foBar () Bae (r)dr] ™', Bye (r)dBo (r)
Thus, taking account of the consistency of £,,” the continuous mapping the-
orem gives

W =W+ W,

where . N -
W, =tu[NZ'P, [P, 27 Py 17 P ETINES Y],

1 1 -1
W, = tr[j dBo(r)EZ. (rYy [j EZ. (r)§2. (r)’dr]
0 0

1 - -1 -1
xﬁz[ﬁz[ﬁ th(r)BZ‘(r)'dr] 132]

-1 1
A [ j 1 B, (r)B,. (r)’dr} j B,. (r)dBo(r)'z;l]. (14)
4]

0

and

7See Park and Phillips (1989) for the consistency of least squares estimators in this context.
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In the above, #'; and ¥, are independent because N is independent
of (Bo(r), Bo(ryY by Lemma 1(i). Note that, since vec(Py;Z;'N)=
(P 27 ®1,)vec(N)=N(0, P\, 2P, ® Z,) by Lemma 2(i)(b), we have

W= vec(ﬁ&,Z{’N)'[I;’“Z{’I;“ ®Zu]—1vec( ~/11}:1—1N) = Xf(p-l)-

Furthermore, since p5 = (0, ..., 0, 1, 0) and Q, = X, by Lemma 1(iii), we can
write (14) as

1 1 -1
W,= tr[j QJI/ZdBo(")Ezb(r)[j Eza(r)zd']

0 0
1 ~
Xj sz(r)dBo(r)’Qa”z], (15)
o]

where
1

BZb(S)BZa‘(S),dS[j BZa‘(S)BZa‘(S),ds] By, (r),

0o

Eza(r) = Ezr:(") - j

0

1

§2a‘(r) = BZa‘(r) - j BZa‘(s)dS’

0
Bya(r) = [BZ:(r) ] .

Note from Lemma 1(ii),
By(r) = J'1 262 Bo(r),

where J; = K'Q{/%. Multiplying (J; J,)~ ' on both sides,
Wir) = (JJ,) 712195 2 By(r),

where W, (r) = (J,J,;)"1?B,,(r). Let J, be an nx(k + 1) matrix such that
J1J, =0, and define

J = (JyJy) "
(JyJ)~ V20,
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where J'J = I, and JJ' = I, by uniqueness of the inverse matrix. Then write

W) ]

W(r) = J'Q5 ' Bolr) = [ o)

where W, (r) = (J5J2)”12J5Q4 12 Bo(r). Note that W(r) is an n-vector standard
Brownian motion and hence W,(r) and W,(r) are independent.
We also write

V(r) = w3 ? By (r),

where ¥(r) is a scalar standard Brownian motion independent of W(r) since
B, (r) is independent of By(r) by Lemma 1(ii), and w,, is the variance of B,,(r).
Hence we have

jx-lgza'(") = Wx'("),
w2 Byy(r) = V(r),

where

0 1
Wir) = Wyelr) — Ll Wi (s)ds, (16)
wen=| "0
V(ry = vir) — L V(s)ds. (17)

Combining the above results (15) can be written as

W, = tr[jl J'Qg 2 dBo(")Ezb(")[jl Ezb(")zd"]-l

0 0o

1
x j Ez,,(r)dBo(r)'Qa“zJJ

0

= tr[ j ’ dW(r)_IZ.,(r)[ j 1 f*(r)ZdrT j l f*(r)dW(r)']
0 0 [+

=W+ W2
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where
1 - 1 -1 1
Y =tr|:j dW:(r)_V*(r)[j _V*(r)zdr} j _V*(r)dwl(r)'],
0 0 0
(18)
1 - o -1 f1 o
‘/sz=tr|:j sz(r)Y*(r)[j L/*(r)zdr] j L/*(r)sz(r)’}
0 o [}
and

1

1 -1
V,r)= V(r)—j V(S)Wp(s)’ds[j Wl.(s)Wl.(s)’ds] Wi-(r). (19)
0

0

Now we write

1 : -1
Wiy = vec[j dWZ(r)_I;*(r)j} [1k+1 ®‘r _V*(r)zdr}
0 0
1 ~
xvec[j dW,(r) Z*(r)].
o

Let the symbol ‘|, signify the conditional distribution given realization of W,
and V. By the same argument as that of Lemma 5.1 of Park and Phillips (1989),

we have

v -1/2 1 _
|:Ik+1 ®j _V*(r)zdr] vec[j sz(r)Z*(r)]
0 0

Since this conditional distribution does not depend on W, and V, it is also the
unconditional distribution. Thus, we deduce that ¥ ,, = y?,,. Furthermore,
W ,, is independent of W,(r) and V(r) and, hence, ¥ ,,.

Therefore, we have obtained the following theorem.

= N(O, I+ ,)-

Wi,V

Theorem 1. If |I,— A(L)L|=0has n—k (0 < k < n— 1) unit roots and the
rest of the roots lie outside the unit circle and if a ¢ R(I"), then

1 1 -1
W“’dl?x(p-:)ﬂﬂ"’“[[ dWl(r)Y*(r)[j _I_/*(r)zdr}

o o

x j ’ _V*(r)dwl(r)']

0
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Here, the first and the second terms on the right-hand side are independent, W, )
is an (n — k — 1)-dimensional standard Brownian motion, and V ,(r) is defined in
(16), (17), and (19), where the scalar standard Brownian motion V(r) is independent
of Wi(r). O

Observe that ¥~ converges in distribution to a sum of the usual chi-square
distribution and a unit root type distribution. If k =n — 1, #” converges in
distribution to x2,, because then there is no %7;; term. This is because y, has
only one stochastic trend in that case and it is dominated by a deterministic
trend. If k < n — 2, however, the #7,, term comes into play and causes a bias in
the ‘block exogeneity’ test (4). The bias of the test thus depends on the #7,; com-
ponent of the limit distribution. Since #7,; depends only on the number of the
variables, n, and the dimension of the cointegration space, k, we can determine
the size and direction of the bias unambiguously by computing the distribution
numerically in any specific case. Some simulated critical values for the nonstand-
ard distributions are reported in the next section.

Before proceeding to the stationary case, we note that if ke R(I") (including the
case of a being equal to zero), then we have a different asymptotic distribution
since in that case y, does not contain a time trend. It should be apparent from the
above derivation that r, the component corresponding to a time trend, in W;.(r)
in (16) will be replaced with a Brownian motion. Thus, we have:

Theorem I'. If {1, — A(L)L| =0 hasn — k (0 < k < n— 1) unit roots and the
rest of the roots lie outside the unit circle and if aeR(I"), then

1 1 -1 1
W~dx5(p-1,+k+tr[ j dwl(r)f(r)[ j _V(r)Zdr] j _V(r)dwx(")'}

0 (4] (4]
Here, the first and the second terms on the right-hand side are independent, W, (r)

is an (n — k)-dimensional Brownian motion,

i 1 -1
V(ry= V)~ j V(s)Wl(s)'ds[ j Wl(s)u'fl(s)'ds} Wy(r),
0

0

1
Wir)= Wyir)— ‘L W,(s)ds,

and V(r) is defined in (17) where the scalar standard Brownian motion V(r) is
independent of Wy(r). U

Note that Theorem 1’ implies that if y, is (1) and does not have a determinis-
tic trend, the Wald statistic #~ always converges to a nonstandard distribution.
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Unlike Theorem 1, the second term in the asymptotic distribution does not
disappear even when k =n — 1.

3.2. The stationary case

We now consider the case in which the sequence { y,} is stationary. Since the
derivation of the asymptotic distribution is similar to that in the nonstationary
case discussed above, we shall give only a brief explanation in the present case.

We can write, for each ¢,

ye=u+n, (20) -

where u = (I, — A(1))"! « and n, = (I, — A(L)L)" 'u,. The H matrix is now
defined as

and H = [H,, h,], which is clearly nonsingular. Note that, since y, is I(0) with
the fixed mean p, we no longer need h; to isolate the time trend component.
Accordingly, we define the new Z,,, z,,, and z,, as follows:

1o ’ ’
u= Hlxl =(yt—l’ ~"’yt—ps &-15 -~'asl—p+l)’v
) -
u=MX=7§-,
’ ’ '
le = ('7!—17 ---,’7:-;»5:—1, "'9sl—p+l)'

Note that 0,Z, = 0,Z,, as before.

Now it should be apparent that, for the redefined z,, and z,, above, Lemma
1(3) and (iii) still hold with obvious changes in the dimension of the Brownian
motions and the covariance matrices. In the stationary case, we have no z,,,
and z,, corresponds to z,,, of the nonstationary case. Hence Lemma 1(ii) now
becomes:

Lemma 1(ii)’. B,(r) is a scalar Brownian motion independent of By(r). U

Thus Lemmas 2(i)—(iv) also hold (with obvious modifications) for the re-
defined z,, and z,,. With the present definition of H above we now have

Py=10,D], px[+1p—1],

,
D2 = €p;
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and there is no p;. Hence,

P,y =[0,0'D], (p—Dx[(n+1)p—1],

Redefine the normalization matrices Yr and Y} accordingly, and Lemma
3 becomes:

Lemma 3
z 0
i YI1ZQ,Z Yol -y ~
(1) T Ql T d[o j‘(l)Bz(r)zdrj},
N
ii Y:1Z70,U — ~
(11) T Ql d[]‘éBz(r)dBo(r),an
where

1

B,(r) = By(r) — j B,(s)ds. O

0

Since p,, = 1, it follows from Lemma 3’ that, with suitably redefined Py,

YXP(ZQ,Z) 'PY% = Pr(Y; Z0,ZY;Y) Py

Py, Z71P,, 0
d[ 0 [j(l)ﬁz(r)zdr]'l] 1)

and

Y‘;ﬁ’(Z’QIZ)"Z’QIU =P [Y7'Z2Q,ZY;']7 Y7 ZQ,U

P I N ]
—a| 1z - e
"[[L‘,Bz(r)zdrl"IéBz(r)dBo(r)' 22)

Substituting (21) and (22) into (13) gives

W =g Wi+ W,
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where

W,y =t [N I[P 2 P ] P STIN S,

W, = zr[ j 1 dBo(r)Ez(r)[ j 1 I;z(r)zdrjl-l j 1 Ez(r)dBo(r)'z;l], 23)
0

0o 0

and #°, and #°, are indepenent by Lemma 1(i), as before. We can easily show
that #°; = y2(,- ). As for #7,, write

1 ’ 1 -1
WZ = Vec[‘[ Q(‘)‘”ZdBo(r)Ez(r)j] [I,, ®j Ez(r)zdr]
(o} 0

x vec|: jl le/ZdBo(r)Ez(r)],
0

since £, = Q. By Lemma 5.1 of Park and Phillips (1989),

|:1n ® fl Ez(r)zdrjl—lvec[fl le/ZdBo(r)Ez(r)] =N(@,1,),
0 (o]

since B,(r) is independent of By (r) by Lemma 1(ii). Therefore %, = y2.
Thus, we have obtained:

Theorem 2. If|1,— A(L)L|#0 for |L| <1, then W —4y2,. O

Interestingly, the inclusion of an independent RW variable in a stationary VAR

estimation does not cause any bias in the ‘exogeneity test’ at least asymp-
totically.

4. Conclusions
Findings in Ohanian (1988, table 9) that are relevant for our asymptotic
analysis may be summarized as follows:

1. ‘Block exogeneity’ of genuine variables was rejected, on average, 21% of the
time for a 5% level test when an artificially generated RW was included in
Sims’ empirical VAR’s, while

2. inclusion of a white noise process did not cause any bias in the test.
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Table 1
Percentiles of the nonstandard distributions.

p-values at 5%
10% 5% 1% x2, critical values

n=4p=4k=0

Theorem 1 27.85 3122 38.08 13.24%
Thoerem 1 2936 3276 39.65 17.52%
e 23.54 2630 32.00 5.00%

n=4,p=1k=0

Thoerem 1 13.10 15.53 21.39 23.82%
Theorem 1 14.71 17.30 22.87 32.97%
1 7.78 9.49 13.28 5.00%

Finding 2 is consistent with the asymptotic theory. Even in the case where the
genuine variables are nonstationary, the test is a valid asymptotically chi-square
test since the independent white noise process is trivially cointegrated with the
other nonstationary variables, i.e., the white noise itself is a stationary linear
combination of those variables. [See Sims, Stock, and Watson (1990, example 2)
and Toda and Phillips (1991, corollary 1.1).]

If the macroeconomic time series used in Ohanian’s study are nonstationary,
then our Theorems 1 and 1’ are relevant, and they are consistent with Ohanian’s
finding 1. We simulated percentile points for the asymptotic distributions given
in Theorems 1 and 1’, with different n, p, and k. Table 1 shows some of those
simulated percentile points. (Details of the computation are given in appendix
B.) Ohanian’s VAR consists of four macroeconomic variables plus a RW with
a lag length of one year (four quarters). Hence n = 4 and p = 4. As for k, we
report here only the case where k = 0 since cointegration among the macroeco-
nomic variables used in Ohanian (1988) is not likely. [See, for instance, Stock
and Watson (1989).] Of course, the deviation from the y2, distribution becomes
smaller as k increases.® Thus, the upper half of table 1 shows the limit distribu-
tions with n=4, p=4, and k=0. It is interesting to observe that those
simulated distributions are not only qualitatively but also quantitatively
comparable with the Ohanian results. For comparison purposes, the cases
where p = 1 are reported in the lower half of table 1. Notice that if p = 1, the
limit distribution in Theorem 1’ does not have a chi-square part at all.

8 For example, percentile points of the limit distribution in Theorem 1’ with k = 1 are very similar
to those of the distribution in Theorem 1 with k = 0. [Recall that the degrees of freedom for the
chi-square part are n(p — 1) + k + 1 in Theorem 1, but n(p — 1) + k in Theorem 1]
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Conversely, results in Ohanian’s experiment together with our Theorems 1, 1,
and 2 imply that those macroeconomic variables used in his study are likely to
possess stochastic trends (possibly with deterministic trends), provided that
Sim’s VAR model is the true data-generating process. For otherwise there would
have been no such notable bias in the ‘exogeneity test’; if the genuine variables
are stationary, then, by Theorem 2, the #  statistic converges to the usual
chi-square variate.

In this paper we have concentrated specifically on the spurious inference
problem for ‘exogeneity tests’ that was raised by Ohanian. This is, however, only
a special case of the problems that arise from using nonstationary data. In general,
as Park and Phillips (1988, 1989) show, commonly used test statistics such as the
Wald statistic not only converge to nonstandard distributions but also the
asymptotic distributions typically involve nuisance parameters. These problems
make inference under nonstationarity difficult although, as the Park—Phillips
analysis shows, it is still possible to transform the test statistic so that it has
a nuisance parameter free distribution. In this sense, the fact that our #” statistic
has a limit distribution that is free of nuisance parameters is itself noteworthy.

One might hope that this property would carry over to a more general case.
Unfortunately, this is not the case. Indeed, the possibility that the variables may
be cointegrated is a substantial complication, as suggested by the analysis of the
trivariate system in Sims, Stock, and Watson (1990). A related paper by the
authors [Toda and Phillips (1991)] studies the general case and shows that the
Wald statistic for the Granger noncausality hypothesis test in a general VAR
framework has a limit distribution which, in general, has a nonstandard com-
ponent that is commonly dependent on nuisance parameters. However, the limit
distribution is the same as the usual asymptotic chi-square distribution if the
system has sufficiently many cointegrating vectors.

Appendix A

Proof of Lemma 1
(i) We have from (10),

Zia+1 = ¢1a21at + Flaun (Al)

where 2, = Ay, ..., AN i1 (C'p—y)'), and

AT ASL AL} T
E = 1®1,
¢1a = In(p'Z) i 0 i 0 i Fla = [ep ’/® j},
- c
CA* . CAP_,  CA*_ L, +CT
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where ¢, ; = (1,0, ..., 0) which is a (p — 1)-vector. Similarly we have from (2),
Zi+1 = PipZipe + €p—181s (A.2)

where 2,y = (611 ---» &~ p+1) @nd @y, is suitably defined. Thus we can write
(A.1) and (A.2) together as

241 = (plzlr + Flvn

where v, = (u;, &), and

o, O Fi, 0
(p = = .
' [ 0 <1>1J’ b [ 0 e,,—lJ

Since z;, is 1(0) by assumption, the eigenvalues of @, must be all less than unity
in absolute values.
Now by the same argument as that of Theorem 2.2 in Chan and Wei (1988),

1

T
? Z zlrzllr _’pzl (A3)
t=1
and
1 1
—= )
JT ,; ' B,(r)
1 T —a b > (A4)

‘ﬁ Z . ®v)

t=1

where B,(r) = (B,(r), B.(r)) is an (n + 1)-vector Brownian motion with
covariance matrix X, = Ev,v}, ¥ is an (m(n + 1))-dimensional normal random
vector with mean zero and covariance matrix X, ® X, and B,(r) and ¥ are
independent. Note also that B,(r) and B, (r) are obviously independent.

From (A.1) we have

Ziamt = qlla(L)Flaut—la (AS)

Where q’la(L) = (1 - (plaL)-l = Z;O:o qjla‘ij Wlth W1a,o = I. Since qlla(L) iS
the inverse of (I — ®,,L)and | I — &,,L| = 0 has only stable roots, we know by
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Brillinger (1981, p. 77) that, for all g > 0,
Z Jg“ qjla,j”a < o,
j=1

where || ¥y, ;| denotes the sum of the absolute values of the entries of ¥, ;.
This in turn implies

Z }2“ 'Pla,sz < 00,
=1
where || #1412 = tr(¥1a,; Pia;)- Then, (A4) and a multivariate extension of

Theorem 3.4 of Phillips and Solo (1992) implies

1 [Tr}
2 Zta —=a P1a(1) F1aB(r). (A.6)

ﬁr=l

Furthermore, we obviously have from (A.4) and the definition of z,,,,
[Tr}

Z Zipe ~aip—1 ® B.(r), (A7)
\/_

where i,_; is a (p — 1)-vector of ones.
Next, define Z,,, = G'n,-; = (2%4,0'1— 1), and we have from (10)

-~ ' t
AzZat+1 = G ¢Zazlal + Gut’

where @,, = [AY, ..., A5-,,I']. Hence
[g] lg] [ir:]
Az, =GP — Zim + G—= u, + 0,(1)
JT5 JTE JT 5
=4 G P2, ¥14(1)F1,B,(r) + G'B,(r) = K'B,(r), (A.8)

by virtue of (A.4) and (A.6), where K' = G’ [1, + ®,,%¥,,(1) F1,]. Also, we appar-
ently have

[Tr]
2 Azyy =4 B(r). (A9)

1
;7;1=1
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To obtain result (i) of Lemma 1, we set

BO(r) = Bu(r)’ (AIO)
_ qjla(l)FlaBu(r)

Bl(r)—[ P ® B } (A.11)

Bo(r) = K'B,(r) where K'=[I,_,_,,0]1K, (A.12)

Bay(r) = Bc(r), (A.13)

v= (I, ® I‘:,)\”) where f,, =[1,,0]. (A.14)

See (A.4), (A.6)—(A.9). B(r) = (By(r), By(r), B,(r)) is independent of v because
B,(r) is independent of ¥. The covariance matrix of B(r) is given by (12).

(ii) Byy(r) is independent of (By(r), By,(r)) from (A.10), (A.12), and (A.13)
because B,(r) is independent of B,(r).

We have already shown that we may write B,,(r) = K'B,(r). [See (A.12).] So
we need here to show that K’ is of full row rank. From (10) and (A.5), An, has
a Wold representation

A= @opzig + thy = P2,¥14(L) F oty 1 + u, = O(L)u,,

where O(L)=1,+ &,,%,,(L)F,,L. By Granger Representation Theorem,
R(G)=R(C)* =R(O(1)), and hence G'O(1) is of full row rank. But
K =G'[I,+ $,,¥,.,(1)F,;] = G'O(1). [See (A.8).] Therefore K’ in (A.12) is of
full row rank as required.

(iii) 2, = Z, = X, is obvious. The positive definiteness of Z, is proved from
(A.1) in the same way as Lemma 5.5.5 of Anderson (1971). Q, is given by

a, =[KZ,,K 0}

0 a?

which is positive definite because K is of full column rank. Since Az, is a
function of only the past history of the innovations, ie., {v,—;, v,-2, ... }, we have

EAzyu,.;=0 forall j>0.

Hence 2,0 = A50=0. O
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Proof of Lemma 2

(i) was proved in the proof of Lemma 1(i). [See (A.3).] (ii)—(iv) follow immedi-
ately from Lemma 2.1 of Park and Phillips (1989) noting that ;o = 430 =0and
zy=t+o0,t). O

Proof of Lemma 3
(i) Y71ZQZY; =Y ZZY; - T Y Ziin Z Yy
T-17,2, T ¥Z\Z, T *Z\Zs
T-32y2, T™?2y2, T-%Z37,
T 2Z4Z, T-%274Z, T 3Z43Z,
T 1Z%ir
T3 Zyip (T Zy, T~ Zy, T2 Zs)
T 2Z%ir
! 0
4 E 1 / 1
0 E_[OBZ(r)Bz(r) dr [, B, (r)rdr
0} f[arBy(rydr  foridr
0! 0
o i_[(l,Bz(r)dr_[éBz(r)’dr foB2(r)dr ordr
0 [lrdr[iB,(rydr fordrfgrdr
[215 0 }
0 !jéﬁz.(r)ﬁz.(r)’dr
by Lemma 2.
(i) Y;1Z'Q U= Y;'ZU = T-' Y ' Zigiy U
T-Y27,U T 1Zir
=|T"'Z,U — | T7322%ip | T V20U

T-32Z7,U T~2Z%4ir
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N B 0
—4|JoB2(r)dBo(r) | — | [ Bo(r)dr[dBy(ry
{ordBo(ry ] fordr[3dBo(ry
_ [ N ]
L f8Bae(r)dBo(ry |-

by Lemma 2. O

Appendix B

The limit distribution in Theorem 1 can be represented as
{*(do,d1,d3) = {§(do) + {T2(d,,dy) ,

where (§(do) = x2, that is independent of (*,(d,,d,), and

1 - L - -1
(t2dy,d2) = 13 +tr[f dWx(r)I_/*(r)’[f V(r) I_/*(r)’er

0 0

0

x f ?*(r)dwl(r)'} :

with

Wil(r) _ Ij-1 0
o=l )

253

and f*(r) being defined as in (16), (17), and (19). Similarly the distribution in

Theorem 1’ can be represented as

{(do.dy,d2) = {oldo) + {12(dy,d2),

where {o(dy) = x2, that is independent of {,,(d;,d,), and

-1

1 - 1 _ -
Clz(dudz)Etr[f dWx(r)Y(r)'[f v(r) Z(r)'er

0 0

x f V(rydw, (r)'} ,

0

(B.2)

(B.3)
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Wi(r) _ Iy, 0
[V (’)J =BM[0 Idz]

and 1_7( r) being defined as in Theorem 1.

Note that dy, d,, and d; in (B.1) and (B.2) correspond to (n — 1)p + k, n — k,
and 1 in Theorems 1 and 1'. Although we have analyzed only the case in which
d, = 1,1ie., & is a scalar, &, can be a general d,-vector process independent of y,,
as noted in footnote 1.

To simulate the distribution of {*(d,,d,,d,), we generated a 10,000 replica-
tions of 1,100 observations of y, and ¢&,, according to

with

yo=a+ Ay, +u, with y,=0, (B4)
where « = (0, ..., 0,1) that is a d,-vector, 4 = I, , and u, = iid N(0, I,;,), and
&i=&-1te with =0,

where ¢, = iid N(0, I;,) independent of u,. We discarded the first 100 observa-
tions of {(y:, &)}, giving the series of length 1,000.

_ Next, for each replication of {(y, &Y}, we computed the Wald statistic,
£%,(d,, d,) say, for the null hypothesis that 8 = 0 in the estimated equation

yo=6+ Ay, + P&y +d, =101, ..,1100.

Then, adding an independent yJ, variate to each t*,(d,,d,), we obtained
a 10,000 realizations, (*(do,d,,d;) say, of the (approximate) distribution of
{*(do,d,,d;), from which we computed the percentile points reported in
section 4.

We simulated the {(do,d;,d;) in (B.2) in the same way as above, except that
we set « = 0 in (B.4). The justification for the approximation adopted here is, of
course, provided by Theorems 1 and 1’. All computations were performed in the
Gauss Matrix Programming Language.

To get an idea of how well the {*(dq,d,,d,) and {(dy,d,,d,) distributions are
approximated by the method adopted here, we also computed 10,000 replica-
tions of £*(0,4,1) = {¥,(4,1) and [(0,4,1) = {;,(4,1) with 4 = 0.5], in (B.4).
From those series, 10%, 5%, and 1% points were calculated. These values
should coincide with the corresponding percentile points of the 2 distribution
by Theorem 2, since y, is stationary in that case. The deviations of the simulated
values from the y3 critical values were within 0.13 for £(0,4,1) and 0.43 for
£*(0,4, 1). Simulated p-values at the 5% x2 critical value were 5.29% and 5.46%,
respectively.
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